Safe RuleFit: Learning Optimal Sparse Rule Model by Meta Safe Screening

We consider the problem of learning a sparse rule model , a prediction model in the form of a sparse linear combination of rules, where a rule is an indicator function defined over a hyper-rectangle in the input space. Since the number of all possible such rules is extremely large, it has been compu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 45; no. 2; pp. 2330 - 2343
Main Authors: Kato, Hiroki, Hanada, Hiroyuki, Takeuchi, Ichiro
Format: Journal Article
Language:English
Published: United States IEEE 01.02.2023
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 1939-3539, 2160-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the problem of learning a sparse rule model , a prediction model in the form of a sparse linear combination of rules, where a rule is an indicator function defined over a hyper-rectangle in the input space. Since the number of all possible such rules is extremely large, it has been computationally intractable to select the optimal set of active rules. In this paper, to solve this difficulty for learning the optimal sparse rule model, we propose Safe RuleFit (SRF) . Our basic idea is to develop meta safe screening (mSS) , which is a non-trivial extension of well-known safe screening (SS) techniques. While SS is used for screening out one feature, mSS can be used for screening out multiple features by exploiting the inclusion-relations of hyper-rectangles in the input space. SRF provides a general framework for fitting sparse rule models for regression and classification, and it can be extended to handle more general sparse regularizations such as group regularization. We demonstrate the advantages of SRF through intensive numerical experiments.
AbstractList We consider the problem of learning a sparse rule model , a prediction model in the form of a sparse linear combination of rules, where a rule is an indicator function defined over a hyper-rectangle in the input space. Since the number of all possible such rules is extremely large, it has been computationally intractable to select the optimal set of active rules. In this paper, to solve this difficulty for learning the optimal sparse rule model, we propose Safe RuleFit (SRF) . Our basic idea is to develop meta safe screening (mSS) , which is a non-trivial extension of well-known safe screening (SS) techniques. While SS is used for screening out one feature, mSS can be used for screening out multiple features by exploiting the inclusion-relations of hyper-rectangles in the input space. SRF provides a general framework for fitting sparse rule models for regression and classification, and it can be extended to handle more general sparse regularizations such as group regularization. We demonstrate the advantages of SRF through intensive numerical experiments.
We consider the problem of learning a sparse rule model, a prediction model in the form of a sparse linear combination of rules, where a rule is an indicator function defined over a hyper-rectangle in the input space. Since the number of all possible such rules is extremely large, it has been computationally intractable to select the optimal set of active rules. In this paper, to solve this difficulty for learning the optimal sparse rule model, we propose Safe RuleFit (SRF). Our basic idea is to develop meta safe screening (mSS), which is a non-trivial extension of well-known safe screening (SS) techniques. While SS is used for screening out one feature, mSS can be used for screening out multiple features by exploiting the inclusion-relations of hyper-rectangles in the input space. SRF provides a general framework for fitting sparse rule models for regression and classification, and it can be extended to handle more general sparse regularizations such as group regularization. We demonstrate the advantages of SRF through intensive numerical experiments.We consider the problem of learning a sparse rule model, a prediction model in the form of a sparse linear combination of rules, where a rule is an indicator function defined over a hyper-rectangle in the input space. Since the number of all possible such rules is extremely large, it has been computationally intractable to select the optimal set of active rules. In this paper, to solve this difficulty for learning the optimal sparse rule model, we propose Safe RuleFit (SRF). Our basic idea is to develop meta safe screening (mSS), which is a non-trivial extension of well-known safe screening (SS) techniques. While SS is used for screening out one feature, mSS can be used for screening out multiple features by exploiting the inclusion-relations of hyper-rectangles in the input space. SRF provides a general framework for fitting sparse rule models for regression and classification, and it can be extended to handle more general sparse regularizations such as group regularization. We demonstrate the advantages of SRF through intensive numerical experiments.
Author Hanada, Hiroyuki
Takeuchi, Ichiro
Kato, Hiroki
Author_xml – sequence: 1
  givenname: Hiroki
  orcidid: 0000-0002-9077-3589
  surname: Kato
  fullname: Kato, Hiroki
  email: kato.h.mllab.nit@gmail.com
  organization: Department of Computer Science, Nagoya Institute of Technology, Nagoya, Aichi, Japan
– sequence: 2
  givenname: Hiroyuki
  orcidid: 0000-0002-2139-3857
  surname: Hanada
  fullname: Hanada, Hiroyuki
  email: hiroyuki.hanada@riken.jp
  organization: Center for Advanced Intelligence Project, RIKEN, Chuo, Tokyo, Japan
– sequence: 3
  givenname: Ichiro
  orcidid: 0000-0002-1366-1946
  surname: Takeuchi
  fullname: Takeuchi, Ichiro
  email: ichiro.takeuchi@mae.nagoya-u.ac.jp
  organization: Center for Advanced Intelligence Project, RIKEN, Chuo, Tokyo, Japan
BackLink https://cir.nii.ac.jp/crid/1874242817461309696$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/35471868$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha2KCgbKCxQJRYJFN5n6L_5hN0JAkWZE1aFry06ukVEmGexkwdvjIUMXLLqxN9937rXPMTro-g4Q-k7wnBCsfz7-Xqzu5xRTOmdESK3ZFzQjmumSVUwfoBkmgpZKUXWEjlN6xpjwCrNDdMQqLokSaobu1tZD8Wds4TYMV8USbOxC91Q8bIewsW2x3tqYJqBY9Q20hXstVjDY4l1c1xFgJ3xDX71tE5zu7xP09_bm8fpXuXy4u79eLMuaczGUyuPGO86xs6oW2jtMKocFb5SVjjMphW84xpyA0k4JQm3jfFVhL7iVjQR2gn5MudvYv4yQBrMJqYa2tR30YzJUVIJoTRTN6MUn9LkfY5e3M1QKwmQeJDN1vqdGt4HGbGN-d3w1H1-UATUBdexTiuBNHQY7hL4bog2tIdjs2jDvbZhdG2bfRlbpJ_Uj_b_S5SR1IeRRu5MoySmnikie98ZaaJGxswkLAPAvV0tBtZDsDfp5nKM
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_jss_2024_112182
crossref_primary_10_1016_j_eswa_2023_120189
Cites_doi 10.1109/TPAMI.2016.2568185
10.1145/1390156.1390185
10.1145/2939672.2939844
10.1080/10618600.2012.681250
10.1007/s10107-007-0170-0
10.1561/2200000015
10.1214/15-aoas848
10.1007/978-3-319-07821-2
10.1515/9781400873173
10.3390/electronics8080832
10.1214/07-AOAS148
10.1023/A:1010933404324
10.1145/2623330.2623648
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S0306-4379(99)00003-4
10.1007/978-3-540-69731-2_52
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3167993
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CiNii Complete
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1939-3539
2160-9292
EndPage 2343
ExternalDocumentID 35471868
10_1109_TPAMI_2022_3167993
9762967
Genre orig-research
Journal Article
GrantInformation_xml – fundername: JST CREST
  grantid: JPMJCR1502
– fundername: JST support program for starting up innovation-hub on materials research
– fundername: JST/AIP Accelerated PRISM Research
  grantid: JPMJCR18ZF
– fundername: RIKEN Center for Advanced Intelligence Project
– fundername: MEXT KAKENHI
  grantid: 17H00758; 16H06538
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
RYH
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c446t-8f0dfb440ba8c69fb015b064d8a7b43776fd40041e89b8612adbf550f64a7d7e3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912386000064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 11:29:48 EDT 2025
Sun Jun 29 16:46:00 EDT 2025
Thu Apr 03 07:03:20 EDT 2025
Tue Nov 18 22:11:21 EST 2025
Sat Nov 29 02:58:19 EST 2025
Mon Nov 10 09:05:38 EST 2025
Wed Aug 27 02:54:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-8f0dfb440ba8c69fb015b064d8a7b43776fd40041e89b8612adbf550f64a7d7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2139-3857
0000-0002-1366-1946
0000-0002-9077-3589
PMID 35471868
PQID 2761374007
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_2656199182
ieee_primary_9762967
nii_cinii_1874242817461309696
crossref_citationtrail_10_1109_TPAMI_2022_3167993
pubmed_primary_35471868
crossref_primary_10_1109_TPAMI_2022_3167993
proquest_journals_2761374007
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE Transactions on Pattern Analysis and Machine Intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
Liu (ref16)
Kim (ref24)
ref31
ref30
ref11
ref1
ref17
El Ghaoui (ref6) 2012; 8
Dheeru (ref34) 2017
Biran (ref2)
Kaytoue (ref28)
Pedregosa (ref36) 2011; 12
Wang (ref18)
Ndiaye (ref22)
Wang (ref26)
Wei (ref14)
ref23
Fercoq (ref20)
Aho (ref10) 2012; 13
Bonnefoy (ref19)
ref27
ref29
ref8
ref7
Burdakov (ref32)
ref9
ref4
ref3
ref5
Eckstein (ref13)
Ndiaye (ref21)
Burdakov (ref33) 2001
Wang (ref25)
Wang (ref15)
Breiman (ref35) 2001; 45
References_xml – ident: ref17
  doi: 10.1109/TPAMI.2016.2568185
– start-page: 6
  volume-title: Proc. 22nd Eur. Signal Process. Conf.
  ident: ref19
  article-title: A dynamic screening principle for the Lasso
– volume: 8
  start-page: 667
  issue: 4
  year: 2012
  ident: ref6
  article-title: Safe feature elimination for the LASSO and sparse supervised learning problems
  publication-title: Pacific J. Optim.
– ident: ref8
  doi: 10.1145/1390156.1390185
– ident: ref23
  doi: 10.1145/2939672.2939844
– ident: ref7
  doi: 10.1080/10618600.2012.681250
– start-page: 333
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  ident: ref20
  article-title: Mind the duality gap: Safer rules for the Lasso
– ident: ref31
  doi: 10.1007/s10107-007-0170-0
– start-page: 15
  volume-title: Proc. Int. Wiss. Kolloq. Fortragsreihe” Mathematische Optimierung| Theorie Anwendungen
  ident: ref32
  article-title: A new vector norm for nonlinear curve fitting and some other optimization problems. 33
– ident: ref5
  doi: 10.1561/2200000015
– ident: ref11
  doi: 10.1214/15-aoas848
– ident: ref30
  doi: 10.1007/978-3-319-07821-2
– year: 2001
  ident: ref33
  article-title: On a new norm for data fitting and optimization problems
– ident: ref27
  doi: 10.1515/9781400873173
– volume: 13
  start-page: 2367
  year: 2012
  ident: ref10
  article-title: Multi-target regression with rule ensembles
  publication-title: J. Mach. Learn. Res.
– ident: ref3
  doi: 10.3390/electronics8080832
– ident: ref1
  doi: 10.1214/07-AOAS148
– start-page: 811
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Gap safe screening rules for sparse multi-task and multi-class models
– start-page: 1059
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref13
  article-title: Rule-enhanced penalized regression by column generation using rectangular maximum agreement
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref35
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref12
  doi: 10.1145/2623330.2623648
– start-page: 1070
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref15
  article-title: Lasso screening rules via dual polytope projection
– ident: ref4
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– start-page: 1342
  volume-title: Proc. 22nd Int. Joint Conf. Artif. Intell.
  ident: ref28
  article-title: Revisiting numerical pattern mining with formal concept analysis
– ident: ref29
  doi: 10.1016/S0306-4379(99)00003-4
– start-page: 1279
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref26
  article-title: Multi-layer feature reduction for tree structured group lasso via hierarchical projection
– start-page: 388
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Gap safe screening rules for sparse-group Lasso
– start-page: 543
  volume-title: Proc. 27th Int. Conf. Int. Conf. Mach. Learn.
  ident: ref24
  article-title: Tree-guided group Lasso for multi-task regression with structured sparsity
– start-page: 289
  volume-title: Proc. 31st Int. Conf. Int. Conf. Mach. Learn.
  ident: ref16
  article-title: Safe screening with variational inequalities and its application to Lasso
– start-page: 1053
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref18
  article-title: A safe screening rule for sparse logistic regression
– start-page: 2132
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Two-layer feature reduction for sparse-group lasso via decomposition of convex sets
– ident: ref9
  doi: 10.1007/978-3-540-69731-2_52
– year: 2017
  ident: ref34
  article-title: UCI machine learning repository
– start-page: 6687
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref14
  article-title: Generalized linear rule models
– start-page: 8
  volume-title: Proc. Int. Joint Conf. Artif. Intell. Workshop Explainable AI
  ident: ref2
  article-title: Explanation and justification in machine learning: A survey
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref36
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn Res.
SSID ssj0014503
ssib017384917
ssib006543658
ssib016644684
ssib053393923
ssib006543657
ssib012866470
ssib004836755
ssib008799134
ssib045030414
Score 2.4528904
Snippet We consider the problem of learning a sparse rule model , a prediction model in the form of a sparse linear combination of rules, where a rule is an indicator...
We consider the problem of learning a sparse rule model, a prediction model in the form of a sparse linear combination of rules, where a rule is an indicator...
SourceID proquest
pubmed
crossref
nii
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2330
SubjectTerms Analytical models
combinatorial algorithms
convex programming
Dictionaries
knowledge representation formalisms and methods
Learning
Machine learning
Numerical models
Pattern analysis
Prediction models
Predictive models
Random forests
Regression tree analysis
Regularization
Screening
Title Safe RuleFit: Learning Optimal Sparse Rule Model by Meta Safe Screening
URI https://ieeexplore.ieee.org/document/9762967
https://cir.nii.ac.jp/crid/1874242817461309696
https://www.ncbi.nlm.nih.gov/pubmed/35471868
https://www.proquest.com/docview/2761374007
https://www.proquest.com/docview/2656199182
Volume 45
WOSCitedRecordID wos000912386000064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0Bqio4QAttCQXkSr21gSXxxjY3VHXbHqCoS6W9RXY8rlbaZhFkK_XfM-N8iENbqZdopdhJ1jOTeS-25wG81Z6MqqRPq8znqQwupISKbEqZSzo0RIuCj2IT6upKz2bmeg3eD3thEDEuPsMT_hnn8v2yWvGnslNKnZkp1DqsK1W0e7WGGQM5jirIhGAowolG9BtkRub05vri8gtRwSw74X3flJE34Wk-5tcyV1h9lI-iwAplmXo-_zvijJlnsvN_z_wMtjuEKS5al3gOa1jvwk6v3iC6YN6FrUelCPfg09QGFN9WC5zMm3PRlV39Ib7SK-UnXW56Swy4bSBYP20h3G9xiY0VseO04vU71OEFfJ98vPnwOe1EFtKKmGCT6jDywUk5clZXhQmO8IEjnOK1VU7mNNDBc5yfoTZOEx6y3gWiNaGQVnmF-UvYqJc17oPAMdcnywkhopHeBKuJohpXFJpYJlaYwFk_1GXVVSBnIYxFGZnIyJTRUiVbquwslcC7oc9tW3_jn6332AJDy27wEzgii9I9-cgihIRLNFEx5k5cHSiBw97WZRfC92Wm6LRi2fgE3gynKfh4RsXWuFxRG_qvvHZMZwm8an1kuHfvYAd_fqbXsMnK9e0C8EPYaO5WeARPql_N_P7umDx8po-jhz8Ao0fvJQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgqAcKLQ8Ai0YiRukTZNsbHOrEEsrukvFLlJvkR2P0UpLtmqzSPx7ZpyHegAkLlGk2M5jPJ7vi-35AN4oR0aVuYur1GVx7q2PCRWZmCJXblETLfIuiE3I6VRdXOjzDXg37IVBxLD4DA_4NMzlu1W15l9lhxQ6U13IW3CbWkqTdrfWMGeQj4IOMmEY8nEiEv0WmUQfzs-PJ6dEBtP0gHd-U0zegrvZiAdmzrF6IyIFiRWKM_Vi8XfMGWLPePv_nvohPOgwpjhuO8Uj2MB6B7Z7_QbRufMO3L-RjHAXPs2MR_F1vcTxonkvusSr38UXGlR-UHOzS-LAbQHBCmpLYX-JCTZGhIqzilfwUIXH8G38cf7hJO5kFuKKuGATK584b_M8sUZVhfaWEIIlpOKUkTbPpCy8Y08_QqWtIkRknPVEbHyRG-kkZk9gs17V-AwEjjhDWUYYEXXutDeKSKq2RaGIZ2KFERz1n7qsuhzkLIWxLAMXSXQZLFWypcrOUhG8Hepcthk4_ll6ly0wlOw-fgT7ZFG6Jx9ZhpCQiSIyxuyJ8wNFsNfbuuyc-LpMJV2WLBwfwevhMrkfz6mYGldrKkPvyqvHVBrB07aPDPfuO9jzPz_TK7h3Mp-clWen088vYIt17Nvl4Huw2VytcR_uVD-bxfXVy9DPfwOcT_GE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safe+RuleFit%3A+Learning+Optimal+Sparse+Rule+Model+by+Meta+Safe+Screening&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Kato%2C+Hiroki&rft.au=Hanada%2C+Hiroyuki&rft.au=Takeuchi%2C+Ichiro&rft.date=2023-02-01&rft.eissn=1939-3539&rft.volume=45&rft.issue=2&rft.spage=2330&rft_id=info:doi/10.1109%2FTPAMI.2022.3167993&rft_id=info%3Apmid%2F35471868&rft.externalDocID=35471868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon