Defects Recognition Algorithm Development from Visual UAV Inspections

Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 22; H. 13; S. 4682
Hauptverfasser: Avdelidis, Nicolas P., Tsourdos, Antonios, Lafiosca, Pasquale, Plaster, Richard, Plaster, Anna, Droznika, Mark
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 21.06.2022
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly, stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a two-step process for automating the defect recognition and classification from visual images. The visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an image sensor to fully automate the procedure and eliminate any human error. With our proposed method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination of different pretrained convolution neural network (CNN) models, which we retrained to fit our problem. For achieving our goal, we created our own dataset with defect images captured from aircrafts during inspection in TUI’s maintenance hangar. The images were preprocessed and used to train different pretrained CNNs with the use of transfer learning. We performed an initial training of 40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect classification, an ensemble of different CNN models was used. The results show that even with a very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100% for the classification of the categories of missing or damaged exterior paint and primer and dents.
AbstractList Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly, stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a two-step process for automating the defect recognition and classification from visual images. The visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an image sensor to fully automate the procedure and eliminate any human error. With our proposed method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination of different pretrained convolution neural network (CNN) models, which we retrained to fit our problem. For achieving our goal, we created our own dataset with defect images captured from aircrafts during inspection in TUI's maintenance hangar. The images were preprocessed and used to train different pretrained CNNs with the use of transfer learning. We performed an initial training of 40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect classification, an ensemble of different CNN models was used. The results show that even with a very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100% for the classification of the categories of missing or damaged exterior paint and primer and dents.Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly, stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a two-step process for automating the defect recognition and classification from visual images. The visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an image sensor to fully automate the procedure and eliminate any human error. With our proposed method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination of different pretrained convolution neural network (CNN) models, which we retrained to fit our problem. For achieving our goal, we created our own dataset with defect images captured from aircrafts during inspection in TUI's maintenance hangar. The images were preprocessed and used to train different pretrained CNNs with the use of transfer learning. We performed an initial training of 40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect classification, an ensemble of different CNN models was used. The results show that even with a very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100% for the classification of the categories of missing or damaged exterior paint and primer and dents.
Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually and involves a high skilled human walking around the aircraft. It is very time consuming, costly, stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a two-step process for automating the defect recognition and classification from visual images. The visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an image sensor to fully automate the procedure and eliminate any human error. With our proposed method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination of different pretrained convolution neural network (CNN) models, which we retrained to fit our problem. For achieving our goal, we created our own dataset with defect images captured from aircrafts during inspection in TUI’s maintenance hangar. The images were preprocessed and used to train different pretrained CNNs with the use of transfer learning. We performed an initial training of 40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect classification, an ensemble of different CNN models was used. The results show that even with a very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100% for the classification of the categories of missing or damaged exterior paint and primer and dents.
Author Plaster, Richard
Avdelidis, Nicolas P.
Tsourdos, Antonios
Lafiosca, Pasquale
Droznika, Mark
Plaster, Anna
AuthorAffiliation 1 School of Aerospace, Transport & Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; a.tsourdos@cranfield.ac.uk (A.T.); pasquale.lafiosca@cranfield.ac.uk (P.L.)
2 ADDIT, 17 Railton Road, Wolseley Business Park, Kempston, Bedford MK42 7PN, UK; richardjamesplaster@gmail.com (R.P.); annaplaster@gmail.com (A.P.)
3 TUI Airline, Area 8, Hangar 61, Percival Way, London Luton Airport, Luton LU2 9PA, UK; mark.droznika@tui.co.uk
AuthorAffiliation_xml – name: 3 TUI Airline, Area 8, Hangar 61, Percival Way, London Luton Airport, Luton LU2 9PA, UK; mark.droznika@tui.co.uk
– name: 1 School of Aerospace, Transport & Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; a.tsourdos@cranfield.ac.uk (A.T.); pasquale.lafiosca@cranfield.ac.uk (P.L.)
– name: 2 ADDIT, 17 Railton Road, Wolseley Business Park, Kempston, Bedford MK42 7PN, UK; richardjamesplaster@gmail.com (R.P.); annaplaster@gmail.com (A.P.)
Author_xml – sequence: 1
  givenname: Nicolas P.
  orcidid: 0000-0003-1314-0603
  surname: Avdelidis
  fullname: Avdelidis, Nicolas P.
– sequence: 2
  givenname: Antonios
  orcidid: 0000-0002-3966-7633
  surname: Tsourdos
  fullname: Tsourdos, Antonios
– sequence: 3
  givenname: Pasquale
  orcidid: 0000-0002-3396-5744
  surname: Lafiosca
  fullname: Lafiosca, Pasquale
– sequence: 4
  givenname: Richard
  surname: Plaster
  fullname: Plaster, Richard
– sequence: 5
  givenname: Anna
  surname: Plaster
  fullname: Plaster, Anna
– sequence: 6
  givenname: Mark
  surname: Droznika
  fullname: Droznika, Mark
BookMark eNptkc1q3DAURkVIyV-7yBsYumkX01xdyba8KQxJ2g4ECiXNVsjS1USDbU0lO5C3r6cTQhK6kpDOd7jSd8oOhzgQY-ccvgjRwEVG5EJWCg_YCZcoFwoRDl_sj9lpzhsAFEKoI3YsSgWK1_UJu74iT3bMxS-ycT2EMcShWHbrmMJ43xdX9EBd3PY0jIVPsS_uQp5MV_xe3hWrIW_n6BzI79k7b7pMH57WM3b77fr28sfi5uf31eXyZmGlrMZFXRsEJVwtPXhQDtBA5aEEbwk5N-SwhRYlEjlCZwRYU_rSOxLeGCvO2GqvddFs9DaF3qRHHU3Q_w5iWmuTxmA70t6Lxvu68oK4dNQaJaiSrfPGKYS6nF1f967t1Pbk7PzCZLpX0tc3Q7jX6_igG6waKMUs-PQkSPHPRHnUfciWus4MFKessVJ1zatG7tCPb9BNnNIw_9SOqngDiGqmPu8pm2LOifzzMBz0rmf93PPMXrxhbRjNrot51tD9J_EXDSmreA
CitedBy_id crossref_primary_10_3390_app15073584
crossref_primary_10_3390_s22239327
crossref_primary_10_1016_j_measurement_2024_115300
crossref_primary_10_1017_aer_2025_10048
crossref_primary_10_1038_s41598_025_02902_2
crossref_primary_10_3390_s22197654
crossref_primary_10_1016_j_ssci_2024_106755
crossref_primary_10_3390_drones6120397
crossref_primary_10_3390_asi7010011
crossref_primary_10_1007_s11760_023_02983_4
crossref_primary_10_3390_ma17184639
crossref_primary_10_3390_aerospace12050441
crossref_primary_10_1007_s42979_025_03856_y
crossref_primary_10_1109_TIM_2025_3606070
crossref_primary_10_3390_technologies12090158
crossref_primary_10_1016_j_conengprac_2025_106491
crossref_primary_10_1007_s13042_024_02475_y
crossref_primary_10_1016_j_gie_2022_08_013
crossref_primary_10_37434_tdnk2025_02_01
crossref_primary_10_37434_tpwj2025_07_05
Cites_doi 10.1117/12.259117
10.3390/s16122118
10.1109/MRA.2002.1160067
10.3390/s19081824
10.1109/CVPR.2009.5206848
10.1016/j.patcog.2016.07.001
10.1260/1369-4332.17.3.289
10.3390/s18103452
10.3390/app8091575
10.1155/2018/6357185
10.1117/1.JEI.24.6.061110
10.1111/mice.12334
10.1109/MetroAeroSpace.2017.7999594
10.1007/s12541-010-0075-3
10.36001/phmconf.2019.v11i1.776
10.1007/978-3-030-01424-7_27
10.1016/j.ifacol.2016.09.055
10.3390/robotics5030014
10.3390/app8091678
10.1109/MetroAeroSpace.2018.8453598
10.1111/mice.12375
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22134682
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ff39ff76f3e14deba83e64bdfad82075
PMC9269053
10_3390_s22134682
GrantInformation_xml – fundername: British Engineering and Physics Sciences Research Council
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-77a2083d74f0f08d02a06f050fce211aed2b0b242eede2da30ca5f5fde3faac3
IEDL.DBID DOA
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824001700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:07:53 EDT 2025
Tue Nov 04 01:58:08 EST 2025
Thu Oct 02 07:02:08 EDT 2025
Tue Oct 07 07:23:32 EDT 2025
Tue Nov 18 22:16:51 EST 2025
Sat Nov 29 07:10:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-77a2083d74f0f08d02a06f050fce211aed2b0b242eede2da30ca5f5fde3faac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1314-0603
0000-0002-3396-5744
0000-0002-3966-7633
OpenAccessLink https://doaj.org/article/ff39ff76f3e14deba83e64bdfad82075
PMID 35808177
PQID 2686190228
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ff39ff76f3e14deba83e64bdfad82075
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9269053
proquest_miscellaneous_2687716943
proquest_journals_2686190228
crossref_primary_10_3390_s22134682
crossref_citationtrail_10_3390_s22134682
PublicationCentury 2000
PublicationDate 20220621
PublicationDateYYYYMMDD 2022-06-21
PublicationDate_xml – month: 6
  year: 2022
  text: 20220621
  day: 21
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mumtaz (ref_16) 2012; 6
Zhang (ref_24) 2018; 2018
ref_12
ref_11
ref_10
ref_32
ref_30
ref_19
Cha (ref_22) 2018; 33
ref_18
Larnier (ref_5) 2015; 24
ref_17
ref_15
Kang (ref_27) 2018; 33
Keiller (ref_31) 2017; 61
Morgenthal (ref_14) 2014; 17
Chu (ref_7) 2010; 11
Malandrakis (ref_13) 2016; 49
Gunatilake (ref_6) 1997; Volume 3029
ref_23
ref_21
ref_20
ref_1
Pedregosa (ref_33) 2011; 12
ref_3
ref_2
ref_29
Caicedo (ref_25) 2017; Volume 2
ref_28
Mukherjee (ref_9) 2002; 9
ref_26
ref_8
ref_4
References_xml – ident: ref_28
– ident: ref_4
  doi: 10.1117/12.259117
– ident: ref_17
  doi: 10.3390/s16122118
– ident: ref_32
– ident: ref_26
– volume: 9
  start-page: 10
  year: 2002
  ident: ref_9
  article-title: Climbing the walls [robots]
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2002.1160067
– ident: ref_18
  doi: 10.3390/s19081824
– ident: ref_29
  doi: 10.1109/CVPR.2009.5206848
– volume: 61
  start-page: 539
  year: 2017
  ident: ref_31
  article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.001
– volume: Volume 3029
  start-page: 2
  year: 1997
  ident: ref_6
  article-title: Image understanding algorithms for remote visual inspection of aircraft surfaces
  publication-title: Machine Vision Applications in Industrial Inspection V
– volume: 17
  start-page: 289
  year: 2014
  ident: ref_14
  article-title: Quality Assessment of Unmanned Aerial Vehicle (UAV) Based Visual Inspection of Structures
  publication-title: Adv. Struct. Eng.
  doi: 10.1260/1369-4332.17.3.289
– ident: ref_23
  doi: 10.3390/s18103452
– volume: Volume 2
  start-page: 71
  year: 2017
  ident: ref_25
  article-title: Vision-based concrete crack detection using a convolutional neural network
  publication-title: Dynamics of Civil Structures
– ident: ref_21
  doi: 10.3390/app8091575
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_33
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_1
– volume: 6
  start-page: 38
  year: 2012
  ident: ref_16
  article-title: Computer aided visual inspection of aircraft surfaces
  publication-title: Int. J. Image Processing
– volume: 2018
  start-page: 6357185
  year: 2018
  ident: ref_24
  article-title: Astronaut visual tracking of flying assistant robot in space station based on deep learning and probabilistic model
  publication-title: Int. J. Aerosp. Eng.
  doi: 10.1155/2018/6357185
– volume: 24
  start-page: 61110
  year: 2015
  ident: ref_5
  article-title: Automated exterior inspection of an aircraft with a pan-tilt-zoom camera mounted on a mobile robot
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.24.6.061110
– volume: 33
  start-page: 731
  year: 2018
  ident: ref_22
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12334
– ident: ref_12
  doi: 10.1109/MetroAeroSpace.2017.7999594
– volume: 11
  start-page: 633
  year: 2010
  ident: ref_7
  article-title: A survey of climbing robots: Locomotion and adhesion
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-010-0075-3
– ident: ref_3
  doi: 10.36001/phmconf.2019.v11i1.776
– ident: ref_8
– ident: ref_2
– ident: ref_10
– ident: ref_30
  doi: 10.1007/978-3-030-01424-7_27
– volume: 49
  start-page: 320
  year: 2016
  ident: ref_13
  article-title: Design and Development of a Novel Spherical UAV
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.09.055
– ident: ref_11
  doi: 10.3390/robotics5030014
– ident: ref_20
– ident: ref_19
  doi: 10.3390/app8091678
– ident: ref_15
  doi: 10.1109/MetroAeroSpace.2018.8453598
– volume: 33
  start-page: 885
  year: 2018
  ident: ref_27
  article-title: Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12375
SSID ssj0023338
Score 2.480789
Snippet Aircraft maintenance plays a key role in the safety of air transport. One of its most significant procedures is the visual inspection of the aircraft skin for...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4682
SubjectTerms Accuracy
Aircraft
aircraft inspection
Algorithms
Automation
Classification
CNN
Concrete
Coronaviruses
COVID-19
Datasets
deep learning
defect classification
defect recognition
Defects
Disease transmission
Human error
Localization
Machine learning
Neural networks
Sensors
UAV
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BygEOvBEuBRnEgYuVzb5sn1CAVlSCKkKlKidrvY82UrHbOOH3M2M7JpYQJ67e0XrlmZ35xjvzLcBblzqLMDYkws5kIg0VASAOSGzmvRQy4HCr6S_pyUl2fp4v-vbopi-r3PrE1lF3bM9Ut41OeOpqS3_Mp1xniPyJu-X99U1Cd0jRWWt_ocZt2CPiLTaBvcXx18WPIQETmI917EICU_1pw4nOTGd8FJNa6v4R3hxXS-6En6MH_3fhD-F-D0PjeWc3j-CWrx7DvR1ywidw-Mm3pR7xt22NUV3F86sLnG19-TPeqTaKqUclPls2G5zy-_wsPq66Bk606KdwenR4-vFz0l-6kFjMDNeItg1HWOZSGVhgmWPcMB2YYsF6TBaNd7xkJQZ2DK6eOyOYNSqo4LwIxljxDCZVXfnnEDudlVrJYFSeS-dUppWlxlbECE6VgkfwbvvVC9sTktO9GFcFJiakoGJQUARvBtHrjoXjb0IfSHWDABFntw_q1UXR78MiBEF_qXUQfiadL00mvJalC8YhFkpVBAdbLRb9bm6KP0qL4PUwjPuQDldM5etNK5MS85AUEaQjgxktaDxSLS9bRu-c6xy94f6_X_4C7nJqvmA64bMDmKxXG_8S7thf62WzetUb-2-MthRZ
  priority: 102
  providerName: ProQuest
Title Defects Recognition Algorithm Development from Visual UAV Inspections
URI https://www.proquest.com/docview/2686190228
https://www.proquest.com/docview/2687716943
https://pubmed.ncbi.nlm.nih.gov/PMC9269053
https://doaj.org/article/ff39ff76f3e14deba83e64bdfad82075
Volume 22
WOSCitedRecordID wos000824001700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFH_a2A7jgGAfWhirsonDLhGu7djOsbAikEZVIUDdKXL8MSpBimi74_72PTtp1UhIXLj4YD9Fznt23vs57_0McGilNRjG-oyZPs-4DkkAGAdkRjnHGfc4HC39S45GajIpxhtXfYWcsIYeuFHckfcsHCsKz1yfW1dpxZzglfXaovOSkb2UyGIFplqoxRB5NTxCDEH90ZwG4jKhaMf7RJL-TmTZzYvccDSnu7DTRojpoJnZHrxy9XvY3uAN_ADDny5mYaSXq_SfWZ0O7v7MEOnf3qcbiUBpKB9Jb6bzJT7yenCTntdNbSUuto9wdTq8OjnL2vsQMoOgbYGBsKYYMVnJPfFEWUI1EZ7kxBuHOE47SytSoc9Fv-eo1YwYnfvcW8e81oZ9gq16VrvPkFqhKpFzr_Oi4NbmSuQm1Jyi-7Z5xWgCP1ZqKk3LFR6urLgrETMEjZZrjSbwfS360BBkPCV0HHS9Fgic1rEDLV22li6fs3QCBytLle1Gm5dUKISAgcQngW_rYdwi4b-Hrt1sGWVkIAXiLAHZsXBnQt2RenobybYLKgr8UO2_xBt8gXc0VE8QkdH-AWwtHpfuK7w1fxfT-WMPXsuJjK3qwZvj4Wh82YurGtuLf0PsG59fjH__B6pHAVk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I0IFAgIJC5RvbbjJAeEFtqqq25XK7RU5RQ5frQrlaRsdkH8KP4j47zYSIhbD1xjK3Hiz-NvnJlvAF7rSCuksTZgasgDLl0QAPKAQMXGcMYtNlczPYmm0_j0NJltwa82F8aFVbY2sTLUulDujHyXihi5vlNreX_5LXBVo9zf1baERg2LI_PzB7ps5bvxHs7vG0oP9ucfD4OmqkCg0PVZIZ2UFHmHjrgllsSaUEmEJSGxyqA3JI2mGclw58Ldw1AtGVEytKHVhlkpFcPbXoNtjlgnA9iejY9nXzoPj6HDV8sXMZaQ3ZI6vTQR096mV9UG6BHafjjmxv52cOc_-zJ34XZDpP1Rjfx7sGXy-3BrQ17xAezvmSpYxf_URkkVuT-6OMPBr86_-hvxUr7LsvFPFuUab_l5dOKP8zoFFdfkQ5hfxWs8gkFe5OYx-FrEmQi5lWGScK3DWITKpeYiy9FhxqgHb9tpTVUjqe4qe1yk6Fo5BKQdAjx41XW9rHVE_tbpg8NG18FJf1cXiuVZ2liS1FrmztmFZWbItclkzIzgmbZSI5uLQg92WpikjT0q0z8Y8eBl14yWxP0ekrkp1lWfyGknceZB1ENkb0D9lnxxXmmSJ1QkaM-f_PvhL-DG4fx4kk7G06OncJO6VBIiAjrcgcFquTbP4Lr6vlqUy-fNyvIhvWLE_gZnP2hF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I0aKBAQSFyi9dqOkxwQ2rK7YtVqtapK1Vvk-NGuVJJ2HyB-Gv-OcV5sJMStB66x5Tjx5_E3ycw3AO90pBXSWBswNeABly4IAHlAoGJjOOMWm8uVPopms_jsLJnvwK8mF8aFVTY2sTTUulDuG3mfihi5vlNr6ds6LGI-mny6ug5cBSn3p7Upp1FB5ND8_IHu2-rjdIRr_Z7Syfjk85egrjAQKHSD1kgtJUUOoiNuiSWxJlQSYUlIrDLoGUmjaUYyPMXwJDFUS0aUDG1otWFWSsVw2FuwGzH0eXqwezCezY9bb4-h81dJGTGWkP6KOu00EdPOAVjWCeiQ225o5tZZN3nwH7-lh3C_Jtj-sNoRj2DH5I_h3pbs4hMYj0wZxOIfN9FTRe4PL89x8uuLb_5WHJXvsm_808Vqg0N-HZ7607xKTcW9-hRObuIxnkEvL3KzB74WcSZCbmWYJFzrMBahcim7yH50mDHqwYdmiVNVS627ih-XKbpcDg1piwYP3rZdryp9kb91OnA4aTs4SfDyQrE8T2sLk1rL3Pd3YZkZcG0yGTMjeKat1MjyotCD_QYyaW2nVukfvHjwpm1GC-N-G8ncFJuyT-Q0lTjzIOqgszOhbku-uCi1yhMqErTzz_9989dwB2GaHk1nhy_gLnUZJkQEdLAPvfVyY17CbfV9vVgtX9WbzIf0hgH7G65jcN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defects+Recognition+Algorithm+Development+from+Visual+UAV+Inspections&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nicolas+P.+Avdelidis&rft.au=Antonios+Tsourdos&rft.au=Pasquale+Lafiosca&rft.au=Richard+Plaster&rft.date=2022-06-21&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=13&rft.spage=4682&rft_id=info:doi/10.3390%2Fs22134682&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ff39ff76f3e14deba83e64bdfad82075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon