Plaintext-Related Dynamic Key Chaotic Image Encryption Algorithm
To address the problems of the high complexity and low security of the existing image encryption algorithms, this paper proposes a dynamic key chaotic image encryption algorithm with low complexity and high security associated with plaintext. Firstly, the RGB components of the color image are read,...
Uloženo v:
| Vydáno v: | Entropy (Basel, Switzerland) Ročník 23; číslo 9; s. 1159 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
02.09.2021
MDPI |
| Témata: | |
| ISSN: | 1099-4300, 1099-4300 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | To address the problems of the high complexity and low security of the existing image encryption algorithms, this paper proposes a dynamic key chaotic image encryption algorithm with low complexity and high security associated with plaintext. Firstly, the RGB components of the color image are read, and the RGB components are normalized to obtain the key that is closely related to the plaintext, and then the Arnold transform is used to stretch and fold the RGB components of the color image to change the position of the pixel points in space, so as to destroy the correlation between the adjacent pixel points of the image. Next, the generated sequences are independently encrypted with the Arnold-transformed RGB matrix. Finally, the three encrypted images are combined to obtain the final encrypted image. Since the key acquisition of this encryption algorithm is related to the plaintext, it is possible to achieve one key per image, so the key acquisition is dynamic. This encryption algorithm introduces chaotic mapping, so that the key space size is 10180. The key acquisition is closely related to the plaintext, which makes the ciphertext more random and resistant to differential attacks, and ensures that the ciphertext is more secure after encryption. The experiments show that the algorithm can encrypt the image effectively and can resist attack on the encrypted image. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1099-4300 1099-4300 |
| DOI: | 10.3390/e23091159 |