Image Forgery Detection and Localization via a Reliability Fusion Map

Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 20; no. 22; p. 6668
Main Authors: Yao, Hongwei, Xu, Ming, Qiao, Tong, Wu, Yiming, Zheng, Ning
Format: Journal Article
Language:English
Published: Basel MDPI AG 21.11.2020
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the goal of this paper is to design an effective detector capable of completing image forgery detection and localization. Specifically, relying on the designed constant high-pass filter, we first establish a well-performing CNN architecture to adaptively and automatically extract characteristics, and design a reliability fusion map (RFM) to improve localization resolution, and tamper detection accuracy. The extensive results from our empirical experiments demonstrate the effectiveness of our proposed RFM-based detector, and its better performance than other competing approaches.
AbstractList Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the goal of this paper is to design an effective detector capable of completing image forgery detection and localization. Specifically, relying on the designed constant high-pass filter, we first establish a well-performing CNN architecture to adaptively and automatically extract characteristics, and design a reliability fusion map (RFM) to improve localization resolution, and tamper detection accuracy. The extensive results from our empirical experiments demonstrate the effectiveness of our proposed RFM-based detector, and its better performance than other competing approaches.
Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the goal of this paper is to design an effective detector capable of completing image forgery detection and localization. Specifically, relying on the designed constant high-pass filter, we first establish a well-performing CNN architecture to adaptively and automatically extract characteristics, and design a reliability fusion map (RFM) to improve localization resolution, and tamper detection accuracy. The extensive results from our empirical experiments demonstrate the effectiveness of our proposed RFM-based detector, and its better performance than other competing approaches.Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the goal of this paper is to design an effective detector capable of completing image forgery detection and localization. Specifically, relying on the designed constant high-pass filter, we first establish a well-performing CNN architecture to adaptively and automatically extract characteristics, and design a reliability fusion map (RFM) to improve localization resolution, and tamper detection accuracy. The extensive results from our empirical experiments demonstrate the effectiveness of our proposed RFM-based detector, and its better performance than other competing approaches.
Author Qiao, Tong
Xu, Ming
Yao, Hongwei
Zheng, Ning
Wu, Yiming
AuthorAffiliation 2 Institute of Cyberspace Research, Zhejiang University, Hangzhou 310027, China
1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China; yaohomeway@gmail.com (H.Y.); mxu@hdu.edu.cn (M.X.); yimgwu@hotmail.com (Y.W.); nzheng@hdu.edu.cn (N.Z.)
AuthorAffiliation_xml – name: 2 Institute of Cyberspace Research, Zhejiang University, Hangzhou 310027, China
– name: 1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China; yaohomeway@gmail.com (H.Y.); mxu@hdu.edu.cn (M.X.); yimgwu@hotmail.com (Y.W.); nzheng@hdu.edu.cn (N.Z.)
Author_xml – sequence: 1
  givenname: Hongwei
  orcidid: 0000-0003-4680-5536
  surname: Yao
  fullname: Yao, Hongwei
– sequence: 2
  givenname: Ming
  surname: Xu
  fullname: Xu, Ming
– sequence: 3
  givenname: Tong
  surname: Qiao
  fullname: Qiao, Tong
– sequence: 4
  givenname: Yiming
  surname: Wu
  fullname: Wu, Yiming
– sequence: 5
  givenname: Ning
  surname: Zheng
  fullname: Zheng, Ning
BookMark eNplkU1vEzEQhi1U1C964B-sxAUOof62c0FCpYFIQUiod2vWOxscOetg71YKv57Npq1oOXk8877P2DMX5KRLHRLyltGPQszpdeGUc621fUXOmeRyZjmnJ__EZ-SilA2lXAhhT8mZEFNEz8ntcgtrrBYprzHvqy_Yo-9D6irommqVPMTwB6bEfYAKqp8YA9Qhhn5fLYZyKHyH3RvyuoVY8OrhvCR3i9u7m2-z1Y-vy5vPq5mXUvczrVpaCyNb23hdm4YZUFpR29ZKo9amtqxFo6BVTGhWj3fpG0q9HH0NRXFJlkdsk2DjdjlsIe9dguCmxPgHB7kPPqJruWVKesuwAYlGzK23tUFtfY0toB1Zn46s3VBvsfHY9RniM-jzShd-uXW6d8ZQqrgeAe8fADn9HrD0bhuKxxihwzQUx6WWbK6MPfR690K6SUPuxklNKkHnRqtRdX1U-ZxKydg6H_pp9mP_EB2j7rBt97Tt0fHhhePx-f9r_wJgSKmP
CitedBy_id crossref_primary_10_46387_bjesr_1580950
crossref_primary_10_3390_s23146430
crossref_primary_10_1007_s00530_024_01336_6
crossref_primary_10_3390_electronics11030403
crossref_primary_10_1007_s10462_022_10211_7
crossref_primary_10_1007_s00530_024_01456_z
crossref_primary_10_1002_cpe_7191
crossref_primary_10_1109_TMM_2022_3182509
crossref_primary_10_1117_1_JEI_34_2_023057
crossref_primary_10_32604_cmc_2023_041074
crossref_primary_10_1155_2022_8501738
crossref_primary_10_3233_JIFS_230291
Cites_doi 10.1007/s11042-018-6809-4
10.1109/ACCESS.2018.2832066
10.1016/j.image.2013.03.006
10.1117/12.2083479
10.1109/CVPR.2017.203
10.1109/TIFS.2019.2916364
10.1145/3123266.3123411
10.1109/TIFS.2013.2273394
10.1109/ICIP.2014.7026073
10.1109/TIP.2016.2518870
10.1109/TIFS.2008.2012215
10.1109/TIFS.2012.2187516
10.1109/TMM.2020.3026868
10.1109/TMM.2020.3016122
10.1080/15567281.2010.531500
10.1109/TMM.2018.2872863
10.1109/TIFS.2007.916285
10.1145/1411328.1411333
10.1109/WIFS.2016.7823908
10.1109/TIFS.2015.2455334
10.1145/2600918.2600941
10.1109/TSP.2004.839932
10.1109/TIFS.2018.2825953
10.1109/ICIP.2017.8297053
10.1109/TIFS.2017.2656823
10.2352/ISSN.2470-1173.2016.8.MWSF-078
10.1109/CVPRW.2019.00010
10.1109/WACV.2018.00111
10.1016/j.jvcir.2018.01.010
10.1016/j.image.2016.12.011
10.1007/s11042-016-4314-1
10.1109/ICASSP.2014.6854802
10.1109/WIFS.2014.7084319
10.1109/CVPRW.2017.235
10.1109/ICCV.2017.532
10.1109/CVPRW.2017.232
10.1109/TIFS.2010.2077628
10.1109/TCSVT.2014.2347513
10.1007/s11554-019-00866-x
10.1016/j.patcog.2019.107082
10.1145/3154979.3155001
10.1109/LSP.2015.2507598
10.1109/ACCESS.2018.2884710
10.1109/TIFS.2010.2078506
10.1109/ICPR.2018.8545074
10.1109/WIFS.2014.7084315
10.1109/WIFS.2016.7823911
10.1007/s11042-018-5959-8
10.2352/ISSN.2470-1173.2017.7.MWSF-327
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20226668
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f28154c81eda4e7398c8b7e68cbefae8
PMC7700526
10_3390_s20226668
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-65f0b374f8dc6b7d17a56508fb56e667b81fe75af51361b7b84cd00c45f0d0e3
IEDL.DBID 7X7
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594555700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:33:17 EST 2025
Tue Nov 04 01:58:58 EST 2025
Wed Oct 01 17:16:34 EDT 2025
Tue Oct 07 07:01:14 EDT 2025
Sat Nov 29 07:10:15 EST 2025
Tue Nov 18 21:41:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-65f0b374f8dc6b7d17a56508fb56e667b81fe75af51361b7b84cd00c45f0d0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4680-5536
OpenAccessLink https://www.proquest.com/docview/2464309765?pq-origsite=%requestingapplication%
PMID 33233380
PQID 2464309765
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f28154c81eda4e7398c8b7e68cbefae8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7700526
proquest_miscellaneous_2464195788
proquest_journals_2464309765
crossref_citationtrail_10_3390_s20226668
crossref_primary_10_3390_s20226668
PublicationCentury 2000
PublicationDate 20201121
PublicationDateYYYYMMDD 2020-11-21
PublicationDate_xml – month: 11
  year: 2020
  text: 20201121
  day: 21
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Korus (ref_43) 2016; 23
Bayar (ref_23) 2018; 13
Salloum (ref_11) 2018; 51
ref_14
ref_13
ref_12
Kang (ref_27) 2013; 8
Bondi (ref_37) 2017; 2017
ref_52
ref_51
Qiao (ref_6) 2017; 52
ref_19
ref_18
ref_17
ref_15
Chen (ref_36) 2019; 16
Yao (ref_47) 2018; 6
Pibre (ref_45) 2016; 2016
ref_25
Qiao (ref_1) 2018; 21
ref_22
ref_21
Amerini (ref_3) 2013; 28
Fan (ref_50) 2020; 99
Hsu (ref_9) 2010; 5
ref_28
ref_26
Farid (ref_38) 2009; 4
ref_35
ref_34
Pan (ref_4) 2010; 5
ref_33
ref_32
ref_31
ref_30
Korus (ref_42) 2016; 25
Qiao (ref_2) 2018; 77
Li (ref_24) 2017; 12
Bianchi (ref_39) 2012; 7
ref_46
ref_44
Qiao (ref_7) 2018; 6
ref_41
ref_40
Gloe (ref_48) 2010; 3
Zhao (ref_10) 2015; 25
Chen (ref_8) 2008; 3
Jin (ref_20) 2018; 77
Zhao (ref_5) 2019; 78
ref_49
Popescu (ref_29) 2005; 53
Cozzolino (ref_16) 2015; 10
References_xml – volume: 78
  start-page: 8247
  year: 2019
  ident: ref_5
  article-title: Source camera identification via low dimensional PRNU features
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6809-4
– volume: 6
  start-page: 24973
  year: 2018
  ident: ref_47
  article-title: Robust Multi-Classifier for Camera Model Identification Based on Convolution Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2832066
– ident: ref_49
– volume: 28
  start-page: 659
  year: 2013
  ident: ref_3
  article-title: Copy-move forgery detection and localization by means of robust clustering with J-Linkage
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2013.03.006
– ident: ref_44
  doi: 10.1117/12.2083479
– ident: ref_13
  doi: 10.1109/CVPR.2017.203
– ident: ref_32
  doi: 10.1109/TIFS.2019.2916364
– ident: ref_15
  doi: 10.1145/3123266.3123411
– volume: 8
  start-page: 1456
  year: 2013
  ident: ref_27
  article-title: Robust median filtering forensics using an autoregressive model
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2013.2273394
– ident: ref_40
  doi: 10.1109/ICIP.2014.7026073
– volume: 25
  start-page: 1312
  year: 2016
  ident: ref_42
  article-title: Multi-scale fusion for improved localization of malicious tampering in digital images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2518870
– volume: 4
  start-page: 154
  year: 2009
  ident: ref_38
  article-title: Exposing digital forgeries from JPEG ghosts
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2008.2012215
– volume: 7
  start-page: 1003
  year: 2012
  ident: ref_39
  article-title: Image forgery localization via block-grained analysis of JPEG artifacts
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2012.2187516
– ident: ref_51
  doi: 10.1109/TMM.2020.3026868
– ident: ref_52
  doi: 10.1109/TMM.2020.3016122
– volume: 3
  start-page: 150
  year: 2010
  ident: ref_48
  article-title: The dresden image database for benchmarking digital image forensics
  publication-title: J. Digit. Forensic Pract.
  doi: 10.1080/15567281.2010.531500
– volume: 21
  start-page: 1077
  year: 2018
  ident: ref_1
  article-title: Statistical model-based detector via texture weight map: Application in re-sampling authentication
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2018.2872863
– volume: 3
  start-page: 74
  year: 2008
  ident: ref_8
  article-title: Determining image origin and integrity using sensor noise
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2007.916285
– ident: ref_30
  doi: 10.1145/1411328.1411333
– ident: ref_46
  doi: 10.1109/WIFS.2016.7823908
– volume: 10
  start-page: 2284
  year: 2015
  ident: ref_16
  article-title: Efficient dense-field copy–move forgery detection
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2455334
– ident: ref_31
  doi: 10.1145/2600918.2600941
– volume: 53
  start-page: 758
  year: 2005
  ident: ref_29
  article-title: Exposing digital forgeries by detecting traces of resampling
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.839932
– volume: 13
  start-page: 2691
  year: 2018
  ident: ref_23
  article-title: Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2825953
– ident: ref_22
  doi: 10.1109/ICIP.2017.8297053
– volume: 12
  start-page: 1240
  year: 2017
  ident: ref_24
  article-title: Image forgery localization via integrating tampering possibility maps
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2656823
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_45
  article-title: Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch
  publication-title: Electron. Imaging
  doi: 10.2352/ISSN.2470-1173.2016.8.MWSF-078
– ident: ref_35
  doi: 10.1109/CVPRW.2019.00010
– ident: ref_34
– ident: ref_25
  doi: 10.1109/WACV.2018.00111
– volume: 51
  start-page: 201
  year: 2018
  ident: ref_11
  article-title: Image Splicing Localization Using A Multi-Task Fully Convolutional Network (MFCN)
  publication-title: J. Vis. Commun. Image Represent
  doi: 10.1016/j.jvcir.2018.01.010
– volume: 52
  start-page: 74
  year: 2017
  ident: ref_6
  article-title: Individual camera device identification from JPEG images
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2016.12.011
– volume: 77
  start-page: 1501
  year: 2018
  ident: ref_2
  article-title: Exposing image resampling forgery by using linear parametric model
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-4314-1
– ident: ref_28
  doi: 10.1109/ICASSP.2014.6854802
– ident: ref_18
  doi: 10.1109/WIFS.2014.7084319
– ident: ref_21
– ident: ref_12
  doi: 10.1109/CVPRW.2017.235
– ident: ref_19
  doi: 10.1109/ICCV.2017.532
– ident: ref_26
  doi: 10.1109/CVPRW.2017.232
– volume: 5
  start-page: 816
  year: 2010
  ident: ref_9
  article-title: Camera response functions for image forensics: An automatic algorithm for splicing detection
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2010.2077628
– volume: 25
  start-page: 185
  year: 2015
  ident: ref_10
  article-title: Passive image-splicing detection by a 2-D noncausal Markov model
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2014.2347513
– volume: 16
  start-page: 725
  year: 2019
  ident: ref_36
  article-title: A multi-purpose image forensic method using densely connected convolutional neural networks
  publication-title: J. REAL-TIME IMAGE PR.
  doi: 10.1007/s11554-019-00866-x
– volume: 99
  start-page: 107082
  year: 2020
  ident: ref_50
  article-title: Efficient nearest neighbor search in high dimensional hamming space
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107082
– ident: ref_17
  doi: 10.1145/3154979.3155001
– volume: 23
  start-page: 169
  year: 2016
  ident: ref_43
  article-title: Improved tampering localization in digital image forensics based on maximal entropy random walk
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2015.2507598
– volume: 6
  start-page: 78038
  year: 2018
  ident: ref_7
  article-title: Identifying Individual Camera Device From RAW Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2884710
– volume: 5
  start-page: 857
  year: 2010
  ident: ref_4
  article-title: Region duplication detection using image feature matching
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2010.2078506
– ident: ref_33
  doi: 10.1109/ICPR.2018.8545074
– ident: ref_41
  doi: 10.1109/WIFS.2014.7084315
– ident: ref_14
  doi: 10.1109/WIFS.2016.7823911
– volume: 77
  start-page: 29303
  year: 2018
  ident: ref_20
  article-title: Video logo removal detection based on sparse representation
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5959-8
– volume: 2017
  start-page: 67
  year: 2017
  ident: ref_37
  article-title: A preliminary study on convolutional neural networks for camera model identification
  publication-title: J. Electron. Imaging
  doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-327
SSID ssj0023338
Score 2.4197512
Snippet Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6668
SubjectTerms Accuracy
Algorithms
convolution neural network (CNN)
Design
Digital cameras
digital image forensics
Forgery
Internet of Things
Multimedia
Neural networks
Noise
reliability fusion map (RFM)
Sensors
tampering detection and localization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9EcWDl2LTRx5HX0VBxcMe9lbyxAXtLm5X8N87SbtLC4IXj22mIZ1pMvOlM18QutDO585wEymR6MgTykUqkVlEMwj2mQIQYgK7_hN7eeGjkXjtHPXlc8IaeuBGcVcu4eDlNSfWyMyyVHDNFbOUa2WdtKHMN2ZiAaZaqJUC8mp4hFIA9VczgPjgiTyfasf7BJL-XmTZz4vsOJpiC222ESK-bka2jVZstYM2OryBu-j-8QOWAVxMQkkzvrN1SKiqsKwMfvLeqa2uxF9jiSX2eccNH_c3LuZ-fww_y-keGhb3w9uHqD0PIdIA2uqI5i5WKcscN5oqZgiTuQ-wnMqppZQpTpxluXQ5SSlRcJ1pE8c6g-dMbNN9tFpNKnuAcE4skdRxAWjGeyfhhIQOcpkZ6WLhBuhyoaZSt1zh_siK9xIwg9doudToAJ0vRacNQcZvQjde10sBz2kdboCeytbS5V-WHqDjhaXKdqLNyiSDkCqGmCofoLNlM0wR_99DVnYyb2SIgKUJumA9C_cG1G-pxm-BbJuxQIlz-B9vcITWEw_XCYkScoxW68-5PUFr-qsezz5Pwxf8A6k5-HQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Image Forgery Detection and Localization via a Reliability Fusion Map
URI https://www.proquest.com/docview/2464309765
https://www.proquest.com/docview/2464195788
https://pubmed.ncbi.nlm.nih.gov/PMC7700526
https://doaj.org/article/f28154c81eda4e7398c8b7e68cbefae8
Volume 20
WOSCitedRecordID wos000594555700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMKS2UQBy7WxnnYzgmx0IqVtlWF9lBOkZ-iEqRl267Ehd_OjON2Gwlx4RIptuNYHtsznz3-hpC3NqDvjHLM1LllSCjHTK5LJkow9qUBEOIiu_6FnE7VfF7P0obbOrlV7tbEuFC7pcU98tO8BN2ZgfKs3q9-MowahaerKYTGbXKMYbNxnMv5DeAqAH91bEIFQPvTNQB90EfIqnqggyJVf8--7HtHHqib8YP_behDcj8ZmvRDNzIekVu-fUzuHdAPPiGj8x-wmtDxMt6Mpp_8JvpltVS3jl6gkkuXNOn1QlNN0X25o_X-Rcdb3GajE716Si7Ho8uPn1kKq8AsYL8NE1XITCHLoJwVRjoudYV2WjCV8EJIo3jwstKh4oXgBt5L67LMlvCdy3zxjBy1y9Y_J7TinmsRVA2gCJVcHWoNFVS6dDpkdRiQd7t-bmyiHMfIF98bgB4okmYvkgF5sy-66ng2_lboDIW1L4DU2DEB-qlJM60JuQKz0CrunS69LGpllZFeKGt80B4qOdnJrUnzdd3cCG1AXu-zYabh8Ylu_XLbleE1rHBQhewNkV6D-jnt4lvk7JYyMuu8-PfPX5K7OeJ5zlnOT8jR5mrrX5E79nqzWF8N4-COTzUkx2ej6ezLMO4hwHPyewRps_PJ7Osfh3gLgA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceBaxUMAgkLhYjfOyc0AIaFdddbvisIe9WX6KlSC7dHeL-qP4j4ydZNtIiFsPHJM4zuvLzHz2-BuAt8aH3Blhqa5SQ4OgHNWpymmZY7DPNZIQG9X1x3wyEbNZ9XUHfndrYUJaZWcTo6G2CxPGyA_SHH1ngs6z-Lj8SUPVqDC72pXQaGBx4i5-IWVbfRgd4vd9l6bDo-mXY9pWFaAGqc-aloVPdMZzL6wpNbeMqyKEKV4XpStLrgXzjhfKFywrmcbt3NgkMTmeZxOXYbc34CaacR64Hp9d8rsM6V4jXpRlVXKwStE_IjsQPZcXKwP0wtl-MuYV7za8_5-9lwdwrw2jyacG9w9hx9WP4O4VccXHcDT6gbaSDBdx3Tc5dOuYdVYTVVsyDi68XYJKzueKKBKSsxvR8gsy3IRBRHKqlnswvY7HeAK79aJ2T4EUzDFVelEh5QsuvPKVwg4KlVvlk8oP4H33WaVpBdVDXY_vEolVQIDcImAAb7ZNl42KyN8afQ7Y2DYIwt9xB74n2doR6VOBQa8RzFmVO55VwgjNXSmMdl457GS_g4lsrdFKXmJkAK-3h9GOhMkhVbvFpmnDKrTf2AXvIbJ3Q_0j9fxbVCTnPOoGPfv3xV_B7ePp6ViOR5OT53AnDSMXjNGU7cPu-mzjXsAtc76er85exv-KgLxmvP4BLqRhQQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU4TgwF4xtIBBIHGJJnYWOweEgGnEqNPRHHoop8irGKlkhs5MUX8a_67P2WgkxK0HjokdJ7E_v8V-_h7AW-187IwwgcqYDjyhXKCYjIM0RmOfK3RCTMWuP-WzmTg9zeY78Ls9C-PDKluZWAlqs9R-jXzEYtSdISrPZOSasIj5OP-4-hn4DFJ-p7VNp1FD5Mhe_kL3bf1hMsaxfsdYfnjy5WvQZBgINLpBmyBNXKgiHjthdKq4oVwm3mRxKkltmnIlqLM8kS6hUUoVXsfahKGO8TkT2gibvQW7aJHHbAC788nx_Fvn7UXo_NVURlGUhaM1Q22JvoLoKcAqT0DPuO2HZl7TdfmD_7iXHsL9xsAmn-oZ8Qh2bPkY7l2jXXwCh5MfKEVJvqxOhJOx3VTxaCWRpSFTr9ybw6nkYiGJJD5su6YzvyT51i8vkmO5egonN_EbezAol6V9BiShlsrUiQydQa_cM5dJbCCRsZEuzNwQ3rdDXOiGat1n_Dgr0OXyaCg6NAzhTVd1VfOL_K3SZ4-TroKnBK9uYD8VjYQpHBNoDmtBrZGx5VEmtFDcpkIr66TFRg5ayBSNnFoXf_AyhNddMUoYv20kS7vc1nVohpIdm-A9dPY-qF9SLr5XXOWcV4xCz__98ldwB2FaTCezo324y_ySBqUBowcw2Jxv7Qu4rS82i_X5y2aSEShuGLBX49ZrkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Forgery+Detection+and+Localization+via+a+Reliability+Fusion+Map&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.date=2020-11-21&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=22&rft.spage=6668&rft_id=info:doi/10.3390%2Fs20226668&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon