Image Forgery Detection and Localization via a Reliability Fusion Map
Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 20; H. 22; S. 6668 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
21.11.2020
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the goal of this paper is to design an effective detector capable of completing image forgery detection and localization. Specifically, relying on the designed constant high-pass filter, we first establish a well-performing CNN architecture to adaptively and automatically extract characteristics, and design a reliability fusion map (RFM) to improve localization resolution, and tamper detection accuracy. The extensive results from our empirical experiments demonstrate the effectiveness of our proposed RFM-based detector, and its better performance than other competing approaches. |
|---|---|
| AbstractList | Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the goal of this paper is to design an effective detector capable of completing image forgery detection and localization. Specifically, relying on the designed constant high-pass filter, we first establish a well-performing CNN architecture to adaptively and automatically extract characteristics, and design a reliability fusion map (RFM) to improve localization resolution, and tamper detection accuracy. The extensive results from our empirical experiments demonstrate the effectiveness of our proposed RFM-based detector, and its better performance than other competing approaches. Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the goal of this paper is to design an effective detector capable of completing image forgery detection and localization. Specifically, relying on the designed constant high-pass filter, we first establish a well-performing CNN architecture to adaptively and automatically extract characteristics, and design a reliability fusion map (RFM) to improve localization resolution, and tamper detection accuracy. The extensive results from our empirical experiments demonstrate the effectiveness of our proposed RFM-based detector, and its better performance than other competing approaches.Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the goal of this paper is to design an effective detector capable of completing image forgery detection and localization. Specifically, relying on the designed constant high-pass filter, we first establish a well-performing CNN architecture to adaptively and automatically extract characteristics, and design a reliability fusion map (RFM) to improve localization resolution, and tamper detection accuracy. The extensive results from our empirical experiments demonstrate the effectiveness of our proposed RFM-based detector, and its better performance than other competing approaches. |
| Author | Qiao, Tong Xu, Ming Yao, Hongwei Zheng, Ning Wu, Yiming |
| AuthorAffiliation | 2 Institute of Cyberspace Research, Zhejiang University, Hangzhou 310027, China 1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China; yaohomeway@gmail.com (H.Y.); mxu@hdu.edu.cn (M.X.); yimgwu@hotmail.com (Y.W.); nzheng@hdu.edu.cn (N.Z.) |
| AuthorAffiliation_xml | – name: 2 Institute of Cyberspace Research, Zhejiang University, Hangzhou 310027, China – name: 1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China; yaohomeway@gmail.com (H.Y.); mxu@hdu.edu.cn (M.X.); yimgwu@hotmail.com (Y.W.); nzheng@hdu.edu.cn (N.Z.) |
| Author_xml | – sequence: 1 givenname: Hongwei orcidid: 0000-0003-4680-5536 surname: Yao fullname: Yao, Hongwei – sequence: 2 givenname: Ming surname: Xu fullname: Xu, Ming – sequence: 3 givenname: Tong surname: Qiao fullname: Qiao, Tong – sequence: 4 givenname: Yiming surname: Wu fullname: Wu, Yiming – sequence: 5 givenname: Ning surname: Zheng fullname: Zheng, Ning |
| BookMark | eNplkU1vEzEQhi1U1C964B-sxAUOof62c0FCpYFIQUiod2vWOxscOetg71YKv57Npq1oOXk8877P2DMX5KRLHRLyltGPQszpdeGUc621fUXOmeRyZjmnJ__EZ-SilA2lXAhhT8mZEFNEz8ntcgtrrBYprzHvqy_Yo-9D6irommqVPMTwB6bEfYAKqp8YA9Qhhn5fLYZyKHyH3RvyuoVY8OrhvCR3i9u7m2-z1Y-vy5vPq5mXUvczrVpaCyNb23hdm4YZUFpR29ZKo9amtqxFo6BVTGhWj3fpG0q9HH0NRXFJlkdsk2DjdjlsIe9dguCmxPgHB7kPPqJruWVKesuwAYlGzK23tUFtfY0toB1Zn46s3VBvsfHY9RniM-jzShd-uXW6d8ZQqrgeAe8fADn9HrD0bhuKxxihwzQUx6WWbK6MPfR690K6SUPuxklNKkHnRqtRdX1U-ZxKydg6H_pp9mP_EB2j7rBt97Tt0fHhhePx-f9r_wJgSKmP |
| CitedBy_id | crossref_primary_10_46387_bjesr_1580950 crossref_primary_10_3390_s23146430 crossref_primary_10_1007_s00530_024_01336_6 crossref_primary_10_3390_electronics11030403 crossref_primary_10_1007_s10462_022_10211_7 crossref_primary_10_1007_s00530_024_01456_z crossref_primary_10_1002_cpe_7191 crossref_primary_10_1109_TMM_2022_3182509 crossref_primary_10_1117_1_JEI_34_2_023057 crossref_primary_10_32604_cmc_2023_041074 crossref_primary_10_1155_2022_8501738 crossref_primary_10_3233_JIFS_230291 |
| Cites_doi | 10.1007/s11042-018-6809-4 10.1109/ACCESS.2018.2832066 10.1016/j.image.2013.03.006 10.1117/12.2083479 10.1109/CVPR.2017.203 10.1109/TIFS.2019.2916364 10.1145/3123266.3123411 10.1109/TIFS.2013.2273394 10.1109/ICIP.2014.7026073 10.1109/TIP.2016.2518870 10.1109/TIFS.2008.2012215 10.1109/TIFS.2012.2187516 10.1109/TMM.2020.3026868 10.1109/TMM.2020.3016122 10.1080/15567281.2010.531500 10.1109/TMM.2018.2872863 10.1109/TIFS.2007.916285 10.1145/1411328.1411333 10.1109/WIFS.2016.7823908 10.1109/TIFS.2015.2455334 10.1145/2600918.2600941 10.1109/TSP.2004.839932 10.1109/TIFS.2018.2825953 10.1109/ICIP.2017.8297053 10.1109/TIFS.2017.2656823 10.2352/ISSN.2470-1173.2016.8.MWSF-078 10.1109/CVPRW.2019.00010 10.1109/WACV.2018.00111 10.1016/j.jvcir.2018.01.010 10.1016/j.image.2016.12.011 10.1007/s11042-016-4314-1 10.1109/ICASSP.2014.6854802 10.1109/WIFS.2014.7084319 10.1109/CVPRW.2017.235 10.1109/ICCV.2017.532 10.1109/CVPRW.2017.232 10.1109/TIFS.2010.2077628 10.1109/TCSVT.2014.2347513 10.1007/s11554-019-00866-x 10.1016/j.patcog.2019.107082 10.1145/3154979.3155001 10.1109/LSP.2015.2507598 10.1109/ACCESS.2018.2884710 10.1109/TIFS.2010.2078506 10.1109/ICPR.2018.8545074 10.1109/WIFS.2014.7084315 10.1109/WIFS.2016.7823911 10.1007/s11042-018-5959-8 10.2352/ISSN.2470-1173.2017.7.MWSF-327 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s20226668 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f28154c81eda4e7398c8b7e68cbefae8 PMC7700526 10_3390_s20226668 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-65f0b374f8dc6b7d17a56508fb56e667b81fe75af51361b7b84cd00c45f0d0e3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594555700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:33:17 EST 2025 Tue Nov 04 01:58:58 EST 2025 Wed Oct 01 17:16:34 EDT 2025 Tue Oct 07 07:01:14 EDT 2025 Sat Nov 29 07:10:15 EST 2025 Tue Nov 18 21:41:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-65f0b374f8dc6b7d17a56508fb56e667b81fe75af51361b7b84cd00c45f0d0e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4680-5536 |
| OpenAccessLink | https://www.proquest.com/docview/2464309765?pq-origsite=%requestingapplication% |
| PMID | 33233380 |
| PQID | 2464309765 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f28154c81eda4e7398c8b7e68cbefae8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7700526 proquest_miscellaneous_2464195788 proquest_journals_2464309765 crossref_citationtrail_10_3390_s20226668 crossref_primary_10_3390_s20226668 |
| PublicationCentury | 2000 |
| PublicationDate | 20201121 |
| PublicationDateYYYYMMDD | 2020-11-21 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201121 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Korus (ref_43) 2016; 23 Bayar (ref_23) 2018; 13 Salloum (ref_11) 2018; 51 ref_14 ref_13 ref_12 Kang (ref_27) 2013; 8 Bondi (ref_37) 2017; 2017 ref_52 ref_51 Qiao (ref_6) 2017; 52 ref_19 ref_18 ref_17 ref_15 Chen (ref_36) 2019; 16 Yao (ref_47) 2018; 6 Pibre (ref_45) 2016; 2016 ref_25 Qiao (ref_1) 2018; 21 ref_22 ref_21 Amerini (ref_3) 2013; 28 Fan (ref_50) 2020; 99 Hsu (ref_9) 2010; 5 ref_28 ref_26 Farid (ref_38) 2009; 4 ref_35 ref_34 Pan (ref_4) 2010; 5 ref_33 ref_32 ref_31 ref_30 Korus (ref_42) 2016; 25 Qiao (ref_2) 2018; 77 Li (ref_24) 2017; 12 Bianchi (ref_39) 2012; 7 ref_46 ref_44 Qiao (ref_7) 2018; 6 ref_41 ref_40 Gloe (ref_48) 2010; 3 Zhao (ref_10) 2015; 25 Chen (ref_8) 2008; 3 Jin (ref_20) 2018; 77 Zhao (ref_5) 2019; 78 ref_49 Popescu (ref_29) 2005; 53 Cozzolino (ref_16) 2015; 10 |
| References_xml | – volume: 78 start-page: 8247 year: 2019 ident: ref_5 article-title: Source camera identification via low dimensional PRNU features publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6809-4 – volume: 6 start-page: 24973 year: 2018 ident: ref_47 article-title: Robust Multi-Classifier for Camera Model Identification Based on Convolution Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2832066 – ident: ref_49 – volume: 28 start-page: 659 year: 2013 ident: ref_3 article-title: Copy-move forgery detection and localization by means of robust clustering with J-Linkage publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2013.03.006 – ident: ref_44 doi: 10.1117/12.2083479 – ident: ref_13 doi: 10.1109/CVPR.2017.203 – ident: ref_32 doi: 10.1109/TIFS.2019.2916364 – ident: ref_15 doi: 10.1145/3123266.3123411 – volume: 8 start-page: 1456 year: 2013 ident: ref_27 article-title: Robust median filtering forensics using an autoregressive model publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2013.2273394 – ident: ref_40 doi: 10.1109/ICIP.2014.7026073 – volume: 25 start-page: 1312 year: 2016 ident: ref_42 article-title: Multi-scale fusion for improved localization of malicious tampering in digital images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2518870 – volume: 4 start-page: 154 year: 2009 ident: ref_38 article-title: Exposing digital forgeries from JPEG ghosts publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2008.2012215 – volume: 7 start-page: 1003 year: 2012 ident: ref_39 article-title: Image forgery localization via block-grained analysis of JPEG artifacts publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2012.2187516 – ident: ref_51 doi: 10.1109/TMM.2020.3026868 – ident: ref_52 doi: 10.1109/TMM.2020.3016122 – volume: 3 start-page: 150 year: 2010 ident: ref_48 article-title: The dresden image database for benchmarking digital image forensics publication-title: J. Digit. Forensic Pract. doi: 10.1080/15567281.2010.531500 – volume: 21 start-page: 1077 year: 2018 ident: ref_1 article-title: Statistical model-based detector via texture weight map: Application in re-sampling authentication publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2018.2872863 – volume: 3 start-page: 74 year: 2008 ident: ref_8 article-title: Determining image origin and integrity using sensor noise publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2007.916285 – ident: ref_30 doi: 10.1145/1411328.1411333 – ident: ref_46 doi: 10.1109/WIFS.2016.7823908 – volume: 10 start-page: 2284 year: 2015 ident: ref_16 article-title: Efficient dense-field copy–move forgery detection publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2015.2455334 – ident: ref_31 doi: 10.1145/2600918.2600941 – volume: 53 start-page: 758 year: 2005 ident: ref_29 article-title: Exposing digital forgeries by detecting traces of resampling publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.839932 – volume: 13 start-page: 2691 year: 2018 ident: ref_23 article-title: Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2825953 – ident: ref_22 doi: 10.1109/ICIP.2017.8297053 – volume: 12 start-page: 1240 year: 2017 ident: ref_24 article-title: Image forgery localization via integrating tampering possibility maps publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2656823 – volume: 2016 start-page: 1 year: 2016 ident: ref_45 article-title: Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch publication-title: Electron. Imaging doi: 10.2352/ISSN.2470-1173.2016.8.MWSF-078 – ident: ref_35 doi: 10.1109/CVPRW.2019.00010 – ident: ref_34 – ident: ref_25 doi: 10.1109/WACV.2018.00111 – volume: 51 start-page: 201 year: 2018 ident: ref_11 article-title: Image Splicing Localization Using A Multi-Task Fully Convolutional Network (MFCN) publication-title: J. Vis. Commun. Image Represent doi: 10.1016/j.jvcir.2018.01.010 – volume: 52 start-page: 74 year: 2017 ident: ref_6 article-title: Individual camera device identification from JPEG images publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2016.12.011 – volume: 77 start-page: 1501 year: 2018 ident: ref_2 article-title: Exposing image resampling forgery by using linear parametric model publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-4314-1 – ident: ref_28 doi: 10.1109/ICASSP.2014.6854802 – ident: ref_18 doi: 10.1109/WIFS.2014.7084319 – ident: ref_21 – ident: ref_12 doi: 10.1109/CVPRW.2017.235 – ident: ref_19 doi: 10.1109/ICCV.2017.532 – ident: ref_26 doi: 10.1109/CVPRW.2017.232 – volume: 5 start-page: 816 year: 2010 ident: ref_9 article-title: Camera response functions for image forensics: An automatic algorithm for splicing detection publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2010.2077628 – volume: 25 start-page: 185 year: 2015 ident: ref_10 article-title: Passive image-splicing detection by a 2-D noncausal Markov model publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2014.2347513 – volume: 16 start-page: 725 year: 2019 ident: ref_36 article-title: A multi-purpose image forensic method using densely connected convolutional neural networks publication-title: J. REAL-TIME IMAGE PR. doi: 10.1007/s11554-019-00866-x – volume: 99 start-page: 107082 year: 2020 ident: ref_50 article-title: Efficient nearest neighbor search in high dimensional hamming space publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107082 – ident: ref_17 doi: 10.1145/3154979.3155001 – volume: 23 start-page: 169 year: 2016 ident: ref_43 article-title: Improved tampering localization in digital image forensics based on maximal entropy random walk publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2015.2507598 – volume: 6 start-page: 78038 year: 2018 ident: ref_7 article-title: Identifying Individual Camera Device From RAW Images publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2884710 – volume: 5 start-page: 857 year: 2010 ident: ref_4 article-title: Region duplication detection using image feature matching publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2010.2078506 – ident: ref_33 doi: 10.1109/ICPR.2018.8545074 – ident: ref_41 doi: 10.1109/WIFS.2014.7084315 – ident: ref_14 doi: 10.1109/WIFS.2016.7823911 – volume: 77 start-page: 29303 year: 2018 ident: ref_20 article-title: Video logo removal detection based on sparse representation publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-5959-8 – volume: 2017 start-page: 67 year: 2017 ident: ref_37 article-title: A preliminary study on convolutional neural networks for camera model identification publication-title: J. Electron. Imaging doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-327 |
| SSID | ssj0023338 |
| Score | 2.4198344 |
| Snippet | Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 6668 |
| SubjectTerms | Accuracy Algorithms convolution neural network (CNN) Design Digital cameras digital image forensics Forgery Internet of Things Multimedia Neural networks Noise reliability fusion map (RFM) Sensors tampering detection and localization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqxKE9VIVSdSkgU_XAJSJObI995GsFEkU9oIpb5E-xEs0idheJf8_Yya42UiUuHBNPIudN7JmXjJ8J-VU7wYLQvOBe-IIDclYVdVVI6zFgcGlULsb8ew03N-ruTv9Z2-or1YR18sAdcMexUhjlnWLBGx6g1sopC0EqZ0M0IS_zLUEvyVRPtWpkXp2OUI2k_niGFB8jUdJTXYs-WaR_kFkO6yLXAs34C_ncZ4j0pOvZFvkQ2m3yaU038Cu5uPqH0wAdT_OSZnoe5rmgqqWm9fQ6Rad-dSV9nhhqaKo77vS4X-h4kb6P0d_mcYfcji9uzy6Lfj-EwiFq80KKWNoaeFTeSQuegREpwYpWyCAlWMViAGGiYLVkFo-582XpOF7ny1B_IxvttA3fCbWVhwhae20rHiMmiVwHBl5yJ1UFakSOljA1rtcKT1tWPDTIGRKizQrREfm5Mn3sBDL-Z3SasF4ZJE3rfAJxanpPN295ekT2lp5q-oE2ayqOKVWJOZUYkcNVMw6R9N_DtGG66GyYxqkJbwEDDw86NGxpJ_dZbBsgS-LsvscT_CAfq0TXGSsqtkc25k-LsE823fN8Mns6yG_wKzIC-Fs priority: 102 providerName: Directory of Open Access Journals |
| Title | Image Forgery Detection and Localization via a Reliability Fusion Map |
| URI | https://www.proquest.com/docview/2464309765 https://www.proquest.com/docview/2464195788 https://pubmed.ncbi.nlm.nih.gov/PMC7700526 https://doaj.org/article/f28154c81eda4e7398c8b7e68cbefae8 |
| Volume | 20 |
| WOSCitedRecordID | wos000594555700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg48AO41srjMogDlyixYk_T4hBKyatVYUmVE6RP7VKLO3WdhKX_e08O2nXSIgLl0ixHcfye_b78PPvIfShtIx4pmhGHXMZFWCzyqCKjBsHAoNyLVMw5o9zMR7L6VRNWofbsg2r3OyJaaN2cxt95CcFBdmZg_BknxbXWcwaFU9X2xQaD9F-TJsd-VxM7w2uEuyvBk2oBNP-ZAmGPsijiKq6I4MSVH9Hv-xGR-6Im-GT_x3oU3TYKpr4c8MZz9ADXz9HBzvwgy_Q4OwKdhM8nKeb0firX6W4rBrr2uHzKOTaS5r4dqaxxjF8uYH1_o2H6-hmwyO9eIkuhoOLL9-yNq1CZmHyVxlnITeloEE6y41wRGgW9bRgGPecCyNJ8ILpwEjJiYF3al2eWwrfudyXr9BePa_9EcKmcCIIpZwyBQ0BdE2qPBGOU8tlIWQPfdzMc2VbyPGY-eJXBaZHJEm1JUkPvd82XTQ4G39rdBqJtW0QobFTAcxT1a60KhQS1EIriXeaelEqaaURnktrfNAeOjne0K1q1-uyuidaD73bVsNKi8cnuvbzddOGKNjhoAvRYZHOgLo19ewyYXYLkZB1Xv_752_Q4yLa84RkBTlGe6ubtX-LHtnb1Wx500_MnZ6yj_ZPB-PJ937yIcBzdDeAssnZaPLzDwFkC2c |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOvBELBQwCiUvU2HH8OCAEtKuuul1xWKG9RX6KlSC7dHeL-qP4j4ydZNtIiFsPHBM7dmJ_-WbGHs8g9KawJfGlYhlzpcuYAJtVBkUzbhwIDMa1TM6YX8diMpGzmfqyg353Z2GiW2XHiYmo3cLGNfJ9ykB25iA8yw_Ln1nMGhV3V7sUGg0sjv35LzDZVu9HBzC_bykdHk4_H2VtVoHMQt_rjJchN4VgQTrLjXBE6DKqKcGU3HMujCTBi1KHkhScGLhm1uW5ZfCcy30BzV5D14HGRbT1xOzCvivA3GuCFxWFyvdXFOQjWAeyJ_JSZoCeOtt3xrwk3YZ3_7NxuYfutGo0_tjg_j7a8fUDdPtScMWH6HD0A7gSDxfp3Dc-8OvkdVZjXTs8jiK8PYKKz-Yaaxyds5ug5ed4uImLiPhELx-h6VV8xmO0Wy9q_wRhQ50IQimnDGUhgCbNlCfCcWa5pEIO0LtuWivbBlSPeT2-V2BYRQRUWwQM0Ott1WUTReRvlT5FbGwrxMDf6QaMU9XySBWoBKXXSuKdZl4USlpphOfSGh-0h0b2OphULRutqguMDNCrbTHwSNwc0rVfbJo6RAF_QxOih8jeC_VL6vm3FJFciBQ36Om_O3-Jbh5NT8bVeDQ5foZu0bhyQUhGyR7aXZ9u_HN0w56t56vTF-m_wqi6Yrz-AXFjYSg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxA8cB1aYYBBIPESNXYc23lACOgiqnVVHyY0niJfRSWWlrUd2k_j33GcG4uEeNsDj0kcx7E_n4t9_B2EXicmJS7NWMRsaiMmwGeVPqMR1xYUBuNKVsGYX6ZiNpOnp9l8B_1qz8KEsMpWJlaC2i5NWCMfUQa6MwblmY58ExYxH-fvVz-ikEEq7LS26TRqiBy5y5_gvq3fTcYw1m8ozQ9PPn2OmgwDkYF2bCKe-lgngnlpDdfCEqHSYLJ4nXLHudCSeCdS5VOScKLhmhkbx4bBezZ2CVR7A-2CRc7oAO3OJ8fzr523l4DzV1MZJUkWj9YUtCX4CrKnAKs8AT3jth-aeUXX5ff-4166j-42Bjb-UM-IB2jHlQ_RnSu0i4_Q4eQMpCjOl9WJcDx2myoercSqtHgalHtzOBVfLBRWOIRt13TmlzjfhuVFfKxWe-jkOn7jMRqUy9LtI6ypFV5kmc00Zd6Djc0yR4TlzHBJhRyit-0QF6ahWg8ZP74X4HIFNBQdGoboVVd0VfOL_K3Qx4CTrkCgBK9uQD8VjYQpPJVgDhtJnFXMiSSTRmrhuDTaeeWgkoMWMkUjp9bFH7wM0cvuMUiYsG2kSrfc1mVIBpIdqhA9dPYa1H9SLr5VXOVCVIxCT_798RfoFsC0mE5mR0_RbRqWNAiJKDlAg8351j1DN83FZrE-f95MMoyKawbsbyD1a3c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Forgery+Detection+and+Localization+via+a+Reliability+Fusion+Map&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yao%2C+Hongwei&rft.au=Xu%2C+Ming&rft.au=Qiao%2C+Tong&rft.au=Wu%2C+Yiming&rft.date=2020-11-21&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=22&rft_id=info:doi/10.3390%2Fs20226668&rft_id=info%3Apmid%2F33233380&rft.externalDocID=PMC7700526 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |