An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features
The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 20; no. 17; p. 4677 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
19.08.2020
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph (EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of the proposed method was evaluated on three public sleep databases. The experimental results show that under the Rechtschaffen’s and Kale’s (R&K) standard, the sleep stage classification accuracies of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%, respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and 81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy compared with state-of-the-art methods. |
|---|---|
| AbstractList | The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph (EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of the proposed method was evaluated on three public sleep databases. The experimental results show that under the Rechtschaffen’s and Kale’s (R&K) standard, the sleep stage classification accuracies of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%, respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and 81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy compared with state-of-the-art methods. The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph (EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of the proposed method was evaluated on three public sleep databases. The experimental results show that under the Rechtschaffen's and Kale's (R&K) standard, the sleep stage classification accuracies of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%, respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and 81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy compared with state-of-the-art methods.The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph (EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of the proposed method was evaluated on three public sleep databases. The experimental results show that under the Rechtschaffen's and Kale's (R&K) standard, the sleep stage classification accuracies of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%, respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and 81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy compared with state-of-the-art methods. |
| Author | Guez, Allon Xu, Meihua Li, Ang Guo, Aiying Shen, Huaming Ran, Feng |
| AuthorAffiliation | 1 School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China; ranfeng@shu.edu.cn (F.R.); mhxu@shu.edu.cn (M.X.); shulivia@shu.edu.cn (A.L.); gayshh@shu.edu.cn (A.G.) 2 Faculty of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA; guezal@drexel.edu |
| AuthorAffiliation_xml | – name: 1 School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China; ranfeng@shu.edu.cn (F.R.); mhxu@shu.edu.cn (M.X.); shulivia@shu.edu.cn (A.L.); gayshh@shu.edu.cn (A.G.) – name: 2 Faculty of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA; guezal@drexel.edu |
| Author_xml | – sequence: 1 givenname: Huaming orcidid: 0000-0001-6908-9144 surname: Shen fullname: Shen, Huaming – sequence: 2 givenname: Feng surname: Ran fullname: Ran, Feng – sequence: 3 givenname: Meihua surname: Xu fullname: Xu, Meihua – sequence: 4 givenname: Allon surname: Guez fullname: Guez, Allon – sequence: 5 givenname: Ang orcidid: 0000-0003-2385-6963 surname: Li fullname: Li, Ang – sequence: 6 givenname: Aiying surname: Guo fullname: Guo, Aiying |
| BookMark | eNptkk9v3CAQxVGVqvnTHvoNLPXSHjbBgAf7UmmzSpqVUvWQ5lghDMOGFTZbsCP125dko6iJemLE_Hh6b5hjcjDGEQn5WNNTzjt6lhmtpQAp35CjWjCxaBmjB__Uh-Q45y2ljHPeviOHnLWsoUwckV_LsVrOUxz05E11ExB31c2kN1itgs7ZO29KJxYobGLy091Q3WY_bqr1sEvxHm31PVoM1bnOpb7IGUeD1SXqaU6Y35O3ToeMH57OE3J7efFzdbW4_vFtvVpeL4wQMC0a18sWABxSYJIxJrVurLCAomGNffAqXYkhGXLNDPRgXWM52NZJB8bwE7Le69qot2qX_KDTHxW1V48XMW2UTiVgQOWgZZRBQxGc4NR2nZGtEL3rQdcNiKL1da-1m_sBrcFxSjq8EH3ZGf2d2sR7JRsKXdsVgc9PAin-njFPavDZYAh6xDhnxQQH3nGoWUE_vUK3cU5jGdWe4iWzLNSXPWVSzDmhezZTU_WwAOp5AQp79oo1fnr8weLVh_-8-AsQqbFV |
| CitedBy_id | crossref_primary_10_3390_e24050688 crossref_primary_10_1109_TPAMI_2024_3366170 crossref_primary_10_1109_ACCESS_2025_3585963 crossref_primary_10_1007_s11760_022_02343_8 crossref_primary_10_1016_j_bspc_2021_103061 crossref_primary_10_1109_TIM_2022_3154838 crossref_primary_10_1186_s12911_024_02522_2 crossref_primary_10_3390_s23104950 crossref_primary_10_3390_bios12030155 crossref_primary_10_3390_mi13081335 crossref_primary_10_1007_s13534_023_00299_3 crossref_primary_10_1016_j_artmed_2025_103152 crossref_primary_10_4028_p_svwo5k crossref_primary_10_1007_s11042_022_13195_2 crossref_primary_10_1016_j_bspc_2021_102581 crossref_primary_10_1016_j_bspc_2023_105572 crossref_primary_10_1016_j_eswa_2022_118752 crossref_primary_10_1109_JBHI_2023_3332503 crossref_primary_10_32604_cmc_2022_021830 crossref_primary_10_1109_TIM_2025_3556900 crossref_primary_10_3390_s20236749 crossref_primary_10_1016_j_bspc_2021_102898 crossref_primary_10_1109_ACCESS_2022_3180730 crossref_primary_10_1088_1361_6579_ac6bdb crossref_primary_10_3390_life12050622 |
| Cites_doi | 10.1016/j.cmpb.2019.105089 10.1007/s11063-016-9530-1 10.1007/s00521-017-2919-6 10.1016/j.knosys.2017.05.005 10.1016/j.jneumeth.2019.108312 10.1016/j.bbe.2015.11.001 10.1109/JBHI.2014.2303991 10.1109/TIM.2012.2187242 10.1109/TVT.2019.2925903 10.1016/j.neucom.2012.11.003 10.1016/j.jneumeth.2003.10.009 10.1016/j.ymssp.2012.06.004 10.1016/j.cmpb.2019.105116 10.1109/TBME.2017.2702123 10.1007/s11325-019-02008-w 10.1016/j.compbiomed.2019.01.013 10.1016/j.eswa.2018.12.023 10.1016/j.compbiomed.2018.08.022 10.1007/s13369-019-04197-8 10.1016/j.jneumeth.2016.07.012 10.1016/j.jneumeth.2019.108320 10.1109/TNSRE.2017.2721116 10.1016/j.compbiomed.2018.04.025 10.1016/j.cmpb.2016.12.015 10.1016/j.eswa.2019.07.007 10.1109/10.867928 10.1109/ACCESS.2019.2939038 10.1016/j.knosys.2019.105367 10.1016/j.cmpb.2015.10.013 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s20174677 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f68202650e6f430d99c7844bfb6a1564 PMC7506989 10_3390_s20174677 |
| GeographicLocations | Belgium |
| GeographicLocations_xml | – name: Belgium |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-5fb78666fe06272227aa5d4d6e4525d82507f22072e3a2c6b6df5d36d8f7f6cc3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571614800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:45:04 EDT 2025 Tue Nov 04 01:52:23 EST 2025 Fri Sep 05 11:37:57 EDT 2025 Tue Oct 07 07:21:42 EDT 2025 Sat Nov 29 07:17:14 EST 2025 Tue Nov 18 22:39:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-5fb78666fe06272227aa5d4d6e4525d82507f22072e3a2c6b6df5d36d8f7f6cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2385-6963 0000-0001-6908-9144 |
| OpenAccessLink | https://www.proquest.com/docview/2436332077?pq-origsite=%requestingapplication% |
| PMID | 32825024 |
| PQID | 2436332077 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f68202650e6f430d99c7844bfb6a1564 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7506989 proquest_miscellaneous_2436393612 proquest_journals_2436332077 crossref_primary_10_3390_s20174677 crossref_citationtrail_10_3390_s20174677 |
| PublicationCentury | 2000 |
| PublicationDate | 20200819 |
| PublicationDateYYYYMMDD | 2020-08-19 |
| PublicationDate_xml | – month: 8 year: 2020 text: 20200819 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sharma (ref_12) 2017; 28 Diykh (ref_4) 2020; 184 Kang (ref_5) 2017; 65 Jiang (ref_33) 2019; 121 Stephanie (ref_20) 2008; 1 Ghimatgar (ref_7) 2019; 324 Hassan (ref_11) 2017; 140 Goldberger (ref_19) 2000; 101 Cao (ref_25) 2019; 68 Hassan (ref_3) 2016; 271 Zhang (ref_23) 2017; 45 Michielli (ref_17) 2019; 106 Zhu (ref_32) 2014; 18 Rahman (ref_34) 2018; 10 Law (ref_24) 2012; 33 Hsu (ref_30) 2013; 104 Korkalainen (ref_16) 2019; 27 Abdulla (ref_6) 2019; 138 Mousavi (ref_15) 2019; 324 Sharma (ref_28) 2018; 98 Zhang (ref_14) 2020; 24 Shen (ref_27) 2019; 7 Supratak (ref_35) 2017; 25 Van (ref_26) 1993; Volume 26 ref_1 Taran (ref_8) 2020; 192 Zhang (ref_13) 2020; 183 ref_2 Khalighi (ref_21) 2016; 124 Liang (ref_29) 2012; 61 Sharma (ref_9) 2020; 45 Hassan (ref_10) 2016; 36 Delorme (ref_22) 2004; 134 Hassan (ref_31) 2017; 128 Kemp (ref_18) 2000; 47 |
| References_xml | – volume: 183 start-page: 105089 year: 2020 ident: ref_13 article-title: Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105089 – volume: 45 start-page: 365 year: 2017 ident: ref_23 article-title: Classification of EEG Signals Based on Autoregressive Model and Wavelet Packet Decomposition publication-title: Neural. Process Lett. doi: 10.1007/s11063-016-9530-1 – volume: 28 start-page: 2959 year: 2017 ident: ref_12 article-title: Automatic sleep stage classification based on iterative filtering of electroencephalogram signals publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-017-2919-6 – volume: 27 start-page: 2073 year: 2019 ident: ref_16 article-title: Accurate Deep Learning-Based Sleep Staging in a Clinical Population with Suspected Obstructive Sleep Apnea publication-title: IEEE J. Biomed. Health Inform. – volume: 128 start-page: 115 year: 2017 ident: ref_31 article-title: A decision support system for automated identification of sleep stages from single-channel EEG signals publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.05.005 – volume: 324 start-page: 108312 year: 2019 ident: ref_15 article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108312 – volume: 36 start-page: 248 year: 2016 ident: ref_10 article-title: Automatic sleep scoring using statistical features in the EMD domain and ensemble methods publication-title: Biocybern Biomed. Eng. doi: 10.1016/j.bbe.2015.11.001 – volume: 18 start-page: 1813 year: 2014 ident: ref_32 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2014.2303991 – volume: 61 start-page: 1649 year: 2012 ident: ref_29 article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2012.2187242 – volume: 68 start-page: 7544 year: 2019 ident: ref_25 article-title: Fault Diagnosis of Train Plug Door Based on a Hybrid Criterion for IMFs Selection and Fractional Wavelet Package Energy Entropy publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2925903 – volume: 104 start-page: 105 year: 2013 ident: ref_30 article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.003 – volume: 134 start-page: 9 year: 2004 ident: ref_22 article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 33 start-page: 197 year: 2012 ident: ref_24 article-title: An approach based on wavelet packet decomposition and Hilbert–Huang transform (WPD–HHT) for spindle bearings condition monitoring publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2012.06.004 – volume: 184 start-page: 105 year: 2020 ident: ref_4 article-title: EEG sleep stages identification based on weighted undirected complex networks publication-title: Comput Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105116 – ident: ref_1 – volume: Volume 26 start-page: 55 year: 1993 ident: ref_26 article-title: N4SID: Numerical Algorithms for State Space Subspace System Identification publication-title: Associated Technologies and Recent Developments, Proceedings of the 12th Triennal World Congress of the International Federation of Automatic Control, Sydney, Australia, 18–23 July 1993 – volume: 65 start-page: 1201 year: 2017 ident: ref_5 article-title: A State Space and Density Estimation Framework for Sleep Staging in Obstructive Sleep Apnea publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2702123 – volume: 24 start-page: 581 year: 2020 ident: ref_14 article-title: Automated multi-model deep neural network for sleep stage scoring with unfiltered clinical data publication-title: Sleep Breath doi: 10.1007/s11325-019-02008-w – volume: 106 start-page: 71 year: 2019 ident: ref_17 article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.01.013 – volume: 121 start-page: 188 year: 2019 ident: ref_33 article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.023 – volume: 10 start-page: 211 year: 2018 ident: ref_34 article-title: Sleep stage classification using single-channel EOG publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.08.022 – volume: 45 start-page: 2531 year: 2020 ident: ref_9 article-title: Automated Detection of Sleep Stages Using Energy-Localized Orthogonal Wavelet Filter Banks publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-04197-8 – ident: ref_2 – volume: 271 start-page: 107 year: 2016 ident: ref_3 article-title: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.07.012 – volume: 324 start-page: 180320 year: 2019 ident: ref_7 article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108320 – volume: 25 start-page: 1998 year: 2017 ident: ref_35 article-title: A model for automatic sleep stage scoring based on raw single-channel EEG publication-title: IEEE T. Neur. Sys. Reh. doi: 10.1109/TNSRE.2017.2721116 – volume: 98 start-page: 58 year: 2018 ident: ref_28 article-title: An accurate sleep stage classification system using a new class of optimally time-frequency localized three-band wavelet filter bank publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.04.025 – volume: 1 start-page: 747325 year: 2008 ident: ref_20 article-title: Cancelling ECG artifacts in EEG using a modified independent component analysis approach publication-title: EURASIP J. Adv. Signal Process. – volume: 140 start-page: 201 year: 2017 ident: ref_11 article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.12.015 – volume: 101 start-page: e215 year: 2000 ident: ref_19 article-title: PhysioBank, PhysioToolkit and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circ. Res. – volume: 138 start-page: 112790 year: 2019 ident: ref_6 article-title: Sleep EEG Signal Analysis Based on Correlation Graph Similarity Coupled with an Ensemble Extreme Machine Learning Algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.07.007 – volume: 47 start-page: 1185 year: 2000 ident: ref_18 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG publication-title: IEEE. Trans. Biomed. Eng. doi: 10.1109/10.867928 – volume: 7 start-page: 125268 year: 2019 ident: ref_27 article-title: An accurate sleep stage classification method based on state space model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939038 – volume: 192 start-page: 105367 year: 2020 ident: ref_8 article-title: Automatic sleep stage classification using optimize flexible analytic wavelet transform publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105367 – volume: 124 start-page: 180 year: 2016 ident: ref_21 article-title: ISRUC-Sleep: A comprehensive public dataset for sleep researchers publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.10.013 |
| SSID | ssj0023338 |
| Score | 2.4563754 |
| Snippet | The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work.... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4677 |
| SubjectTerms | Accuracy Algorithms Classification Datasets Decomposition EEG Methods Neural networks Sleep sleep stage state space model wavelet packet Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4ie3APy_qLHVclioe9FDtJkzTHcVE8iaCCl6WkyYsKsx2xM_79vpd2hiks7MVToXmQ9OWl731N-n2MnYFXYx3AZxE0AhSlVGa1GWdRhFJK60xULolNmJub8vHR3q5JfdGZsI4euHPcedSYowTWEaBjIfNgrTdlUdSx1o6ITujtmxu7BFM91JKIvDoeIewwP28xzZGuhhlkn0TSP6gsh-ci1xLN1Xf2ra8Q-aQb2TbbgGaHfV3jDdxlfyYNnyzms0S3yu-mAK8cq8Yn4Enjkk7_JIfzyfRphuj_-S9PRwN49wkBAicJtCm_wBQW-GXb0vLmVA0uEH3vsYery_vf11mvk5B5BHPzTMXalAhDIhDnMP3c6pwKRdBAm5YBMWBuokAvCZBOeF3rEFWQOpTRRO293GebzayBH4w7pW0d6sKLsSvyKGrh6jFerQ0grIMR-7X0X-V7EnHSsphWCCbI1dXK1SN2ujJ97Zgz_mV0QZOwMiCy63QDQ6DqQ6D6XwiM2OFyCqt-BbaVKKSWEh8a-zhZNePaoQ0R18Bs0dtYiUXeiJnB1A8GNGxpXp4TCzeWWiS-efAZT_CTbQnC8US1aw_Z5vxtAUfsi3-fv7Rvxym0PwD7Cf9D priority: 102 providerName: Directory of Open Access Journals |
| Title | An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features |
| URI | https://www.proquest.com/docview/2436332077 https://www.proquest.com/docview/2436393612 https://pubmed.ncbi.nlm.nih.gov/PMC7506989 https://doaj.org/article/f68202650e6f430d99c7844bfb6a1564 |
| Volume | 20 |
| WOSCitedRecordID | wos000571614800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvicCW2UQBy7RUjux4xNqp05wWFXxIZUDihx_dJNKUpqUI38777lpt0hol10cKX6SHb1n-_1s5_cj5L0z2VBYZ2LvBACULMtiJeQw9szmnCstfaaD2IScTvP5XM26Dbemu1a5mxPDRG1rg3vkpyzlgnOWSPlx9TtG1Sg8Xe0kNO6TQ5TNxjiX82vAxQF_bdmEoNnktIHFDtU1ZG8NClT9vfyyfzvyxnJz_uSuHX1KHneJJh1tI-MZueeq5-TRDfrBF-TnqKKjTVsH1lb6dencikLyuXA0SGXiJaLgNzpaLqCF9vIXDTcM6HYnwlmKSmpLOoaV0NJJ0-AsQTGp3ACIf0m-n0--nX2KO7mF2AAmbOPMlzIHNOMdUhfjP7JaZza1wuHZpwUomUjP4MOY45oZUQrrM8uFzb30whh-RA6qunKvCNWZUKUtU8OGOk08K5kuh_BUyjqmtIvIh50DCtNxkaMkxrIATIK-Kva-isi7velqS8DxP6MxenFvgJzZ4UW9XhTdECy8gGyHQUbqhE95YpUyMk_T0pdCI2VORI53Di26gdwU196MyNt9NQxBPFfRlas3nY3ikCtGRPZip9ehfk11dRnIvCFjQw3P17c3_oY8ZAj0kYtXHZODdr1xJ-SB-dNeNetBiPpQ5gNyOJ5MZ18GYXMByou_E3g3-3wx-_EP6hAUjg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aAwl44BsRGGAQSLxES-3Ejh8Q6mDTpo0KiSH1BWWOP7pJJS1NC-JP8Ru5N027RUK87YGnSLEVx8nJ9bm2cw7AK2-znnTexsFLTFCyLIu1VL04cJcLoY0KmWnMJtRgkA-H-tMG_F79C0PbKlcxsQnUbmJpjnybp0IKwROl3k2_x-QaRaurKwuNJSwO_a-fmLLVbw8-4Pt9zfne7vH7_bh1FYgtpj7zOAulypG0B08KvfQrqDGZS530tMTnMGNKVODYEPfCcCtL6ULmhHR5UEFaK_C6V-AqxnFFyZ4anid4AvO9pXoRdjPZrnFwJTcP1RnzGmuADp_t7sa8MLzt3f7fHswduNUSadZfIv8ubPjqHty8IK94H772K9ZfzCeNKi37PPZ-ypBcjzxrrEBpk1SDS9Yfj7BH89NvrNlBwZYzLd4xcoobsx0c6R3brWuKgoxI82Lm6wfw5VL69xA2q0nlHwEzmdSlK1PLeyZNAi-5KXt41Np5ro2P4M3qhRe21Vony49xgTkXYaNYYyOCl-uq06XAyN8q7RBq1hVIE7w5MZmNijbEFEEim-PIuL0MqUic1lblaVqGUhqSBIpgawWgog1UdXGOngherIsxxNC6kan8ZNHW0QK5cASqg9XODXVLqrPTRqwcGSl5lD7-d-PP4fr-8cej4uhgcPgEbnCa1CDdYb0Fm_PZwj-Fa_bH_KyePWu-OAYnl43kPzZEanY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1di9NAFL2sXRF98FusrjqKgi-h6Uwy03kQ6bpbLKuloML6sMTJfHQXalqbVvGv-eu8N03rBsS3ffApkAxJJjm5c-7MzTkAz71Nu9J5GwUvMUFJ0zTSUnWjwF1PCG1USE1lNqFGo97xsR7vwK_NvzBUVrmJiVWgdjNLc-QdnggpBI-V6oS6LGJ8MHg9_xaRgxSttG7sNNYQOfI_f2D6Vr4aHuC7fsH54PDjm7dR7TAQWUyDllEactVDAh88qfXSb6HGpC5x0tNyn8PsKVaB40W5F4ZbmUsXUiek6wUVpLUCz3sJdpGSJ7wFu-Ph-_HnbbonMPtbaxlhp-NOiUMteXuoxghYGQU02G2zNvPcYDe48T8_pptwvabYrL_-Jm7Bji9uw7Vzwot34KRfsP5qOav0atmHqfdzhrR74lllEkrlUxViWX86wR4tT7-yqraCredgvGPkITdl-8gBHDssS4qPjOj0auHLu_DpQvp3D1rFrPD3gZlU6tzlieVdk8SB59zkXdxq7TzXxrfh5eblZ7ZWYSczkGmG2RjhJNvipA3Ptk3na-mRvzXaJwRtG5BaeLVjtphkdfDJgkSex5GLexkSETutreolSR5yaUgsqA17GzBldQgrsz9IasPT7WEMPrSiZAo_W9VttECW3AbVwG3jhppHirPTSsYcuSq5lz7498WfwBUEcPZuODp6CFc5zXaQILHeg9ZysfKP4LL9vjwrF4_rz4_Bl4uG8m8SR3TF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automatic+Sleep+Stage+Classification+Algorithm+Using+Improved+Model+Based+Essence+Features&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shen%2C+Huaming&rft.au=Feng+Ran&rft.au=Xu%2C+Meihua&rft.au=Guez%2C+Allon&rft.date=2020-08-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=17&rft.spage=4677&rft_id=info:doi/10.3390%2Fs20174677&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |