An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features

The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 20; H. 17; S. 4677
Hauptverfasser: Shen, Huaming, Ran, Feng, Xu, Meihua, Guez, Allon, Li, Ang, Guo, Aiying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 19.08.2020
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph (EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of the proposed method was evaluated on three public sleep databases. The experimental results show that under the Rechtschaffen’s and Kale’s (R&K) standard, the sleep stage classification accuracies of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%, respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and 81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy compared with state-of-the-art methods.
AbstractList The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph (EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of the proposed method was evaluated on three public sleep databases. The experimental results show that under the Rechtschaffen’s and Kale’s (R&K) standard, the sleep stage classification accuracies of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%, respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and 81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy compared with state-of-the-art methods.
The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph (EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of the proposed method was evaluated on three public sleep databases. The experimental results show that under the Rechtschaffen's and Kale's (R&K) standard, the sleep stage classification accuracies of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%, respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and 81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy compared with state-of-the-art methods.The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph (EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of the proposed method was evaluated on three public sleep databases. The experimental results show that under the Rechtschaffen's and Kale's (R&K) standard, the sleep stage classification accuracies of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%, respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and 81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy compared with state-of-the-art methods.
Author Guez, Allon
Xu, Meihua
Li, Ang
Guo, Aiying
Shen, Huaming
Ran, Feng
AuthorAffiliation 1 School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China; ranfeng@shu.edu.cn (F.R.); mhxu@shu.edu.cn (M.X.); shulivia@shu.edu.cn (A.L.); gayshh@shu.edu.cn (A.G.)
2 Faculty of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA; guezal@drexel.edu
AuthorAffiliation_xml – name: 1 School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China; ranfeng@shu.edu.cn (F.R.); mhxu@shu.edu.cn (M.X.); shulivia@shu.edu.cn (A.L.); gayshh@shu.edu.cn (A.G.)
– name: 2 Faculty of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA; guezal@drexel.edu
Author_xml – sequence: 1
  givenname: Huaming
  orcidid: 0000-0001-6908-9144
  surname: Shen
  fullname: Shen, Huaming
– sequence: 2
  givenname: Feng
  surname: Ran
  fullname: Ran, Feng
– sequence: 3
  givenname: Meihua
  surname: Xu
  fullname: Xu, Meihua
– sequence: 4
  givenname: Allon
  surname: Guez
  fullname: Guez, Allon
– sequence: 5
  givenname: Ang
  orcidid: 0000-0003-2385-6963
  surname: Li
  fullname: Li, Ang
– sequence: 6
  givenname: Aiying
  surname: Guo
  fullname: Guo, Aiying
BookMark eNptkk9v3CAQxVGVqvnTHvoNLPXSHjbBgAf7UmmzSpqVUvWQ5lghDMOGFTZbsCP125dko6iJemLE_Hh6b5hjcjDGEQn5WNNTzjt6lhmtpQAp35CjWjCxaBmjB__Uh-Q45y2ljHPeviOHnLWsoUwckV_LsVrOUxz05E11ExB31c2kN1itgs7ZO29KJxYobGLy091Q3WY_bqr1sEvxHm31PVoM1bnOpb7IGUeD1SXqaU6Y35O3ToeMH57OE3J7efFzdbW4_vFtvVpeL4wQMC0a18sWABxSYJIxJrVurLCAomGNffAqXYkhGXLNDPRgXWM52NZJB8bwE7Le69qot2qX_KDTHxW1V48XMW2UTiVgQOWgZZRBQxGc4NR2nZGtEL3rQdcNiKL1da-1m_sBrcFxSjq8EH3ZGf2d2sR7JRsKXdsVgc9PAin-njFPavDZYAh6xDhnxQQH3nGoWUE_vUK3cU5jGdWe4iWzLNSXPWVSzDmhezZTU_WwAOp5AQp79oo1fnr8weLVh_-8-AsQqbFV
CitedBy_id crossref_primary_10_3390_e24050688
crossref_primary_10_1109_TPAMI_2024_3366170
crossref_primary_10_1109_ACCESS_2025_3585963
crossref_primary_10_1007_s11760_022_02343_8
crossref_primary_10_1016_j_bspc_2021_103061
crossref_primary_10_1109_TIM_2022_3154838
crossref_primary_10_1186_s12911_024_02522_2
crossref_primary_10_3390_s23104950
crossref_primary_10_3390_bios12030155
crossref_primary_10_3390_mi13081335
crossref_primary_10_1007_s13534_023_00299_3
crossref_primary_10_1016_j_artmed_2025_103152
crossref_primary_10_4028_p_svwo5k
crossref_primary_10_1007_s11042_022_13195_2
crossref_primary_10_1016_j_bspc_2021_102581
crossref_primary_10_1016_j_bspc_2023_105572
crossref_primary_10_1016_j_eswa_2022_118752
crossref_primary_10_1109_JBHI_2023_3332503
crossref_primary_10_32604_cmc_2022_021830
crossref_primary_10_1109_TIM_2025_3556900
crossref_primary_10_3390_s20236749
crossref_primary_10_1016_j_bspc_2021_102898
crossref_primary_10_1109_ACCESS_2022_3180730
crossref_primary_10_1088_1361_6579_ac6bdb
crossref_primary_10_3390_life12050622
Cites_doi 10.1016/j.cmpb.2019.105089
10.1007/s11063-016-9530-1
10.1007/s00521-017-2919-6
10.1016/j.knosys.2017.05.005
10.1016/j.jneumeth.2019.108312
10.1016/j.bbe.2015.11.001
10.1109/JBHI.2014.2303991
10.1109/TIM.2012.2187242
10.1109/TVT.2019.2925903
10.1016/j.neucom.2012.11.003
10.1016/j.jneumeth.2003.10.009
10.1016/j.ymssp.2012.06.004
10.1016/j.cmpb.2019.105116
10.1109/TBME.2017.2702123
10.1007/s11325-019-02008-w
10.1016/j.compbiomed.2019.01.013
10.1016/j.eswa.2018.12.023
10.1016/j.compbiomed.2018.08.022
10.1007/s13369-019-04197-8
10.1016/j.jneumeth.2016.07.012
10.1016/j.jneumeth.2019.108320
10.1109/TNSRE.2017.2721116
10.1016/j.compbiomed.2018.04.025
10.1016/j.cmpb.2016.12.015
10.1016/j.eswa.2019.07.007
10.1109/10.867928
10.1109/ACCESS.2019.2939038
10.1016/j.knosys.2019.105367
10.1016/j.cmpb.2015.10.013
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20174677
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f68202650e6f430d99c7844bfb6a1564
PMC7506989
10_3390_s20174677
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-5fb78666fe06272227aa5d4d6e4525d82507f22072e3a2c6b6df5d36d8f7f6cc3
IEDL.DBID DOA
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571614800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:45:04 EDT 2025
Tue Nov 04 01:52:23 EST 2025
Fri Sep 05 11:37:57 EDT 2025
Tue Oct 07 07:21:42 EDT 2025
Sat Nov 29 07:17:14 EST 2025
Tue Nov 18 22:39:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-5fb78666fe06272227aa5d4d6e4525d82507f22072e3a2c6b6df5d36d8f7f6cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2385-6963
0000-0001-6908-9144
OpenAccessLink https://doaj.org/article/f68202650e6f430d99c7844bfb6a1564
PMID 32825024
PQID 2436332077
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f68202650e6f430d99c7844bfb6a1564
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7506989
proquest_miscellaneous_2436393612
proquest_journals_2436332077
crossref_primary_10_3390_s20174677
crossref_citationtrail_10_3390_s20174677
PublicationCentury 2000
PublicationDate 20200819
PublicationDateYYYYMMDD 2020-08-19
PublicationDate_xml – month: 8
  year: 2020
  text: 20200819
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sharma (ref_12) 2017; 28
Diykh (ref_4) 2020; 184
Kang (ref_5) 2017; 65
Jiang (ref_33) 2019; 121
Stephanie (ref_20) 2008; 1
Ghimatgar (ref_7) 2019; 324
Hassan (ref_11) 2017; 140
Goldberger (ref_19) 2000; 101
Cao (ref_25) 2019; 68
Hassan (ref_3) 2016; 271
Zhang (ref_23) 2017; 45
Michielli (ref_17) 2019; 106
Zhu (ref_32) 2014; 18
Rahman (ref_34) 2018; 10
Law (ref_24) 2012; 33
Hsu (ref_30) 2013; 104
Korkalainen (ref_16) 2019; 27
Abdulla (ref_6) 2019; 138
Mousavi (ref_15) 2019; 324
Sharma (ref_28) 2018; 98
Zhang (ref_14) 2020; 24
Shen (ref_27) 2019; 7
Supratak (ref_35) 2017; 25
Van (ref_26) 1993; Volume 26
ref_1
Taran (ref_8) 2020; 192
Zhang (ref_13) 2020; 183
ref_2
Khalighi (ref_21) 2016; 124
Liang (ref_29) 2012; 61
Sharma (ref_9) 2020; 45
Hassan (ref_10) 2016; 36
Delorme (ref_22) 2004; 134
Hassan (ref_31) 2017; 128
Kemp (ref_18) 2000; 47
References_xml – volume: 183
  start-page: 105089
  year: 2020
  ident: ref_13
  article-title: Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105089
– volume: 45
  start-page: 365
  year: 2017
  ident: ref_23
  article-title: Classification of EEG Signals Based on Autoregressive Model and Wavelet Packet Decomposition
  publication-title: Neural. Process Lett.
  doi: 10.1007/s11063-016-9530-1
– volume: 28
  start-page: 2959
  year: 2017
  ident: ref_12
  article-title: Automatic sleep stage classification based on iterative filtering of electroencephalogram signals
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-017-2919-6
– volume: 27
  start-page: 2073
  year: 2019
  ident: ref_16
  article-title: Accurate Deep Learning-Based Sleep Staging in a Clinical Population with Suspected Obstructive Sleep Apnea
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 128
  start-page: 115
  year: 2017
  ident: ref_31
  article-title: A decision support system for automated identification of sleep stages from single-channel EEG signals
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.05.005
– volume: 324
  start-page: 108312
  year: 2019
  ident: ref_15
  article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108312
– volume: 36
  start-page: 248
  year: 2016
  ident: ref_10
  article-title: Automatic sleep scoring using statistical features in the EMD domain and ensemble methods
  publication-title: Biocybern Biomed. Eng.
  doi: 10.1016/j.bbe.2015.11.001
– volume: 18
  start-page: 1813
  year: 2014
  ident: ref_32
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2303991
– volume: 61
  start-page: 1649
  year: 2012
  ident: ref_29
  article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2012.2187242
– volume: 68
  start-page: 7544
  year: 2019
  ident: ref_25
  article-title: Fault Diagnosis of Train Plug Door Based on a Hybrid Criterion for IMFs Selection and Fractional Wavelet Package Energy Entropy
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2925903
– volume: 104
  start-page: 105
  year: 2013
  ident: ref_30
  article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.003
– volume: 134
  start-page: 9
  year: 2004
  ident: ref_22
  article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 33
  start-page: 197
  year: 2012
  ident: ref_24
  article-title: An approach based on wavelet packet decomposition and Hilbert–Huang transform (WPD–HHT) for spindle bearings condition monitoring
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2012.06.004
– volume: 184
  start-page: 105
  year: 2020
  ident: ref_4
  article-title: EEG sleep stages identification based on weighted undirected complex networks
  publication-title: Comput Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105116
– ident: ref_1
– volume: Volume 26
  start-page: 55
  year: 1993
  ident: ref_26
  article-title: N4SID: Numerical Algorithms for State Space Subspace System Identification
  publication-title: Associated Technologies and Recent Developments, Proceedings of the 12th Triennal World Congress of the International Federation of Automatic Control, Sydney, Australia, 18–23 July 1993
– volume: 65
  start-page: 1201
  year: 2017
  ident: ref_5
  article-title: A State Space and Density Estimation Framework for Sleep Staging in Obstructive Sleep Apnea
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2702123
– volume: 24
  start-page: 581
  year: 2020
  ident: ref_14
  article-title: Automated multi-model deep neural network for sleep stage scoring with unfiltered clinical data
  publication-title: Sleep Breath
  doi: 10.1007/s11325-019-02008-w
– volume: 106
  start-page: 71
  year: 2019
  ident: ref_17
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.01.013
– volume: 121
  start-page: 188
  year: 2019
  ident: ref_33
  article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.023
– volume: 10
  start-page: 211
  year: 2018
  ident: ref_34
  article-title: Sleep stage classification using single-channel EOG
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.08.022
– volume: 45
  start-page: 2531
  year: 2020
  ident: ref_9
  article-title: Automated Detection of Sleep Stages Using Energy-Localized Orthogonal Wavelet Filter Banks
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-04197-8
– ident: ref_2
– volume: 271
  start-page: 107
  year: 2016
  ident: ref_3
  article-title: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.07.012
– volume: 324
  start-page: 180320
  year: 2019
  ident: ref_7
  article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108320
– volume: 25
  start-page: 1998
  year: 2017
  ident: ref_35
  article-title: A model for automatic sleep stage scoring based on raw single-channel EEG
  publication-title: IEEE T. Neur. Sys. Reh.
  doi: 10.1109/TNSRE.2017.2721116
– volume: 98
  start-page: 58
  year: 2018
  ident: ref_28
  article-title: An accurate sleep stage classification system using a new class of optimally time-frequency localized three-band wavelet filter bank
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.04.025
– volume: 1
  start-page: 747325
  year: 2008
  ident: ref_20
  article-title: Cancelling ECG artifacts in EEG using a modified independent component analysis approach
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 140
  start-page: 201
  year: 2017
  ident: ref_11
  article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.12.015
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_19
  article-title: PhysioBank, PhysioToolkit and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circ. Res.
– volume: 138
  start-page: 112790
  year: 2019
  ident: ref_6
  article-title: Sleep EEG Signal Analysis Based on Correlation Graph Similarity Coupled with an Ensemble Extreme Machine Learning Algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.07.007
– volume: 47
  start-page: 1185
  year: 2000
  ident: ref_18
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
  publication-title: IEEE. Trans. Biomed. Eng.
  doi: 10.1109/10.867928
– volume: 7
  start-page: 125268
  year: 2019
  ident: ref_27
  article-title: An accurate sleep stage classification method based on state space model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939038
– volume: 192
  start-page: 105367
  year: 2020
  ident: ref_8
  article-title: Automatic sleep stage classification using optimize flexible analytic wavelet transform
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.105367
– volume: 124
  start-page: 180
  year: 2016
  ident: ref_21
  article-title: ISRUC-Sleep: A comprehensive public dataset for sleep researchers
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.10.013
SSID ssj0023338
Score 2.4563754
Snippet The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work....
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4677
SubjectTerms Accuracy
Algorithms
Classification
Datasets
Decomposition
EEG
Methods
Neural networks
Sleep
sleep stage
state space model
wavelet packet
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3atIf20Cb9IG6ToJQeejHZlWzJPpVNScgpBJLAXoqxvjaBrb1Ze_v7O6PVbmIovfRqD0hmJM17kvwewNdx7S33usCZZnSamXGR1mZcpgitufdWaWWKYDahLi-L6bS8ihtuXbxWuVkTw0JtW0N75Cc8E1IIPlLq--IhJdcoOl2NFhrP4QXZZtM4V9NHwiWQf63VhARS-5MOix25a6hBDQpS_QN8Obwd-aTcnL_9347uwpsINNlkPTL24Jlr3sHrJ_KD7-HnpGGTVd8G1VZ2PXduwRB8zhwLVpl0iSjkjU3mM2yhv_vFwg0Dtt6JcJaRk9qcnWIltOys62iVYAQqV0jiP8Dt-dnNj4s02i2kBjlhn-ZeqwLZjHckXUz_yNZ1bjMrHZ19WqSSI-U5fhh3ouZGaml9boW0hVdeGiM-wk7TNm4fGLK23OVIlpRE_u1sqY3VCEZGtnTIb0YJfNskoDJRi5wsMeYVchLKVbXNVQJftqGLtQDH34JOKYvbANLMDg_a5ayKU7DyEtEOR0TqpM8EdqU0qsgy7bWsSTIngYNNQqs4kbvqMZsJHG9f4xSkc5W6ce0qxpQCsWICajB2Bh0avmnu74KYNyI28vD89O_GP8MrTkSftHjLA9jplyt3CC_N7_6-Wx6FUf8HJ0ANxA
  priority: 102
  providerName: ProQuest
Title An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features
URI https://www.proquest.com/docview/2436332077
https://www.proquest.com/docview/2436393612
https://pubmed.ncbi.nlm.nih.gov/PMC7506989
https://doaj.org/article/f68202650e6f430d99c7844bfb6a1564
Volume 20
WOSCitedRecordID wos000571614800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH4ajAM7IH5sosAqM3HYJaKNEzs5tlPROFBVDKTuMEXxr4LUpVXTcuRv5z0nrRppEpddfLAtxX5-zvu-2PkewFU3dyZ0KsGdplUQ6W4S5LqbBgitQ-eMVFInPtmEHA6T8TgdbaX6ojthlTxwZbhrJzBGhYgjrHAR75g01TKJIuWUyEnohN6-HZmuyVRNtTgyr0pHiCOpvy4xzFFeDdmIPl6kv4Esm_citwLNzSEc1AiR9aqRHcEHWxzDpy3dwBP40ytYb7WceblV9mtq7ZwhapxY5nNc0u0fb3DWm05myP6f_jJ_NYBVnxCsYZQCbcr6GMIMG5QlbW9GaHCF7PszPN4MHn78DOo8CYFGMrcMYqdkgjTEWdIcpp9b8zw2kRGWDi0NcsCOdCFaKbQ8D7VQwrjYcGESJ53Qmn-B3WJW2FNgSLdiGyPLkQKJszWp0kYhikC7WyQmnRZ8X9sv07WIOOWymGZIJsjU2cbULfi26TqvlDP-1alPi7DpQGLXvgJdIKtdIHvPBVpwsV7CrN6BZRZGXHCOk8ZnXG6ace_QgUhe2Nmq7pNyBHktkI2lbwyo2VI8P3kVboRalHzz7H_M4Bz2Q-LxJLWbXsDucrGyX2FPvyyfy0UbduRY-jJpw8f-YDi6b3t3x_LudYB1o9u70e83f-oFLg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAGP2oVVAfvIvRqqMo-BKanUlmkgeRrba0tC6CFfZF0mQu28KarJus4p_yN_p9uWwbEN_64Gsy5HryzTkzk3MAXo0yZ7jLY_zSdO6HehT7mR4lPlJr7pxRudJxEzahJpN4Ok0-bcDv_l8YWlbZ18SmUJtS0xj5Ng-FFIIHSr1bfPcpNYpmV_sIjRYWh_bXT5Rs1duDD_h-X3O-t3v8ft_vUgV8jdKn9iOXqxhJu7Pk0Eu_gmZZZEIjLU3xGVRMgXIcT8StyLiWuTQuMkKa2CkntRZ43CtwFeu4IrGnpucCT6Dea92LhEiC7Qo7V0rzUIM-r4kGGPDZ4WrMC93b3u3_7cHcgVsdkWbjFvl3YcMW9-DmBXvF-_B1XLDxqi4bV1r2eW7tgiG5nlnWRIHSIqkGl2w8n-Ed1affWLOCgrUjLdYwSoqbsx3s6Q3brSqqgoxI82ppqwfw5VLu7yFsFmVhHwFDVRrZCMWgkkEorUlybXIkW4FJLOq3wIM3_QtPdee1TpEf8xQ1F2EjXWPDg5frpovWYORvjXYINesG5AnebCiXs7QrMamTyOY4Mm4rXSjwUhKt4jDMXS4zsgTyYKsHUNoVqio9R48HL9a7scTQvFFW2HLVtUkEcmEP1ACrgwsa7inOThuzcmSklFH6-N8nfw7X948_HqVHB5PDJ3CD06AG-Q4nW7BZL1f2KVzTP-qzavms-eIYnFw2kv8ACIpqBg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKUKw4I0IFBgQSGysODP2jL1AKKWNiApRJEAqi8rY80grBSfECYhf4-u41y9qCbHrgq1n5OeZO-fOXJ8D8HyYOsNdFuFI05kX6GHkpXoYe0ituXNGZUpHpdmEmk6j4-N4tgO_mn9hqKyyiYlloDZLTWvkAx4IKQT3lRq4uixidjB-vfrmkYMU7bQ2dhoVRI7szx-YvhWvJgf4rV9wPj78-OatVzsMeBrToI0XukxFSOCdJbVe-i00TUMTGGlpu89g9uQrx_Gi3IqUa5lJ40IjpImcclJrgee9BLtIyQPeg93Z5P3sc5vuCcz-Ki0jIWJ_UOBUS94eqjMDlkYBHXbbrc08N9mNb_zPr-kmXK8pNhtVY-IW7Nj8Nlw7J7x4B05GORttN8tSr5Z9WFi7Yki755aVJqFUPlUilo0Wc3yizelXVtZWsGoNxhpGHnILto8cwLDDoqD4yIhOb9e2uAufLuT57kEvX-b2PjDMV0MbYpqopB9Ia-JMmwxpmG9ii5md34eXzcdPdK3CTmYgiwSzMcJJ0uKkD8_arqtKeuRvnfYJQW0HUgsvDyzX86QOPomTyPM4cnErXSDwVmKtoiDIXCZTEgvqw14DpqQOYUXyB0l9eNo2Y_ChHaU0t8tt3ScWyJL7oDq47dxQtyU_Oy1lzJGrknvpg39f_AlcQQAn7ybTo4dwldNqBwkSx3vQ26y39hFc1t83Z8X6cT38GHy5aCj_BvLidFU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automatic+Sleep+Stage+Classification+Algorithm+Using+Improved+Model+Based+Essence+Features&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Huaming+Shen&rft.au=Feng+Ran&rft.au=Meihua+Xu&rft.au=Allon+Guez&rft.date=2020-08-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=17&rft.spage=4677&rft_id=info:doi/10.3390%2Fs20174677&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f68202650e6f430d99c7844bfb6a1564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon