Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE)
The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this paper, cathode catalyst layer with different polytetrafluoroethylene contents are prepared, and the effect of hydrophobic-hydrophilic balance o...
Gespeichert in:
| Veröffentlicht in: | Electrochimica acta Jg. 277; S. 110 - 115 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
01.07.2018
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0013-4686, 1873-3859 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this paper, cathode catalyst layer with different polytetrafluoroethylene contents are prepared, and the effect of hydrophobic-hydrophilic balance on the performance of the membrane electrode assembly is investigated intensively. It is found that wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer can significantly affect the performance of membrane electrode assembly, and it can be effectively tuned by varying the loading of polytetrafluoroethylene. With the addition of polytetrafluoroethylene, the hydrophobicity of cathode catalyst layer, reflected by the contact angel, can be changed from 135.6° of that without addition of polytetrafluoroethylene to 146.5° with 70 wt.% polytetrafluoroethylene addition, and the optimal addition amount is 50 wt.%. For our optimal membrane electrode assembly with optimal addition of polytetrafluoroethylene in cathode, its current density are recorded as 990 mA cm–2 at 0.7 V and 1400 mA cm–2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2. Furthermore, our polytetrafluoroethylene-incorporated membrane electrode assembly also exhibits excellent stability, and current density only drops from 1000 mA cm−2 to 900 mA cm−2 after a continuous operation of 60 h.
A series of MEAs with hydrophobic cathode catalyst layer was successfully prepared using a spraying method by adding PTFE into the cathode catalyst layer ink. Our optimal MEA, MEA-PT50, its current density were recorded as 990 mA cm-2 at 0.7 V and 1400 mA cm-2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2, which is much higher than that of the MEA without addition of PTFE (711 mW cm−2). Furthermore, our MEA-PT50 also exhibits excellent stability, and the current density only dropped from 1000 mA cm−2 to 90 0 mA cm−2 after a continuous operation of 60 h, for the MEA without addition of PTFE, it dropped from 1000 mA cm−2 to 770 mA cm−2 in the same duration and same conditions. [Display omitted]
•The performance of MEA can be improved by adding PTFE in cathode catalyst layer.•The current density of MEA with adding PTFE could be up to 990 mA cm-2 at 0.7 V.•The maximum power density of our MEA is 20% higher than that of non PTFE MEA.•The MEA exhibits excellent stability, with current dropping of less 10% in 60 h.•The hydrophobic/hydrophilic balance of the MEA can be adjusted by adding PTFE. |
|---|---|
| AbstractList | The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this paper, cathode catalyst layer with different polytetrafluoroethylene contents are prepared, and the effect of hydrophobic-hydrophilic balance on the performance of the membrane electrode assembly is investigated intensively. It is found that wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer can significantly affect the performance of membrane electrode assembly, and it can be effectively tuned by varying the loading of polytetrafluoroethylene. With the addition of polytetrafluoroethylene, the hydrophobicity of cathode catalyst layer, reflected by the contact angel, can be changed from 135.6° of that without addition of polytetrafluoroethylene to 146.5° with 70 wt.% polytetrafluoroethylene addition, and the optimal addition amount is 50 wt.%. For our optimal membrane electrode assembly with optimal addition of polytetrafluoroethylene in cathode, its current density are recorded as 990 mA cm–2 at 0.7 V and 1400 mA cm–2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2. Furthermore, our polytetrafluoroethylene-incorporated membrane electrode assembly also exhibits excellent stability, and current density only drops from 1000 mA cm−2 to 900 mA cm−2 after a continuous operation of 60 h. The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this paper, cathode catalyst layer with different polytetrafluoroethylene contents are prepared, and the effect of hydrophobic-hydrophilic balance on the performance of the membrane electrode assembly is investigated intensively. It is found that wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer can significantly affect the performance of membrane electrode assembly, and it can be effectively tuned by varying the loading of polytetrafluoroethylene. With the addition of polytetrafluoroethylene, the hydrophobicity of cathode catalyst layer, reflected by the contact angel, can be changed from 135.6° of that without addition of polytetrafluoroethylene to 146.5° with 70 wt.% polytetrafluoroethylene addition, and the optimal addition amount is 50 wt.%. For our optimal membrane electrode assembly with optimal addition of polytetrafluoroethylene in cathode, its current density are recorded as 990 mA cm–2 at 0.7 V and 1400 mA cm–2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2. Furthermore, our polytetrafluoroethylene-incorporated membrane electrode assembly also exhibits excellent stability, and current density only drops from 1000 mA cm−2 to 900 mA cm−2 after a continuous operation of 60 h. A series of MEAs with hydrophobic cathode catalyst layer was successfully prepared using a spraying method by adding PTFE into the cathode catalyst layer ink. Our optimal MEA, MEA-PT50, its current density were recorded as 990 mA cm-2 at 0.7 V and 1400 mA cm-2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2, which is much higher than that of the MEA without addition of PTFE (711 mW cm−2). Furthermore, our MEA-PT50 also exhibits excellent stability, and the current density only dropped from 1000 mA cm−2 to 90 0 mA cm−2 after a continuous operation of 60 h, for the MEA without addition of PTFE, it dropped from 1000 mA cm−2 to 770 mA cm−2 in the same duration and same conditions. [Display omitted] •The performance of MEA can be improved by adding PTFE in cathode catalyst layer.•The current density of MEA with adding PTFE could be up to 990 mA cm-2 at 0.7 V.•The maximum power density of our MEA is 20% higher than that of non PTFE MEA.•The MEA exhibits excellent stability, with current dropping of less 10% in 60 h.•The hydrophobic/hydrophilic balance of the MEA can be adjusted by adding PTFE. |
| Author | Chi, Bin Zeng, Jianghuang Deng, Yijie Song, Huiyu Hou, Sanying Liu, Guangzhi Liao, Shijun Ren, Jianwei |
| Author_xml | – sequence: 1 givenname: Bin surname: Chi fullname: Chi, Bin organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China – sequence: 2 givenname: Sanying surname: Hou fullname: Hou, Sanying organization: School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China – sequence: 3 givenname: Guangzhi surname: Liu fullname: Liu, Guangzhi organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China – sequence: 4 givenname: Yijie surname: Deng fullname: Deng, Yijie organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China – sequence: 5 givenname: Jianghuang surname: Zeng fullname: Zeng, Jianghuang organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China – sequence: 6 givenname: Huiyu surname: Song fullname: Song, Huiyu organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China – sequence: 7 givenname: Shijun surname: Liao fullname: Liao, Shijun email: chsjliao@scut.edu.cn organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China – sequence: 8 givenname: Jianwei surname: Ren fullname: Ren, Jianwei organization: Materials Science and Manufacturing (MSM), Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria, 0001, South Africa |
| BookMark | eNqNkcFu3CAQhq0qlbpJ-wxF6iU52IXFi_Ghh2i121ZK1Ry2ZwR4iFlhcDGO4ufKC5bVpj300kpIgzT_Nwz_f1lc-OChKN4TXBFM2MdjBQ50kvlUa0x4hetqTeirYkV4Q0vKN-1FscKY0LJmnL0pLqfpiDFuWINXxfNh9tY_oH7pYhj7oKwuX-7WWY2UdNJrQMEgLVMfOjhV6ZYpIScXiCgFZIcxhsfcAefQCNGEOPymcicFj-BJ99I_ABpgUFF6QGYGdyau73ff9tsbpBY02KfTNmNwS4IUpXFziAFSvzjIzPX9Yb-7eVu8NtJN8O6lXhU_9rvD9kt59_3z1-3tXanrmqWSQguaM-C1UUrqjirVKq2obFsKkpquydZsFKVsDRvDDW8IJXWrOe86poyiV8WH89z8h58zTEkcwxx9flKsMW85Y4zTrPp0VukYpimCEdommWzweX_rBMHilJM4ij85iVNOAtci55T55i9-jHaQcfkP8vZMQjbh0UIUk7aQfe9szHrRBfvPGb8APOa54Q |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2021_06_216 crossref_primary_10_1016_j_apenergy_2020_116359 crossref_primary_10_1016_j_ijhydene_2024_02_242 crossref_primary_10_1016_j_envres_2024_119404 crossref_primary_10_1002_cctc_202401942 crossref_primary_10_1246_bcsj_20190208 crossref_primary_10_1177_15280837251315070 crossref_primary_10_1002_adsu_202400742 crossref_primary_10_1016_j_ijhydene_2020_11_188 crossref_primary_10_1002_open_202000089 crossref_primary_10_1039_D4CY00252K crossref_primary_10_1016_j_mtsust_2023_100349 crossref_primary_10_1016_j_ijhydene_2024_01_187 crossref_primary_10_1016_j_jelechem_2022_117072 crossref_primary_10_1016_j_electacta_2019_01_064 crossref_primary_10_1002_aenm_202103559 crossref_primary_10_1016_j_ijhydene_2022_10_249 crossref_primary_10_1002_er_6227 crossref_primary_10_1039_D2SE01675C crossref_primary_10_1002_fuce_201900203 crossref_primary_10_1016_j_jpowsour_2025_237902 crossref_primary_10_1016_j_enconman_2024_118150 crossref_primary_10_3390_membranes13010012 crossref_primary_10_1002_ente_202000121 crossref_primary_10_1016_j_jclepro_2023_138231 crossref_primary_10_1016_j_jechem_2018_12_019 crossref_primary_10_1016_j_cej_2020_124479 crossref_primary_10_1002_advs_202303914 crossref_primary_10_1002_celc_202100116 crossref_primary_10_1016_j_surfin_2025_105773 crossref_primary_10_1016_j_apenergy_2022_118723 crossref_primary_10_1016_j_enconman_2024_118525 crossref_primary_10_1016_j_energy_2021_119909 crossref_primary_10_1016_j_jpowsour_2024_235462 crossref_primary_10_3390_nano11020472 crossref_primary_10_1016_j_enconman_2019_04_014 crossref_primary_10_1016_j_ijhydene_2022_12_063 crossref_primary_10_3389_fenrg_2022_1058913 crossref_primary_10_1134_S1023193520060105 crossref_primary_10_1016_j_cjche_2019_07_010 crossref_primary_10_1016_j_jpowsour_2022_232369 crossref_primary_10_1016_j_molliq_2021_115593 crossref_primary_10_1016_j_jpowsour_2019_227284 crossref_primary_10_1016_j_jpowsour_2021_230723 crossref_primary_10_3389_fenrg_2019_00094 crossref_primary_10_1016_S1872_2067_23_64564_4 crossref_primary_10_1002_celc_202000351 crossref_primary_10_1016_j_apcatb_2024_124894 |
| Cites_doi | 10.1016/j.jpowsour.2017.05.058 10.1016/j.jpowsour.2003.08.043 10.1039/C4SC03774J 10.1016/j.cattod.2015.08.048 10.1016/j.electacta.2016.06.040 10.1016/j.ijhydene.2015.01.091 10.1016/j.electacta.2007.06.063 10.1016/j.jpowsour.2012.07.090 10.1016/j.jpowsour.2017.03.012 10.1016/j.ijhydene.2017.06.202 10.1016/j.ijhydene.2017.04.036 10.1016/j.electacta.2009.12.048 10.1016/j.electacta.2017.02.101 10.1021/acsami.7b04750 10.1016/S0378-7753(03)00797-3 10.1016/j.jpowsour.2015.05.028 10.1016/j.elecom.2009.02.022 10.1016/j.jpowsour.2013.01.009 10.1016/j.ijhydene.2016.11.037 10.1016/j.jpowsour.2013.01.150 10.1016/j.ijhydene.2009.12.111 10.1002/er.3746 10.1016/j.jpowsour.2017.05.117 10.1021/jp4099232 10.1016/j.jpowsour.2014.05.014 10.1016/j.jpowsour.2015.11.048 10.1016/S0360-3199(01)00035-0 10.1002/fuce.200800114 10.1016/j.electacta.2016.01.059 10.1016/j.electacta.2006.01.044 10.1016/j.electacta.2016.10.175 10.1016/j.jpowsour.2015.02.115 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jul 1, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jul 1, 2018 |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1016/j.electacta.2018.04.213 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-3859 |
| EndPage | 115 |
| ExternalDocumentID | 10_1016_j_electacta_2018_04_213 S0013468618309988 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 ~HD 7SR 7U5 8BQ 8FD AFXIZ AGCQF AGRNS JG9 L7M SSH |
| ID | FETCH-LOGICAL-c446t-3e9ec86e84fbbacd3bb9bcb3a993ea3fd78595b3362e5f8f8713149c88dd6bfb3 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433044200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-4686 |
| IngestDate | Mon Jul 14 08:20:59 EDT 2025 Tue Nov 18 20:43:04 EST 2025 Sat Nov 29 07:28:21 EST 2025 Fri Feb 23 02:50:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | High performance Polytetrafluoroethylene Proton exchange membrane fuel cell Water management Membrane electrode assembly Cathode catalyst layer |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c446t-3e9ec86e84fbbacd3bb9bcb3a993ea3fd78595b3362e5f8f8713149c88dd6bfb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2089866683 |
| PQPubID | 2045485 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2089866683 crossref_citationtrail_10_1016_j_electacta_2018_04_213 crossref_primary_10_1016_j_electacta_2018_04_213 elsevier_sciencedirect_doi_10_1016_j_electacta_2018_04_213 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Electrochimica acta |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Fathi, Raoof, Mansouri (bib13) 2017; 349 Ye, Zhan (bib6) 2013; 231 Tran, Morozan, Archambault, Heidkamp, Chenevier, Dau, Fontecave, Martinent, Jousselme, Artero (bib1) 2015; 6 Sohn, Yim, Park, Kim, Cha, Kim (bib8) 2017; 42 Khajeh-Hosseini-Dalasm, Kermani, Moghaddam, Stockie (bib20) 2010; 35 Wang, Wang, Advani, Prasad (bib27) 2015; 292 Jung, Kim, Lee, Yi (bib15) 2016; 211 Kitahara, Nakajima, Inamoto, Morishita (bib25) 2013; 234 Xiong, Liao, Dang, Tian, Hou, Liu, Peng, Fu (bib22) 2015; 40 Dijoux, Steiner, Benne, Péra, Pérez (bib4) 2017; 359 Bharti, Cheruvally (bib3) 2017; 360 Tüber, Pócza, Hebling (bib17) 2003; 124 You, Liu (bib16) 2001; 26 Passos, Paganin, Ticianelli (bib19) 2006; 51 Öztürk, Fıçıcılar, Eroğlu, Bayrakçeken Yurtcan (bib26) 2017; 42 Kitahara, Nakajima, Okamura (bib29) 2015; 283 Song, Wang, Liu, Navessin, Eikerling, Holdcroft (bib18) 2004; 126 Liu, Sung (bib5) 2012; 220 Fathi, Mansouri, Raoof (bib14) 2017; 3 Ebenezer, Deshpande, Haridoss (bib2) 2016; 304 Leimin, Shijun, Lijun, Zhenxing (bib28) 2009; 9 Wang, Leung (bib12) 2016; 222 Navaei Alvar, Zhou, Eichhorn (bib10) 2017; 41 Liang, Su, Pollet, Linkov, Pasupathi (bib7) 2014; 266 Darab, Barnett, Lindbergh, Thomassen, Sunde (bib9) 2017; 232 Liu, Sambasivarao, Horan, Yang, Maupin, Herring (bib31) 2013; 118 Avcioglu, Ficicilar, Eroglu (bib21) 2017; 42 Li, Han, Chan, Nguyen (bib23) 2010; 55 Choun, Nauryzbayev, Shin, Lee (bib24) 2016; 262 Guo, Zeng, Wang, Qu, Shao, Yuan, Yi (bib33) 2016; 191 Li, Chan, Nguyen (bib32) 2009; 11 Jeon, Won, Oh, Lee, Woo (bib30) 2007; 53 Jung, Popov (bib11) 2017; 9 Tüber (10.1016/j.electacta.2018.04.213_bib17) 2003; 124 Navaei Alvar (10.1016/j.electacta.2018.04.213_bib10) 2017; 41 Darab (10.1016/j.electacta.2018.04.213_bib9) 2017; 232 You (10.1016/j.electacta.2018.04.213_bib16) 2001; 26 Wang (10.1016/j.electacta.2018.04.213_bib27) 2015; 292 Kitahara (10.1016/j.electacta.2018.04.213_bib25) 2013; 234 Li (10.1016/j.electacta.2018.04.213_bib32) 2009; 11 Kitahara (10.1016/j.electacta.2018.04.213_bib29) 2015; 283 Khajeh-Hosseini-Dalasm (10.1016/j.electacta.2018.04.213_bib20) 2010; 35 Dijoux (10.1016/j.electacta.2018.04.213_bib4) 2017; 359 Avcioglu (10.1016/j.electacta.2018.04.213_bib21) 2017; 42 Öztürk (10.1016/j.electacta.2018.04.213_bib26) 2017; 42 Ebenezer (10.1016/j.electacta.2018.04.213_bib2) 2016; 304 Fathi (10.1016/j.electacta.2018.04.213_bib13) 2017; 349 Fathi (10.1016/j.electacta.2018.04.213_bib14) 2017; 3 Li (10.1016/j.electacta.2018.04.213_bib23) 2010; 55 Jung (10.1016/j.electacta.2018.04.213_bib11) 2017; 9 Ye (10.1016/j.electacta.2018.04.213_bib6) 2013; 231 Jung (10.1016/j.electacta.2018.04.213_bib15) 2016; 211 Sohn (10.1016/j.electacta.2018.04.213_bib8) 2017; 42 Choun (10.1016/j.electacta.2018.04.213_bib24) 2016; 262 Xiong (10.1016/j.electacta.2018.04.213_bib22) 2015; 40 Wang (10.1016/j.electacta.2018.04.213_bib12) 2016; 222 Jeon (10.1016/j.electacta.2018.04.213_bib30) 2007; 53 Passos (10.1016/j.electacta.2018.04.213_bib19) 2006; 51 Guo (10.1016/j.electacta.2018.04.213_bib33) 2016; 191 Song (10.1016/j.electacta.2018.04.213_bib18) 2004; 126 Leimin (10.1016/j.electacta.2018.04.213_bib28) 2009; 9 Bharti (10.1016/j.electacta.2018.04.213_bib3) 2017; 360 Liang (10.1016/j.electacta.2018.04.213_bib7) 2014; 266 Liu (10.1016/j.electacta.2018.04.213_bib5) 2012; 220 Liu (10.1016/j.electacta.2018.04.213_bib31) 2013; 118 Tran (10.1016/j.electacta.2018.04.213_bib1) 2015; 6 |
| References_xml | – volume: 283 start-page: 115 year: 2015 end-page: 124 ident: bib29 article-title: Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions publication-title: J. Power Sources – volume: 55 start-page: 2706 year: 2010 end-page: 2711 ident: bib23 article-title: Effects of hydrophobicity of the cathode catalyst layer on the performance of a PEM fuel cell publication-title: Electrochim. Acta – volume: 126 start-page: 104 year: 2004 end-page: 111 ident: bib18 article-title: Numerical optimization study of the catalyst layer of PEM fuel cell cathode publication-title: J. Power Sources – volume: 220 start-page: 348 year: 2012 end-page: 353 ident: bib5 article-title: A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies publication-title: J. Power Sources – volume: 9 start-page: 23679 year: 2017 end-page: 23686 ident: bib11 article-title: New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs publication-title: ACS Appl. Mater. Interfaces – volume: 35 start-page: 2417 year: 2010 end-page: 2427 ident: bib20 article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 2050 year: 2015 end-page: 2053 ident: bib1 article-title: A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts publication-title: Chem. Sci. – volume: 359 start-page: 119 year: 2017 end-page: 133 ident: bib4 article-title: A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems publication-title: J. Power Sources – volume: 51 start-page: 5239 year: 2006 end-page: 5245 ident: bib19 article-title: Studies of the performance of PEM fuel cell cathodes with the catalyst layer directly applied on Nafion membranes publication-title: Electrochim. Acta – volume: 9 start-page: 101 year: 2009 end-page: 105 ident: bib28 article-title: Investigation of a novel catalyst coated membrane method to prepare low-platinum-loading membrane electrode assemblies for PEMFCs publication-title: Fuel Cell. – volume: 304 start-page: 282 year: 2016 end-page: 292 ident: bib2 article-title: Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H 2 –O 2 proton exchange membrane fuel cells publication-title: J. Power Sources – volume: 53 start-page: 447 year: 2007 end-page: 452 ident: bib30 article-title: Performance degradation study of a direct methanol fuel cell by electrochemical impedance spectroscopy publication-title: Electrochim. Acta – volume: 118 start-page: 854 year: 2013 end-page: 863 ident: bib31 article-title: A combined theoretical and experimental investigation of the transport properties of water in a perfluorosulfonic acid proton exchange membrane doped with the heteropoly acids, H3PW12O40 or H4SiW12O40 publication-title: J. Phys. Chem. C – volume: 191 start-page: 116 year: 2016 end-page: 123 ident: bib33 article-title: Improvement of PEMFC performance and endurance by employing continuous silica film incorporated water transport plate publication-title: Electrochim. Acta – volume: 40 start-page: 3961 year: 2015 end-page: 3967 ident: bib22 article-title: Enhanced water management in the cathode of an air-breathing PEMFC using a dual catalyst layer and optimizing the gas diffusion and microporous layers publication-title: Int. J. Hydrogen Energy – volume: 292 start-page: 39 year: 2015 end-page: 48 ident: bib27 article-title: Double-layer gas diffusion media for improved water management in polymer electrolyte membrane fuel cells publication-title: J. Power Sources – volume: 211 start-page: 142 year: 2016 end-page: 147 ident: bib15 article-title: Three-dimensional reconstruction of coarse-dense dual catalyst layer for proton exchange membrane fuel cells publication-title: Electrochim. Acta – volume: 42 start-page: 496 year: 2017 end-page: 506 ident: bib21 article-title: Influence of FEP nanoparticles in catalyst layer on water management and performance of PEM fuel cell with high Pt loading publication-title: Int. J. Hydrogen Energy – volume: 234 start-page: 129 year: 2013 end-page: 138 ident: bib25 article-title: Novel hydrophilic and hydrophobic double microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells under both low and high humidity publication-title: J. Power Sources – volume: 3 start-page: 233 year: 2017 end-page: 245 ident: bib14 article-title: The impact of wettability on effective properties of cathode catalyst layer in a proton exchange membrane fuel cell publication-title: Iran J Hydrog Fuel Cell. – volume: 124 start-page: 403 year: 2003 end-page: 414 ident: bib17 article-title: Visualization of water buildup in the cathode of a transparent PEM fuel cell publication-title: J. Power Sources – volume: 360 start-page: 196 year: 2017 end-page: 205 ident: bib3 article-title: Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance publication-title: J. Power Sources – volume: 41 start-page: 1626 year: 2017 end-page: 1641 ident: bib10 article-title: Composite-supported Pt catalyst and electrosprayed cathode catalyst layer for polymer electrolyte membrane fuel cell publication-title: Int. J. Energy Res. – volume: 42 start-page: 21226 year: 2017 end-page: 21249 ident: bib26 article-title: Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: effect of polymer and carbon amounts publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 13226 year: 2017 end-page: 13233 ident: bib8 article-title: PEMFC modeling based on characterization of effective diffusivity in simulated cathode catalyst layer publication-title: Int. J. Hydrogen Energy – volume: 349 start-page: 57 year: 2017 end-page: 67 ident: bib13 article-title: Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes publication-title: J. Power Sources – volume: 262 start-page: 155 year: 2016 end-page: 160 ident: bib24 article-title: Polydimethylsiloxane treated cathode catalyst layer to prolong hydrogen fuel cell lifetime publication-title: Catal. Today – volume: 231 start-page: 285 year: 2013 end-page: 292 ident: bib6 article-title: A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells publication-title: J. Power Sources – volume: 26 start-page: 991 year: 2001 end-page: 999 ident: bib16 article-title: A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model publication-title: Int. J. Hydrogen Energy – volume: 222 start-page: 312 year: 2016 end-page: 322 ident: bib12 article-title: Toward the scaling up of microfluidic fuel cells, investigation and optimization of the aggravated cathode flooding problem publication-title: Electrochim. Acta – volume: 232 start-page: 505 year: 2017 end-page: 516 ident: bib9 article-title: The influence of catalyst layer thickness on the performance and degradation of PEM fuel cell cathodes with constant catalyst loading publication-title: Electrochim. Acta – volume: 266 start-page: 107 year: 2014 end-page: 113 ident: bib7 article-title: Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method publication-title: J. Power Sources – volume: 11 start-page: 897 year: 2009 end-page: 900 ident: bib32 article-title: Anti-flooding cathode catalyst layer for high performance PEM fuel cell publication-title: Electrochem. Commun. – volume: 359 start-page: 119 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib4 article-title: A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.058 – volume: 126 start-page: 104 year: 2004 ident: 10.1016/j.electacta.2018.04.213_bib18 article-title: Numerical optimization study of the catalyst layer of PEM fuel cell cathode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.08.043 – volume: 6 start-page: 2050 year: 2015 ident: 10.1016/j.electacta.2018.04.213_bib1 article-title: A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts publication-title: Chem. Sci. doi: 10.1039/C4SC03774J – volume: 262 start-page: 155 year: 2016 ident: 10.1016/j.electacta.2018.04.213_bib24 article-title: Polydimethylsiloxane treated cathode catalyst layer to prolong hydrogen fuel cell lifetime publication-title: Catal. Today doi: 10.1016/j.cattod.2015.08.048 – volume: 211 start-page: 142 year: 2016 ident: 10.1016/j.electacta.2018.04.213_bib15 article-title: Three-dimensional reconstruction of coarse-dense dual catalyst layer for proton exchange membrane fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.040 – volume: 40 start-page: 3961 year: 2015 ident: 10.1016/j.electacta.2018.04.213_bib22 article-title: Enhanced water management in the cathode of an air-breathing PEMFC using a dual catalyst layer and optimizing the gas diffusion and microporous layers publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.01.091 – volume: 53 start-page: 447 year: 2007 ident: 10.1016/j.electacta.2018.04.213_bib30 article-title: Performance degradation study of a direct methanol fuel cell by electrochemical impedance spectroscopy publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.06.063 – volume: 220 start-page: 348 year: 2012 ident: 10.1016/j.electacta.2018.04.213_bib5 article-title: A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.07.090 – volume: 349 start-page: 57 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib13 article-title: Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.012 – volume: 42 start-page: 21226 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib26 article-title: Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: effect of polymer and carbon amounts publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.202 – volume: 42 start-page: 13226 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib8 article-title: PEMFC modeling based on characterization of effective diffusivity in simulated cathode catalyst layer publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.036 – volume: 55 start-page: 2706 year: 2010 ident: 10.1016/j.electacta.2018.04.213_bib23 article-title: Effects of hydrophobicity of the cathode catalyst layer on the performance of a PEM fuel cell publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.12.048 – volume: 232 start-page: 505 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib9 article-title: The influence of catalyst layer thickness on the performance and degradation of PEM fuel cell cathodes with constant catalyst loading publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.02.101 – volume: 9 start-page: 23679 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib11 article-title: New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04750 – volume: 124 start-page: 403 year: 2003 ident: 10.1016/j.electacta.2018.04.213_bib17 article-title: Visualization of water buildup in the cathode of a transparent PEM fuel cell publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00797-3 – volume: 292 start-page: 39 year: 2015 ident: 10.1016/j.electacta.2018.04.213_bib27 article-title: Double-layer gas diffusion media for improved water management in polymer electrolyte membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.05.028 – volume: 11 start-page: 897 year: 2009 ident: 10.1016/j.electacta.2018.04.213_bib32 article-title: Anti-flooding cathode catalyst layer for high performance PEM fuel cell publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.02.022 – volume: 231 start-page: 285 year: 2013 ident: 10.1016/j.electacta.2018.04.213_bib6 article-title: A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.009 – volume: 42 start-page: 496 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib21 article-title: Influence of FEP nanoparticles in catalyst layer on water management and performance of PEM fuel cell with high Pt loading publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.037 – volume: 234 start-page: 129 year: 2013 ident: 10.1016/j.electacta.2018.04.213_bib25 article-title: Novel hydrophilic and hydrophobic double microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells under both low and high humidity publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.150 – volume: 35 start-page: 2417 year: 2010 ident: 10.1016/j.electacta.2018.04.213_bib20 article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.12.111 – volume: 41 start-page: 1626 issue: 11 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib10 article-title: Composite-supported Pt catalyst and electrosprayed cathode catalyst layer for polymer electrolyte membrane fuel cell publication-title: Int. J. Energy Res. doi: 10.1002/er.3746 – volume: 360 start-page: 196 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib3 article-title: Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.117 – volume: 118 start-page: 854 year: 2013 ident: 10.1016/j.electacta.2018.04.213_bib31 article-title: A combined theoretical and experimental investigation of the transport properties of water in a perfluorosulfonic acid proton exchange membrane doped with the heteropoly acids, H3PW12O40 or H4SiW12O40 publication-title: J. Phys. Chem. C doi: 10.1021/jp4099232 – volume: 266 start-page: 107 year: 2014 ident: 10.1016/j.electacta.2018.04.213_bib7 article-title: Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.05.014 – volume: 304 start-page: 282 year: 2016 ident: 10.1016/j.electacta.2018.04.213_bib2 article-title: Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H 2 –O 2 proton exchange membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.048 – volume: 3 start-page: 233 year: 2017 ident: 10.1016/j.electacta.2018.04.213_bib14 article-title: The impact of wettability on effective properties of cathode catalyst layer in a proton exchange membrane fuel cell publication-title: Iran J Hydrog Fuel Cell. – volume: 26 start-page: 991 year: 2001 ident: 10.1016/j.electacta.2018.04.213_bib16 article-title: A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(01)00035-0 – volume: 9 start-page: 101 year: 2009 ident: 10.1016/j.electacta.2018.04.213_bib28 article-title: Investigation of a novel catalyst coated membrane method to prepare low-platinum-loading membrane electrode assemblies for PEMFCs publication-title: Fuel Cell. doi: 10.1002/fuce.200800114 – volume: 191 start-page: 116 year: 2016 ident: 10.1016/j.electacta.2018.04.213_bib33 article-title: Improvement of PEMFC performance and endurance by employing continuous silica film incorporated water transport plate publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.059 – volume: 51 start-page: 5239 year: 2006 ident: 10.1016/j.electacta.2018.04.213_bib19 article-title: Studies of the performance of PEM fuel cell cathodes with the catalyst layer directly applied on Nafion membranes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.01.044 – volume: 222 start-page: 312 year: 2016 ident: 10.1016/j.electacta.2018.04.213_bib12 article-title: Toward the scaling up of microfluidic fuel cells, investigation and optimization of the aggravated cathode flooding problem publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.175 – volume: 283 start-page: 115 year: 2015 ident: 10.1016/j.electacta.2018.04.213_bib29 article-title: Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.115 |
| SSID | ssj0007670 |
| Score | 2.477891 |
| Snippet | The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110 |
| SubjectTerms | Assembly Catalysis Catalysts Cathode catalyst layer Cathodes Current density Electrodes Fuel cells High performance Hydrophobic surfaces Hydrophobicity Maximum power density Membrane electrode assembly Membrane separation Polytetrafluoroethylene Proton exchange membrane fuel cell Proton exchange membrane fuel cells Protons Water conservation Water management Wettability |
| Title | Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE) |
| URI | https://dx.doi.org/10.1016/j.electacta.2018.04.213 https://www.proquest.com/docview/2089866683 |
| Volume | 277 |
| WOSCitedRecordID | wos000433044200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtNAEF2FFgk4IChUFAraA0JUkZFjO941txIlKqiEHFIUTpbXXhNHiR1Sp0r4Lb6IP2HGu-umQCgcuFiWNxsnmrfjt-OZN4Q8d3yW2G2ZWMxnEjYo0rEEF4HlpzJB-RiPpVHVbIL1-3w0CgaNxndTC3MxZXnOV6tg_l9NDdfA2Fg6-w_mrr8ULsA5GB2OYHY4_p3hl1WoY7xOFsV8XIgstvR5hoLWAnMZ4ypSgJKtRYKJXyUqk5TNaQQEHNloVoUaYAQje_ON2gLMj14UKMUhV6pmuDmTM9hxA1dNl3KqZgBrHXTf9zoYcgB6O8tWVc17MV2XslxE6XRZLAoJEIFHXsVxB8Ne18QkzGsC1Z8nHmcoaICaH5c5RVUj4uabrAb2SbFU4e18bR7FmGSUVVdhFeSfv46zmrNL5d8-ZZNMbkY9WrzOkNWhuLoc5-Omd2-5lucbaW3l0DlzLZdr1XHt8R3dOUb57JbKq_3lWaLCGpNXVT8i_JeYCMhRGNdR5bNX1bv7H8Le2elpOOyOhi_mXyxsbIYJALrLyw2y67B2AI539_htd_SupguwSGzTZgN__JUkxN_eexuF-olMVAxpeI_c1VsbeqwgeZ80ZL5HbnVMR8E9cmdD_PIB-aaASrcAlWqg0iKlGqjUAJVWQKVlQTVQKcKObgAVZymgUgNUaoBKEahqxssKpkdUrKkCKd0CUvgkQPToITnrdYedE0u3ELFiz_NLy5WBjLkvuZcKEcWJK0QgYuFGQMtl5KYJQ30_4QKNk-2Up5y13JYXxJwniS9S4e6TnbzI5SNC8X2_HbPIdiS2bZDCi1jacpjwU-bEIjogvrFKGGt9fWzzMg1NIuUkrM0ZojlD2wvBnAfErifOlcTM9VNeG7OHmikrBhwCeK-ffGiAEmq_dQ7jPOC-73P38Z-Hn5Dbl-vxkOyUi6V8Sm7GF2V2vnimwf0DSfDx8w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+hydrophobic-hydrophilic+balance+of+cathode+catalyst+layer+to+improve+cell+performance+of+proton+exchange+membrane+fuel+cell+%28PEMFC%29+by+mixing+polytetrafluoroethylene+%28PTFE%29&rft.jtitle=Electrochimica+acta&rft.au=Chi%2C+Bin&rft.au=Hou%2C+Sanying&rft.au=Liu%2C+Guangzhi&rft.au=Deng%2C+Yijie&rft.date=2018-07-01&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=277&rft.spage=110&rft_id=info:doi/10.1016%2Fj.electacta.2018.04.213&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |