Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE)

The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this paper, cathode catalyst layer with different polytetrafluoroethylene contents are prepared, and the effect of hydrophobic-hydrophilic balance o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta Jg. 277; S. 110 - 115
Hauptverfasser: Chi, Bin, Hou, Sanying, Liu, Guangzhi, Deng, Yijie, Zeng, Jianghuang, Song, Huiyu, Liao, Shijun, Ren, Jianwei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.07.2018
Elsevier BV
Schlagworte:
ISSN:0013-4686, 1873-3859
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this paper, cathode catalyst layer with different polytetrafluoroethylene contents are prepared, and the effect of hydrophobic-hydrophilic balance on the performance of the membrane electrode assembly is investigated intensively. It is found that wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer can significantly affect the performance of membrane electrode assembly, and it can be effectively tuned by varying the loading of polytetrafluoroethylene. With the addition of polytetrafluoroethylene, the hydrophobicity of cathode catalyst layer, reflected by the contact angel, can be changed from 135.6° of that without addition of polytetrafluoroethylene to 146.5° with 70 wt.% polytetrafluoroethylene addition, and the optimal addition amount is 50 wt.%. For our optimal membrane electrode assembly with optimal addition of polytetrafluoroethylene in cathode, its current density are recorded as 990 mA cm–2 at 0.7 V and 1400 mA cm–2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2. Furthermore, our polytetrafluoroethylene-incorporated membrane electrode assembly also exhibits excellent stability, and current density only drops from 1000 mA cm−2 to 900 mA cm−2 after a continuous operation of 60 h. A series of MEAs with hydrophobic cathode catalyst layer was successfully prepared using a spraying method by adding PTFE into the cathode catalyst layer ink. Our optimal MEA, MEA-PT50, its current density were recorded as 990 mA cm-2 at 0.7 V and 1400 mA cm-2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2, which is much higher than that of the MEA without addition of PTFE (711 mW cm−2). Furthermore, our MEA-PT50 also exhibits excellent stability, and the current density only dropped from 1000 mA cm−2 to 90 0 mA cm−2 after a continuous operation of 60 h, for the MEA without addition of PTFE, it dropped from 1000 mA cm−2 to 770 mA cm−2 in the same duration and same conditions. [Display omitted] •The performance of MEA can be improved by adding PTFE in cathode catalyst layer.•The current density of MEA with adding PTFE could be up to 990 mA cm-2 at 0.7 V.•The maximum power density of our MEA is 20% higher than that of non PTFE MEA.•The MEA exhibits excellent stability, with current dropping of less 10% in 60 h.•The hydrophobic/hydrophilic balance of the MEA can be adjusted by adding PTFE.
AbstractList The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this paper, cathode catalyst layer with different polytetrafluoroethylene contents are prepared, and the effect of hydrophobic-hydrophilic balance on the performance of the membrane electrode assembly is investigated intensively. It is found that wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer can significantly affect the performance of membrane electrode assembly, and it can be effectively tuned by varying the loading of polytetrafluoroethylene. With the addition of polytetrafluoroethylene, the hydrophobicity of cathode catalyst layer, reflected by the contact angel, can be changed from 135.6° of that without addition of polytetrafluoroethylene to 146.5° with 70 wt.% polytetrafluoroethylene addition, and the optimal addition amount is 50 wt.%. For our optimal membrane electrode assembly with optimal addition of polytetrafluoroethylene in cathode, its current density are recorded as 990 mA cm–2 at 0.7 V and 1400 mA cm–2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2. Furthermore, our polytetrafluoroethylene-incorporated membrane electrode assembly also exhibits excellent stability, and current density only drops from 1000 mA cm−2 to 900 mA cm−2 after a continuous operation of 60 h.
The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this paper, cathode catalyst layer with different polytetrafluoroethylene contents are prepared, and the effect of hydrophobic-hydrophilic balance on the performance of the membrane electrode assembly is investigated intensively. It is found that wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer can significantly affect the performance of membrane electrode assembly, and it can be effectively tuned by varying the loading of polytetrafluoroethylene. With the addition of polytetrafluoroethylene, the hydrophobicity of cathode catalyst layer, reflected by the contact angel, can be changed from 135.6° of that without addition of polytetrafluoroethylene to 146.5° with 70 wt.% polytetrafluoroethylene addition, and the optimal addition amount is 50 wt.%. For our optimal membrane electrode assembly with optimal addition of polytetrafluoroethylene in cathode, its current density are recorded as 990 mA cm–2 at 0.7 V and 1400 mA cm–2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2. Furthermore, our polytetrafluoroethylene-incorporated membrane electrode assembly also exhibits excellent stability, and current density only drops from 1000 mA cm−2 to 900 mA cm−2 after a continuous operation of 60 h. A series of MEAs with hydrophobic cathode catalyst layer was successfully prepared using a spraying method by adding PTFE into the cathode catalyst layer ink. Our optimal MEA, MEA-PT50, its current density were recorded as 990 mA cm-2 at 0.7 V and 1400 mA cm-2 at 0.6 V, respectively; its maximum power density is up to 856 mW cm−2, which is much higher than that of the MEA without addition of PTFE (711 mW cm−2). Furthermore, our MEA-PT50 also exhibits excellent stability, and the current density only dropped from 1000 mA cm−2 to 90 0 mA cm−2 after a continuous operation of 60 h, for the MEA without addition of PTFE, it dropped from 1000 mA cm−2 to 770 mA cm−2 in the same duration and same conditions. [Display omitted] •The performance of MEA can be improved by adding PTFE in cathode catalyst layer.•The current density of MEA with adding PTFE could be up to 990 mA cm-2 at 0.7 V.•The maximum power density of our MEA is 20% higher than that of non PTFE MEA.•The MEA exhibits excellent stability, with current dropping of less 10% in 60 h.•The hydrophobic/hydrophilic balance of the MEA can be adjusted by adding PTFE.
Author Chi, Bin
Zeng, Jianghuang
Deng, Yijie
Song, Huiyu
Hou, Sanying
Liu, Guangzhi
Liao, Shijun
Ren, Jianwei
Author_xml – sequence: 1
  givenname: Bin
  surname: Chi
  fullname: Chi, Bin
  organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 2
  givenname: Sanying
  surname: Hou
  fullname: Hou, Sanying
  organization: School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
– sequence: 3
  givenname: Guangzhi
  surname: Liu
  fullname: Liu, Guangzhi
  organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 4
  givenname: Yijie
  surname: Deng
  fullname: Deng, Yijie
  organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 5
  givenname: Jianghuang
  surname: Zeng
  fullname: Zeng, Jianghuang
  organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 6
  givenname: Huiyu
  surname: Song
  fullname: Song, Huiyu
  organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 7
  givenname: Shijun
  surname: Liao
  fullname: Liao, Shijun
  email: chsjliao@scut.edu.cn
  organization: The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
– sequence: 8
  givenname: Jianwei
  surname: Ren
  fullname: Ren, Jianwei
  organization: Materials Science and Manufacturing (MSM), Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria, 0001, South Africa
BookMark eNqNkcFu3CAQhq0qlbpJ-wxF6iU52IXFi_Ghh2i121ZK1Ry2ZwR4iFlhcDGO4ufKC5bVpj300kpIgzT_Nwz_f1lc-OChKN4TXBFM2MdjBQ50kvlUa0x4hetqTeirYkV4Q0vKN-1FscKY0LJmnL0pLqfpiDFuWINXxfNh9tY_oH7pYhj7oKwuX-7WWY2UdNJrQMEgLVMfOjhV6ZYpIScXiCgFZIcxhsfcAefQCNGEOPymcicFj-BJ99I_ABpgUFF6QGYGdyau73ff9tsbpBY02KfTNmNwS4IUpXFziAFSvzjIzPX9Yb-7eVu8NtJN8O6lXhU_9rvD9kt59_3z1-3tXanrmqWSQguaM-C1UUrqjirVKq2obFsKkpquydZsFKVsDRvDDW8IJXWrOe86poyiV8WH89z8h58zTEkcwxx9flKsMW85Y4zTrPp0VukYpimCEdommWzweX_rBMHilJM4ij85iVNOAtci55T55i9-jHaQcfkP8vZMQjbh0UIUk7aQfe9szHrRBfvPGb8APOa54Q
CitedBy_id crossref_primary_10_1016_j_ijhydene_2021_06_216
crossref_primary_10_1016_j_apenergy_2020_116359
crossref_primary_10_1016_j_ijhydene_2024_02_242
crossref_primary_10_1016_j_envres_2024_119404
crossref_primary_10_1002_cctc_202401942
crossref_primary_10_1246_bcsj_20190208
crossref_primary_10_1177_15280837251315070
crossref_primary_10_1002_adsu_202400742
crossref_primary_10_1016_j_ijhydene_2020_11_188
crossref_primary_10_1002_open_202000089
crossref_primary_10_1039_D4CY00252K
crossref_primary_10_1016_j_mtsust_2023_100349
crossref_primary_10_1016_j_ijhydene_2024_01_187
crossref_primary_10_1016_j_jelechem_2022_117072
crossref_primary_10_1016_j_electacta_2019_01_064
crossref_primary_10_1002_aenm_202103559
crossref_primary_10_1016_j_ijhydene_2022_10_249
crossref_primary_10_1002_er_6227
crossref_primary_10_1039_D2SE01675C
crossref_primary_10_1002_fuce_201900203
crossref_primary_10_1016_j_jpowsour_2025_237902
crossref_primary_10_1016_j_enconman_2024_118150
crossref_primary_10_3390_membranes13010012
crossref_primary_10_1002_ente_202000121
crossref_primary_10_1016_j_jclepro_2023_138231
crossref_primary_10_1016_j_jechem_2018_12_019
crossref_primary_10_1016_j_cej_2020_124479
crossref_primary_10_1002_advs_202303914
crossref_primary_10_1002_celc_202100116
crossref_primary_10_1016_j_surfin_2025_105773
crossref_primary_10_1016_j_apenergy_2022_118723
crossref_primary_10_1016_j_enconman_2024_118525
crossref_primary_10_1016_j_energy_2021_119909
crossref_primary_10_1016_j_jpowsour_2024_235462
crossref_primary_10_3390_nano11020472
crossref_primary_10_1016_j_enconman_2019_04_014
crossref_primary_10_1016_j_ijhydene_2022_12_063
crossref_primary_10_3389_fenrg_2022_1058913
crossref_primary_10_1134_S1023193520060105
crossref_primary_10_1016_j_cjche_2019_07_010
crossref_primary_10_1016_j_jpowsour_2022_232369
crossref_primary_10_1016_j_molliq_2021_115593
crossref_primary_10_1016_j_jpowsour_2019_227284
crossref_primary_10_1016_j_jpowsour_2021_230723
crossref_primary_10_3389_fenrg_2019_00094
crossref_primary_10_1016_S1872_2067_23_64564_4
crossref_primary_10_1002_celc_202000351
crossref_primary_10_1016_j_apcatb_2024_124894
Cites_doi 10.1016/j.jpowsour.2017.05.058
10.1016/j.jpowsour.2003.08.043
10.1039/C4SC03774J
10.1016/j.cattod.2015.08.048
10.1016/j.electacta.2016.06.040
10.1016/j.ijhydene.2015.01.091
10.1016/j.electacta.2007.06.063
10.1016/j.jpowsour.2012.07.090
10.1016/j.jpowsour.2017.03.012
10.1016/j.ijhydene.2017.06.202
10.1016/j.ijhydene.2017.04.036
10.1016/j.electacta.2009.12.048
10.1016/j.electacta.2017.02.101
10.1021/acsami.7b04750
10.1016/S0378-7753(03)00797-3
10.1016/j.jpowsour.2015.05.028
10.1016/j.elecom.2009.02.022
10.1016/j.jpowsour.2013.01.009
10.1016/j.ijhydene.2016.11.037
10.1016/j.jpowsour.2013.01.150
10.1016/j.ijhydene.2009.12.111
10.1002/er.3746
10.1016/j.jpowsour.2017.05.117
10.1021/jp4099232
10.1016/j.jpowsour.2014.05.014
10.1016/j.jpowsour.2015.11.048
10.1016/S0360-3199(01)00035-0
10.1002/fuce.200800114
10.1016/j.electacta.2016.01.059
10.1016/j.electacta.2006.01.044
10.1016/j.electacta.2016.10.175
10.1016/j.jpowsour.2015.02.115
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jul 1, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 1, 2018
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2018.04.213
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 115
ExternalDocumentID 10_1016_j_electacta_2018_04_213
S0013468618309988
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
T9H
VH1
WUQ
XOL
ZY4
~HD
7SR
7U5
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
L7M
SSH
ID FETCH-LOGICAL-c446t-3e9ec86e84fbbacd3bb9bcb3a993ea3fd78595b3362e5f8f8713149c88dd6bfb3
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433044200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-4686
IngestDate Mon Jul 14 08:20:59 EDT 2025
Tue Nov 18 20:43:04 EST 2025
Sat Nov 29 07:28:21 EST 2025
Fri Feb 23 02:50:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High performance
Polytetrafluoroethylene
Proton exchange membrane fuel cell
Water management
Membrane electrode assembly
Cathode catalyst layer
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-3e9ec86e84fbbacd3bb9bcb3a993ea3fd78595b3362e5f8f8713149c88dd6bfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2089866683
PQPubID 2045485
PageCount 6
ParticipantIDs proquest_journals_2089866683
crossref_citationtrail_10_1016_j_electacta_2018_04_213
crossref_primary_10_1016_j_electacta_2018_04_213
elsevier_sciencedirect_doi_10_1016_j_electacta_2018_04_213
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Fathi, Raoof, Mansouri (bib13) 2017; 349
Ye, Zhan (bib6) 2013; 231
Tran, Morozan, Archambault, Heidkamp, Chenevier, Dau, Fontecave, Martinent, Jousselme, Artero (bib1) 2015; 6
Sohn, Yim, Park, Kim, Cha, Kim (bib8) 2017; 42
Khajeh-Hosseini-Dalasm, Kermani, Moghaddam, Stockie (bib20) 2010; 35
Wang, Wang, Advani, Prasad (bib27) 2015; 292
Jung, Kim, Lee, Yi (bib15) 2016; 211
Kitahara, Nakajima, Inamoto, Morishita (bib25) 2013; 234
Xiong, Liao, Dang, Tian, Hou, Liu, Peng, Fu (bib22) 2015; 40
Dijoux, Steiner, Benne, Péra, Pérez (bib4) 2017; 359
Bharti, Cheruvally (bib3) 2017; 360
Tüber, Pócza, Hebling (bib17) 2003; 124
You, Liu (bib16) 2001; 26
Passos, Paganin, Ticianelli (bib19) 2006; 51
Öztürk, Fıçıcılar, Eroğlu, Bayrakçeken Yurtcan (bib26) 2017; 42
Kitahara, Nakajima, Okamura (bib29) 2015; 283
Song, Wang, Liu, Navessin, Eikerling, Holdcroft (bib18) 2004; 126
Liu, Sung (bib5) 2012; 220
Fathi, Mansouri, Raoof (bib14) 2017; 3
Ebenezer, Deshpande, Haridoss (bib2) 2016; 304
Leimin, Shijun, Lijun, Zhenxing (bib28) 2009; 9
Wang, Leung (bib12) 2016; 222
Navaei Alvar, Zhou, Eichhorn (bib10) 2017; 41
Liang, Su, Pollet, Linkov, Pasupathi (bib7) 2014; 266
Darab, Barnett, Lindbergh, Thomassen, Sunde (bib9) 2017; 232
Liu, Sambasivarao, Horan, Yang, Maupin, Herring (bib31) 2013; 118
Avcioglu, Ficicilar, Eroglu (bib21) 2017; 42
Li, Han, Chan, Nguyen (bib23) 2010; 55
Choun, Nauryzbayev, Shin, Lee (bib24) 2016; 262
Guo, Zeng, Wang, Qu, Shao, Yuan, Yi (bib33) 2016; 191
Li, Chan, Nguyen (bib32) 2009; 11
Jeon, Won, Oh, Lee, Woo (bib30) 2007; 53
Jung, Popov (bib11) 2017; 9
Tüber (10.1016/j.electacta.2018.04.213_bib17) 2003; 124
Navaei Alvar (10.1016/j.electacta.2018.04.213_bib10) 2017; 41
Darab (10.1016/j.electacta.2018.04.213_bib9) 2017; 232
You (10.1016/j.electacta.2018.04.213_bib16) 2001; 26
Wang (10.1016/j.electacta.2018.04.213_bib27) 2015; 292
Kitahara (10.1016/j.electacta.2018.04.213_bib25) 2013; 234
Li (10.1016/j.electacta.2018.04.213_bib32) 2009; 11
Kitahara (10.1016/j.electacta.2018.04.213_bib29) 2015; 283
Khajeh-Hosseini-Dalasm (10.1016/j.electacta.2018.04.213_bib20) 2010; 35
Dijoux (10.1016/j.electacta.2018.04.213_bib4) 2017; 359
Avcioglu (10.1016/j.electacta.2018.04.213_bib21) 2017; 42
Öztürk (10.1016/j.electacta.2018.04.213_bib26) 2017; 42
Ebenezer (10.1016/j.electacta.2018.04.213_bib2) 2016; 304
Fathi (10.1016/j.electacta.2018.04.213_bib13) 2017; 349
Fathi (10.1016/j.electacta.2018.04.213_bib14) 2017; 3
Li (10.1016/j.electacta.2018.04.213_bib23) 2010; 55
Jung (10.1016/j.electacta.2018.04.213_bib11) 2017; 9
Ye (10.1016/j.electacta.2018.04.213_bib6) 2013; 231
Jung (10.1016/j.electacta.2018.04.213_bib15) 2016; 211
Sohn (10.1016/j.electacta.2018.04.213_bib8) 2017; 42
Choun (10.1016/j.electacta.2018.04.213_bib24) 2016; 262
Xiong (10.1016/j.electacta.2018.04.213_bib22) 2015; 40
Wang (10.1016/j.electacta.2018.04.213_bib12) 2016; 222
Jeon (10.1016/j.electacta.2018.04.213_bib30) 2007; 53
Passos (10.1016/j.electacta.2018.04.213_bib19) 2006; 51
Guo (10.1016/j.electacta.2018.04.213_bib33) 2016; 191
Song (10.1016/j.electacta.2018.04.213_bib18) 2004; 126
Leimin (10.1016/j.electacta.2018.04.213_bib28) 2009; 9
Bharti (10.1016/j.electacta.2018.04.213_bib3) 2017; 360
Liang (10.1016/j.electacta.2018.04.213_bib7) 2014; 266
Liu (10.1016/j.electacta.2018.04.213_bib5) 2012; 220
Liu (10.1016/j.electacta.2018.04.213_bib31) 2013; 118
Tran (10.1016/j.electacta.2018.04.213_bib1) 2015; 6
References_xml – volume: 283
  start-page: 115
  year: 2015
  end-page: 124
  ident: bib29
  article-title: Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions
  publication-title: J. Power Sources
– volume: 55
  start-page: 2706
  year: 2010
  end-page: 2711
  ident: bib23
  article-title: Effects of hydrophobicity of the cathode catalyst layer on the performance of a PEM fuel cell
  publication-title: Electrochim. Acta
– volume: 126
  start-page: 104
  year: 2004
  end-page: 111
  ident: bib18
  article-title: Numerical optimization study of the catalyst layer of PEM fuel cell cathode
  publication-title: J. Power Sources
– volume: 220
  start-page: 348
  year: 2012
  end-page: 353
  ident: bib5
  article-title: A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies
  publication-title: J. Power Sources
– volume: 9
  start-page: 23679
  year: 2017
  end-page: 23686
  ident: bib11
  article-title: New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  start-page: 2417
  year: 2010
  end-page: 2427
  ident: bib20
  article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 2050
  year: 2015
  end-page: 2053
  ident: bib1
  article-title: A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts
  publication-title: Chem. Sci.
– volume: 359
  start-page: 119
  year: 2017
  end-page: 133
  ident: bib4
  article-title: A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems
  publication-title: J. Power Sources
– volume: 51
  start-page: 5239
  year: 2006
  end-page: 5245
  ident: bib19
  article-title: Studies of the performance of PEM fuel cell cathodes with the catalyst layer directly applied on Nafion membranes
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 101
  year: 2009
  end-page: 105
  ident: bib28
  article-title: Investigation of a novel catalyst coated membrane method to prepare low-platinum-loading membrane electrode assemblies for PEMFCs
  publication-title: Fuel Cell.
– volume: 304
  start-page: 282
  year: 2016
  end-page: 292
  ident: bib2
  article-title: Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H 2 –O 2 proton exchange membrane fuel cells
  publication-title: J. Power Sources
– volume: 53
  start-page: 447
  year: 2007
  end-page: 452
  ident: bib30
  article-title: Performance degradation study of a direct methanol fuel cell by electrochemical impedance spectroscopy
  publication-title: Electrochim. Acta
– volume: 118
  start-page: 854
  year: 2013
  end-page: 863
  ident: bib31
  article-title: A combined theoretical and experimental investigation of the transport properties of water in a perfluorosulfonic acid proton exchange membrane doped with the heteropoly acids, H3PW12O40 or H4SiW12O40
  publication-title: J. Phys. Chem. C
– volume: 191
  start-page: 116
  year: 2016
  end-page: 123
  ident: bib33
  article-title: Improvement of PEMFC performance and endurance by employing continuous silica film incorporated water transport plate
  publication-title: Electrochim. Acta
– volume: 40
  start-page: 3961
  year: 2015
  end-page: 3967
  ident: bib22
  article-title: Enhanced water management in the cathode of an air-breathing PEMFC using a dual catalyst layer and optimizing the gas diffusion and microporous layers
  publication-title: Int. J. Hydrogen Energy
– volume: 292
  start-page: 39
  year: 2015
  end-page: 48
  ident: bib27
  article-title: Double-layer gas diffusion media for improved water management in polymer electrolyte membrane fuel cells
  publication-title: J. Power Sources
– volume: 211
  start-page: 142
  year: 2016
  end-page: 147
  ident: bib15
  article-title: Three-dimensional reconstruction of coarse-dense dual catalyst layer for proton exchange membrane fuel cells
  publication-title: Electrochim. Acta
– volume: 42
  start-page: 496
  year: 2017
  end-page: 506
  ident: bib21
  article-title: Influence of FEP nanoparticles in catalyst layer on water management and performance of PEM fuel cell with high Pt loading
  publication-title: Int. J. Hydrogen Energy
– volume: 234
  start-page: 129
  year: 2013
  end-page: 138
  ident: bib25
  article-title: Novel hydrophilic and hydrophobic double microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells under both low and high humidity
  publication-title: J. Power Sources
– volume: 3
  start-page: 233
  year: 2017
  end-page: 245
  ident: bib14
  article-title: The impact of wettability on effective properties of cathode catalyst layer in a proton exchange membrane fuel cell
  publication-title: Iran J Hydrog Fuel Cell.
– volume: 124
  start-page: 403
  year: 2003
  end-page: 414
  ident: bib17
  article-title: Visualization of water buildup in the cathode of a transparent PEM fuel cell
  publication-title: J. Power Sources
– volume: 360
  start-page: 196
  year: 2017
  end-page: 205
  ident: bib3
  article-title: Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance
  publication-title: J. Power Sources
– volume: 41
  start-page: 1626
  year: 2017
  end-page: 1641
  ident: bib10
  article-title: Composite-supported Pt catalyst and electrosprayed cathode catalyst layer for polymer electrolyte membrane fuel cell
  publication-title: Int. J. Energy Res.
– volume: 42
  start-page: 21226
  year: 2017
  end-page: 21249
  ident: bib26
  article-title: Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: effect of polymer and carbon amounts
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 13226
  year: 2017
  end-page: 13233
  ident: bib8
  article-title: PEMFC modeling based on characterization of effective diffusivity in simulated cathode catalyst layer
  publication-title: Int. J. Hydrogen Energy
– volume: 349
  start-page: 57
  year: 2017
  end-page: 67
  ident: bib13
  article-title: Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes
  publication-title: J. Power Sources
– volume: 262
  start-page: 155
  year: 2016
  end-page: 160
  ident: bib24
  article-title: Polydimethylsiloxane treated cathode catalyst layer to prolong hydrogen fuel cell lifetime
  publication-title: Catal. Today
– volume: 231
  start-page: 285
  year: 2013
  end-page: 292
  ident: bib6
  article-title: A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells
  publication-title: J. Power Sources
– volume: 26
  start-page: 991
  year: 2001
  end-page: 999
  ident: bib16
  article-title: A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model
  publication-title: Int. J. Hydrogen Energy
– volume: 222
  start-page: 312
  year: 2016
  end-page: 322
  ident: bib12
  article-title: Toward the scaling up of microfluidic fuel cells, investigation and optimization of the aggravated cathode flooding problem
  publication-title: Electrochim. Acta
– volume: 232
  start-page: 505
  year: 2017
  end-page: 516
  ident: bib9
  article-title: The influence of catalyst layer thickness on the performance and degradation of PEM fuel cell cathodes with constant catalyst loading
  publication-title: Electrochim. Acta
– volume: 266
  start-page: 107
  year: 2014
  end-page: 113
  ident: bib7
  article-title: Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method
  publication-title: J. Power Sources
– volume: 11
  start-page: 897
  year: 2009
  end-page: 900
  ident: bib32
  article-title: Anti-flooding cathode catalyst layer for high performance PEM fuel cell
  publication-title: Electrochem. Commun.
– volume: 359
  start-page: 119
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib4
  article-title: A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.058
– volume: 126
  start-page: 104
  year: 2004
  ident: 10.1016/j.electacta.2018.04.213_bib18
  article-title: Numerical optimization study of the catalyst layer of PEM fuel cell cathode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.08.043
– volume: 6
  start-page: 2050
  year: 2015
  ident: 10.1016/j.electacta.2018.04.213_bib1
  article-title: A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC03774J
– volume: 262
  start-page: 155
  year: 2016
  ident: 10.1016/j.electacta.2018.04.213_bib24
  article-title: Polydimethylsiloxane treated cathode catalyst layer to prolong hydrogen fuel cell lifetime
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.08.048
– volume: 211
  start-page: 142
  year: 2016
  ident: 10.1016/j.electacta.2018.04.213_bib15
  article-title: Three-dimensional reconstruction of coarse-dense dual catalyst layer for proton exchange membrane fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.040
– volume: 40
  start-page: 3961
  year: 2015
  ident: 10.1016/j.electacta.2018.04.213_bib22
  article-title: Enhanced water management in the cathode of an air-breathing PEMFC using a dual catalyst layer and optimizing the gas diffusion and microporous layers
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.01.091
– volume: 53
  start-page: 447
  year: 2007
  ident: 10.1016/j.electacta.2018.04.213_bib30
  article-title: Performance degradation study of a direct methanol fuel cell by electrochemical impedance spectroscopy
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.06.063
– volume: 220
  start-page: 348
  year: 2012
  ident: 10.1016/j.electacta.2018.04.213_bib5
  article-title: A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.090
– volume: 349
  start-page: 57
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib13
  article-title: Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.012
– volume: 42
  start-page: 21226
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib26
  article-title: Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: effect of polymer and carbon amounts
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.202
– volume: 42
  start-page: 13226
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib8
  article-title: PEMFC modeling based on characterization of effective diffusivity in simulated cathode catalyst layer
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.036
– volume: 55
  start-page: 2706
  year: 2010
  ident: 10.1016/j.electacta.2018.04.213_bib23
  article-title: Effects of hydrophobicity of the cathode catalyst layer on the performance of a PEM fuel cell
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.12.048
– volume: 232
  start-page: 505
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib9
  article-title: The influence of catalyst layer thickness on the performance and degradation of PEM fuel cell cathodes with constant catalyst loading
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.02.101
– volume: 9
  start-page: 23679
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib11
  article-title: New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04750
– volume: 124
  start-page: 403
  year: 2003
  ident: 10.1016/j.electacta.2018.04.213_bib17
  article-title: Visualization of water buildup in the cathode of a transparent PEM fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00797-3
– volume: 292
  start-page: 39
  year: 2015
  ident: 10.1016/j.electacta.2018.04.213_bib27
  article-title: Double-layer gas diffusion media for improved water management in polymer electrolyte membrane fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.05.028
– volume: 11
  start-page: 897
  year: 2009
  ident: 10.1016/j.electacta.2018.04.213_bib32
  article-title: Anti-flooding cathode catalyst layer for high performance PEM fuel cell
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.02.022
– volume: 231
  start-page: 285
  year: 2013
  ident: 10.1016/j.electacta.2018.04.213_bib6
  article-title: A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.009
– volume: 42
  start-page: 496
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib21
  article-title: Influence of FEP nanoparticles in catalyst layer on water management and performance of PEM fuel cell with high Pt loading
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.037
– volume: 234
  start-page: 129
  year: 2013
  ident: 10.1016/j.electacta.2018.04.213_bib25
  article-title: Novel hydrophilic and hydrophobic double microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells under both low and high humidity
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.150
– volume: 35
  start-page: 2417
  year: 2010
  ident: 10.1016/j.electacta.2018.04.213_bib20
  article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.12.111
– volume: 41
  start-page: 1626
  issue: 11
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib10
  article-title: Composite-supported Pt catalyst and electrosprayed cathode catalyst layer for polymer electrolyte membrane fuel cell
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3746
– volume: 360
  start-page: 196
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib3
  article-title: Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.117
– volume: 118
  start-page: 854
  year: 2013
  ident: 10.1016/j.electacta.2018.04.213_bib31
  article-title: A combined theoretical and experimental investigation of the transport properties of water in a perfluorosulfonic acid proton exchange membrane doped with the heteropoly acids, H3PW12O40 or H4SiW12O40
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4099232
– volume: 266
  start-page: 107
  year: 2014
  ident: 10.1016/j.electacta.2018.04.213_bib7
  article-title: Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.014
– volume: 304
  start-page: 282
  year: 2016
  ident: 10.1016/j.electacta.2018.04.213_bib2
  article-title: Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H 2 –O 2 proton exchange membrane fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.048
– volume: 3
  start-page: 233
  year: 2017
  ident: 10.1016/j.electacta.2018.04.213_bib14
  article-title: The impact of wettability on effective properties of cathode catalyst layer in a proton exchange membrane fuel cell
  publication-title: Iran J Hydrog Fuel Cell.
– volume: 26
  start-page: 991
  year: 2001
  ident: 10.1016/j.electacta.2018.04.213_bib16
  article-title: A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(01)00035-0
– volume: 9
  start-page: 101
  year: 2009
  ident: 10.1016/j.electacta.2018.04.213_bib28
  article-title: Investigation of a novel catalyst coated membrane method to prepare low-platinum-loading membrane electrode assemblies for PEMFCs
  publication-title: Fuel Cell.
  doi: 10.1002/fuce.200800114
– volume: 191
  start-page: 116
  year: 2016
  ident: 10.1016/j.electacta.2018.04.213_bib33
  article-title: Improvement of PEMFC performance and endurance by employing continuous silica film incorporated water transport plate
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.059
– volume: 51
  start-page: 5239
  year: 2006
  ident: 10.1016/j.electacta.2018.04.213_bib19
  article-title: Studies of the performance of PEM fuel cell cathodes with the catalyst layer directly applied on Nafion membranes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.01.044
– volume: 222
  start-page: 312
  year: 2016
  ident: 10.1016/j.electacta.2018.04.213_bib12
  article-title: Toward the scaling up of microfluidic fuel cells, investigation and optimization of the aggravated cathode flooding problem
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.175
– volume: 283
  start-page: 115
  year: 2015
  ident: 10.1016/j.electacta.2018.04.213_bib29
  article-title: Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.115
SSID ssj0007670
Score 2.477891
Snippet The wettability, or hydrophobic-hydrophilic balance, of cathode catalyst layer influences the performance of the proton exchange membrane fuel cell. In this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110
SubjectTerms Assembly
Catalysis
Catalysts
Cathode catalyst layer
Cathodes
Current density
Electrodes
Fuel cells
High performance
Hydrophobic surfaces
Hydrophobicity
Maximum power density
Membrane electrode assembly
Membrane separation
Polytetrafluoroethylene
Proton exchange membrane fuel cell
Proton exchange membrane fuel cells
Protons
Water conservation
Water management
Wettability
Title Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE)
URI https://dx.doi.org/10.1016/j.electacta.2018.04.213
https://www.proquest.com/docview/2089866683
Volume 277
WOSCitedRecordID wos000433044200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtNAEF2FFgk4IChUFAraA0JUkZFjO941txIlKqiEHFIUTpbXXhNHiR1Sp0r4Lb6IP2HGu-umQCgcuFiWNxsnmrfjt-OZN4Q8d3yW2G2ZWMxnEjYo0rEEF4HlpzJB-RiPpVHVbIL1-3w0CgaNxndTC3MxZXnOV6tg_l9NDdfA2Fg6-w_mrr8ULsA5GB2OYHY4_p3hl1WoY7xOFsV8XIgstvR5hoLWAnMZ4ypSgJKtRYKJXyUqk5TNaQQEHNloVoUaYAQje_ON2gLMj14UKMUhV6pmuDmTM9hxA1dNl3KqZgBrHXTf9zoYcgB6O8tWVc17MV2XslxE6XRZLAoJEIFHXsVxB8Ne18QkzGsC1Z8nHmcoaICaH5c5RVUj4uabrAb2SbFU4e18bR7FmGSUVVdhFeSfv46zmrNL5d8-ZZNMbkY9WrzOkNWhuLoc5-Omd2-5lucbaW3l0DlzLZdr1XHt8R3dOUb57JbKq_3lWaLCGpNXVT8i_JeYCMhRGNdR5bNX1bv7H8Le2elpOOyOhi_mXyxsbIYJALrLyw2y67B2AI539_htd_SupguwSGzTZgN__JUkxN_eexuF-olMVAxpeI_c1VsbeqwgeZ80ZL5HbnVMR8E9cmdD_PIB-aaASrcAlWqg0iKlGqjUAJVWQKVlQTVQKcKObgAVZymgUgNUaoBKEahqxssKpkdUrKkCKd0CUvgkQPToITnrdYedE0u3ELFiz_NLy5WBjLkvuZcKEcWJK0QgYuFGQMtl5KYJQ30_4QKNk-2Up5y13JYXxJwniS9S4e6TnbzI5SNC8X2_HbPIdiS2bZDCi1jacpjwU-bEIjogvrFKGGt9fWzzMg1NIuUkrM0ZojlD2wvBnAfErifOlcTM9VNeG7OHmikrBhwCeK-ffGiAEmq_dQ7jPOC-73P38Z-Hn5Dbl-vxkOyUi6V8Sm7GF2V2vnimwf0DSfDx8w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+hydrophobic-hydrophilic+balance+of+cathode+catalyst+layer+to+improve+cell+performance+of+proton+exchange+membrane+fuel+cell+%28PEMFC%29+by+mixing+polytetrafluoroethylene+%28PTFE%29&rft.jtitle=Electrochimica+acta&rft.au=Chi%2C+Bin&rft.au=Hou%2C+Sanying&rft.au=Liu%2C+Guangzhi&rft.au=Deng%2C+Yijie&rft.date=2018-07-01&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=277&rft.spage=110&rft_id=info:doi/10.1016%2Fj.electacta.2018.04.213&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon