An improved moth flame optimization algorithm based on rough sets for tomato diseases detection

•Feature selection algorithm using the integration of moths-flame optimization and rough set was introduced.•Automatic tomato disease detection approach based on moths-flame optimization and rough set was proposed.•Dataset of tomato leaves infected with disease was collected.•The results demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture Jg. 136; S. 86 - 96
Hauptverfasser: Hassanien, Aboul Ella, Gaber, Tarek, Mokhtar, Usama, Hefny, Hesham
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 15.04.2017
Elsevier BV
Schlagworte:
ISSN:0168-1699, 1872-7107
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Feature selection algorithm using the integration of moths-flame optimization and rough set was introduced.•Automatic tomato disease detection approach based on moths-flame optimization and rough set was proposed.•Dataset of tomato leaves infected with disease was collected.•The results demonstrate a good accuracy when MFO and rough set were used together.•The results were evaluated against Accuracy, Precision, Recall and F-Score. Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time.
AbstractList Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time.
•Feature selection algorithm using the integration of moths-flame optimization and rough set was introduced.•Automatic tomato disease detection approach based on moths-flame optimization and rough set was proposed.•Dataset of tomato leaves infected with disease was collected.•The results demonstrate a good accuracy when MFO and rough set were used together.•The results were evaluated against Accuracy, Precision, Recall and F-Score. Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time.
Author Gaber, Tarek
Hefny, Hesham
Hassanien, Aboul Ella
Mokhtar, Usama
Author_xml – sequence: 1
  givenname: Aboul Ella
  surname: Hassanien
  fullname: Hassanien, Aboul Ella
  email: aboitcairo@gmail.com
  organization: Faculty of Computers and Information, Cairo University, Egypt
– sequence: 2
  givenname: Tarek
  surname: Gaber
  fullname: Gaber, Tarek
  email: tmgaber@gmail.com
  organization: Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt
– sequence: 3
  givenname: Usama
  surname: Mokhtar
  fullname: Mokhtar, Usama
  email: usamamokhtar@yahoo.com
  organization: Scientific Research Group in Egypt (SRGE), Egypt1http://www.egyptscience.net.1
– sequence: 4
  givenname: Hesham
  surname: Hefny
  fullname: Hefny, Hesham
  email: hehefny@hotmail.com
  organization: Inst. of Stat. Studies and Res., Cairo University, Egypt
BookMark eNqFkUtrWzEQhUVIIM7jH2QhyCab62p05Sspi0AIfUGgm3YtdPWwZa6uHEkOpL--ct1VFg0MDDN8Z2DOuUCnc5odQjdAlkBg-LRdmhR3er2kBPiS0FbDCVqA4LTjQPgpWjRMdDBIeY4uStmSNkvBF0g9zjjEXU6vzuKY6gb7SUeH066GGH7rGtKM9bROOdRNxKMujWurnPbrDS6uFuxTxjVFXRO2obhGFGxddeagvUJnXk_FXf_rl-jXl88_n751zz--fn96fO4MY0Ptemsd0Uz2TK-sGblknBm6Go1lMPYeDEihwYPnho7Axei9AGIE9T0D4GN_ie6Od9srL3tXqoqhGDdNenZpXxSFvtlBhBQfo4QQJhhfyYbevkO3aZ_n9ogC2VMYBsJXjWJHyuRUSnZe7XKIOr8pIOoQkNqqY0DqEJAitNXQZPfvZCbUv4bXrMP0kfjhKHbN1NfgsiomuNk4G3JzXtkU_n_gD8oCsP0
CitedBy_id crossref_primary_10_1007_s11571_023_10011_x
crossref_primary_10_1051_epjconf_202532801004
crossref_primary_10_1177_16878132221085125
crossref_primary_10_3390_pr9122276
crossref_primary_10_1007_s13042_018_0838_1
crossref_primary_10_1155_2020_8812019
crossref_primary_10_1002_jsfa_10987
crossref_primary_10_1007_s12652_021_03406_3
crossref_primary_10_1007_s11042_021_10889_x
crossref_primary_10_3390_math10030464
crossref_primary_10_1016_j_procs_2020_03_285
crossref_primary_10_1155_2022_3287561
crossref_primary_10_1007_s13369_021_05478_x
crossref_primary_10_1007_s11042_020_10036_y
crossref_primary_10_1007_s00521_023_09295_1
crossref_primary_10_1007_s12530_019_09289_2
crossref_primary_10_1016_j_matcom_2021_04_006
crossref_primary_10_3390_a14110314
crossref_primary_10_46604_ijeti_2021_7346
crossref_primary_10_1016_j_asoc_2019_105517
crossref_primary_10_1016_j_ins_2019_04_022
crossref_primary_10_1016_j_asoc_2022_109898
crossref_primary_10_1007_s41348_021_00500_8
crossref_primary_10_1007_s00500_018_03753_y
crossref_primary_10_1186_s43067_024_00146_0
crossref_primary_10_3390_electronics11050831
crossref_primary_10_1016_j_eswa_2019_03_043
crossref_primary_10_1007_s11042_019_7278_0
crossref_primary_10_3390_app122312179
crossref_primary_10_1007_s00521_019_04570_6
crossref_primary_10_3390_sym13122388
crossref_primary_10_1088_1742_6596_1767_1_012010
crossref_primary_10_12944_CARJ_11_1_28
crossref_primary_10_1016_j_compbiomed_2023_107538
crossref_primary_10_1080_13682199_2020_1865652
crossref_primary_10_46604_ijeti_2021_8244
crossref_primary_10_1016_j_asoc_2021_107164
crossref_primary_10_1007_s00521_018_3821_6
crossref_primary_10_1079_ab_2025_0050
crossref_primary_10_3103_S1060992X23040100
crossref_primary_10_1007_s00521_021_06099_z
crossref_primary_10_1016_j_biosystemseng_2020_03_021
crossref_primary_10_1080_0952813X_2020_1737246
crossref_primary_10_1016_j_compag_2020_105792
crossref_primary_10_1016_j_matcom_2019_06_017
crossref_primary_10_1016_j_matpr_2020_03_600
crossref_primary_10_1016_j_eswa_2020_113544
crossref_primary_10_1109_TFUZZ_2018_2825308
crossref_primary_10_1007_s00521_025_11012_z
crossref_primary_10_3390_pr10122475
crossref_primary_10_1109_ACCESS_2020_3005318
crossref_primary_10_1016_j_compag_2018_07_032
crossref_primary_10_1109_ACCESS_2019_2939835
crossref_primary_10_1016_j_knosys_2020_106728
crossref_primary_10_1016_j_suscom_2022_100696
crossref_primary_10_1002_jnm_2675
crossref_primary_10_1007_s11831_019_09324_0
crossref_primary_10_1007_s11831_019_09364_6
crossref_primary_10_1016_j_compbiomed_2022_105563
crossref_primary_10_1007_s11831_023_10037_8
crossref_primary_10_1186_s40537_025_01191_w
crossref_primary_10_1016_j_asoc_2021_107772
crossref_primary_10_1049_iet_ipr_2018_6210
crossref_primary_10_1109_ACCESS_2022_3187203
crossref_primary_10_1080_10106049_2022_2112300
crossref_primary_10_3389_fpls_2023_1175515
crossref_primary_10_1016_j_compag_2017_12_010
crossref_primary_10_1016_j_compag_2022_107484
crossref_primary_10_1007_s00521_019_04153_5
crossref_primary_10_1109_ACCESS_2019_2901900
crossref_primary_10_1007_s12065_020_00482_w
crossref_primary_10_1109_ACCESS_2020_3029728
crossref_primary_10_1007_s11042_023_15809_9
crossref_primary_10_1016_j_matpr_2020_08_450
crossref_primary_10_2478_acss_2023_0009
crossref_primary_10_1002_int_22658
crossref_primary_10_1007_s11831_022_09801_z
crossref_primary_10_3390_e23121637
crossref_primary_10_1371_journal_pone_0317224
crossref_primary_10_1007_s10661_022_10656_x
crossref_primary_10_3233_JIFS_169960
Cites_doi 10.1007/978-94-011-3534-4_7
10.1007/BF01001956
10.4018/978-1-4666-6030-4.ch001
10.1016/j.patrec.2005.11.005
10.1016/j.patrec.2006.09.003
10.1016/j.compag.2015.12.022
10.1109/CEC.2008.4631182
10.1016/j.biosystemseng.2008.09.030
10.1016/j.knosys.2008.03.051
10.1016/j.compag.2008.11.007
10.3758/BF03211185
10.2991/icacsei.2013.77
10.1016/j.proeng.2012.07.321
10.1016/S1088-467X(97)00008-5
10.1214/09-SS054
10.1016/j.eswa.2013.09.023
10.1016/S0933-3657(98)00051-7
10.1109/TIP.2002.804262
10.1186/s13637-016-0042-0
10.1109/SOCPAR.2015.7492777
10.1109/TNN.2010.2047114
10.1080/088395101753210773
10.1142/S021800140300271X
10.1016/j.eswa.2009.06.031
10.1016/j.knosys.2015.07.006
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Apr 15, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 15, 2017
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2017.02.026
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
EndPage 96
ExternalDocumentID 10_1016_j_compag_2017_02_026
S0168169916308225
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
AXJTR
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UNMZH
Y6R
~G-
~KM
29F
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACIEU
ACLOT
ACMHX
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLV
HLZ
HVGLF
HZ~
R2-
SBC
SEW
UHS
WUQ
~HD
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c446t-3dde0a4934a5dcb79474c25bcd41b3f1c198a1f1f7c2b178bff810c82f34117b3
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399851200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Thu Oct 02 11:34:24 EDT 2025
Sun Sep 28 11:48:33 EDT 2025
Sun Oct 05 00:16:36 EDT 2025
Sat Nov 29 03:16:20 EST 2025
Tue Nov 18 22:51:08 EST 2025
Fri Feb 23 02:29:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Rough set theory
Moth flame optimization
Particle Swarm Optimization (PSO) and Genetic Algorithms (GA)
Tomato’s disease
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-3dde0a4934a5dcb79474c25bcd41b3f1c198a1f1f7c2b178bff810c82f34117b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://usir.salford.ac.uk/id/eprint/52072/1/MFORSFS-Tomoato-DiseaseDetection-Accepted_Version-2017.pdf
PQID 1932166075
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2131870898
proquest_miscellaneous_2000484759
proquest_journals_1932166075
crossref_primary_10_1016_j_compag_2017_02_026
crossref_citationtrail_10_1016_j_compag_2017_02_026
elsevier_sciencedirect_doi_10_1016_j_compag_2017_02_026
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Dy, Brodley (b0065) 2004; 5
Pawlak (b0150) 1982; 11
Asuncion, A., Newman, D., 2007. UCI machine learning repository.
Salama, Hassanien, Fahmy, Kim (b0170) 2011
Zivkovic, van der Heijden (b0215) 2006; 27
Mokhtar, Ali, Hassenian, Hefny (b0130) 2015
Camargo, Smith (b0050) 2009; 102
Ali, A., Couceiro, M., Anter, A., 2014. Evaluating an evolutionary particle swarm optimization for fast fuzzy c-means clustering on liver ct images. Comput. Vision Image Process Intell. Syst. Multimedia.
Guo, Wang, Zhao, Xie, Lin, Zhou (b0100) 2010
Oliveira, Sabourin, Bortolozzi, Suen (b0145) 2003; 17
Basiri, M., Ghasem-Aghaee, N., Aghdam, M., 2008. Using ant colony optimization-based selected features for predicting post-synaptic activity in proteins. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics.
Liu, L., Zhang, W., Shu, S., Jin, X., 2013. Image recognition of wheat disease based on rbf support vector machine. In: Proceedings of International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013), Supported by the Key Technology Projects of Anhui Province, China. No. 1201a0301008.
Sayed, Soliman, Hassanien (b0180) 2016
Emary, Zawbaa, Grosan, Hassenian (b0075) 2015
Bauer, Korc, Förstner (b0040) 2009; 9
Frank, K., Rich, C., Longcore, T., 2006. Effects of artificial night lighting on moths. In: Ecological Consequences of Artificial Night Lighting. http://https://www.google.com/books?hl=en{&}lr={&}id=dEEGtAtR1NcC{&}oi=fnd{&}pg=PA305{&}dq=++++++Effects+of+artificial+night+lighting+on+moths.{%}5Crq{%}5Crq{∼}++++{&}ots=83{_}ad6b9eM{&}sig=cFViFOg4kNnN3QbTDgH8Ak2d2ps.
Wang, Yang, Teng, Xia, Jensen (b0195) 2007; 28
Grigorescu, Petkov, Kruizinga (b0095) 2002; 11
Pawlak, Z., Rough, S., 1991. Theoretical aspects of reasoning about data.
Rodrigues, Pereira, Nakamura, Costa, Yang, Souza, Papa (b0165) 2014; 41
Dash, Liu (b0060) 1997; 1
Lu, Zhao, Zhang (b0115) 2008
Mirjalili (b0125) 2015; 89
Gaber, Tharwat, Hassanien, Snasel (b0085) 2016
Sweidan, A., El-Bendary, N., Hassanien, A., 2015. Water quality classification approach based on bio-inspired gray wolf optimization. In: 7th IEEE International Conference of Soft Computing and Pattern Recognition, pp. 13–15.
Asraf, Nooritawati, Rizam (b0020) 2012; 41
Zawbaa, Hassanien, Emary, Yamany, Parv (b0205) 2015
Nakamura, Pereira, Costa, Rodrigues, Papa, Yang (b0140) 2012
Phadikar, Sil, Das (b0160) 2012; 2
Geyer, DeWald (b0090) 1973; 14
Emary, Yamany, Hassanien (b0070) 2014
Chouchoulas, Shen (b0055) 2001; 15
Song, Smola, Gretton, Borgwardt, Bedo (b0185) 2007
.
Arlot, Celisse (b0015) 2010; 4
Naidu, Perry, Pierce, Mekuria (b0135) 2009; 66
Weizheng, Yachun, Zhanliang, Hongda (b0200) 2008
Zenglin, King, Lyu, Rong (b0210) 2010; 21
Salama, Hassanien, Mostafa (b0175) 2016; 2016
Lutu, Engelbrecht (b0120) 2010
Aziz, Hassanien (b0030) 2016
Bello, Nowe, Caballero, Gómez, Vrancx (b0045) 2005
Komorowski, Øhrn (b0105) 1999; 15
Aghdam, M., Ghasem-Aghaee, N., 2008. Application of ant colony optimization for feature selection in text categorization. In: 2008 IEEE Congress.
Phadikar (10.1016/j.compag.2017.02.026_b0160) 2012; 2
10.1016/j.compag.2017.02.026_b0010
Lutu (10.1016/j.compag.2017.02.026_b0120) 2010
Zivkovic (10.1016/j.compag.2017.02.026_b0215) 2006; 27
10.1016/j.compag.2017.02.026_b0035
Sayed (10.1016/j.compag.2017.02.026_b0180) 2016
Asraf (10.1016/j.compag.2017.02.026_b0020) 2012; 41
10.1016/j.compag.2017.02.026_b0110
10.1016/j.compag.2017.02.026_b0155
Dy (10.1016/j.compag.2017.02.026_b0065) 2004; 5
Wang (10.1016/j.compag.2017.02.026_b0195) 2007; 28
Emary (10.1016/j.compag.2017.02.026_b0075) 2015
Mirjalili (10.1016/j.compag.2017.02.026_b0125) 2015; 89
Emary (10.1016/j.compag.2017.02.026_b0070) 2014
Oliveira (10.1016/j.compag.2017.02.026_b0145) 2003; 17
10.1016/j.compag.2017.02.026_b0190
Nakamura (10.1016/j.compag.2017.02.026_b0140) 2012
Zawbaa (10.1016/j.compag.2017.02.026_b0205) 2015
Pawlak (10.1016/j.compag.2017.02.026_b0150) 1982; 11
Rodrigues (10.1016/j.compag.2017.02.026_b0165) 2014; 41
Gaber (10.1016/j.compag.2017.02.026_b0085) 2016
Song (10.1016/j.compag.2017.02.026_b0185) 2007
Salama (10.1016/j.compag.2017.02.026_b0170) 2011
10.1016/j.compag.2017.02.026_b0005
Zenglin (10.1016/j.compag.2017.02.026_b0210) 2010; 21
Komorowski (10.1016/j.compag.2017.02.026_b0105) 1999; 15
10.1016/j.compag.2017.02.026_b0025
Salama (10.1016/j.compag.2017.02.026_b0175) 2016; 2016
Bauer (10.1016/j.compag.2017.02.026_b0040) 2009; 9
Weizheng (10.1016/j.compag.2017.02.026_b0200) 2008
Camargo (10.1016/j.compag.2017.02.026_b0050) 2009; 102
10.1016/j.compag.2017.02.026_b0080
Grigorescu (10.1016/j.compag.2017.02.026_b0095) 2002; 11
Dash (10.1016/j.compag.2017.02.026_b0060) 1997; 1
Bello (10.1016/j.compag.2017.02.026_b0045) 2005
Lu (10.1016/j.compag.2017.02.026_b0115) 2008
Mokhtar (10.1016/j.compag.2017.02.026_b0130) 2015
Naidu (10.1016/j.compag.2017.02.026_b0135) 2009; 66
Chouchoulas (10.1016/j.compag.2017.02.026_b0055) 2001; 15
Guo (10.1016/j.compag.2017.02.026_b0100) 2010
Aziz (10.1016/j.compag.2017.02.026_b0030) 2016
Arlot (10.1016/j.compag.2017.02.026_b0015) 2010; 4
Geyer (10.1016/j.compag.2017.02.026_b0090) 1973; 14
References_xml – volume: 11
  start-page: 341
  year: 1982
  end-page: 356
  ident: b0150
  article-title: Rough sets
  publication-title: Int. J. Comput. Inf. Sci.
– start-page: 491
  year: 2008
  end-page: 494
  ident: b0200
  article-title: Grading method of leaf spot disease based on image processing
  publication-title: 2008 International Conference on Computer Science and Software Engineering
– start-page: 246
  year: 2015
  end-page: 250
  ident: b0130
  article-title: Tomato leaves diseases detection approach based on Support Vector Machines
  publication-title: 2015 11th International Computer Engineering Conference (ICENCO)
– volume: 15
  start-page: 167
  year: 1999
  end-page: 191
  ident: b0105
  article-title: Modelling prognostic power of cardiac tests using rough sets
  publication-title: Artif. Intell. Med.
– start-page: 291
  year: 2012
  end-page: 297
  ident: b0140
  article-title: BBA: A binary bat algorithm for feature selection
  publication-title: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images
– volume: 27
  start-page: 773
  year: 2006
  end-page: 780
  ident: b0215
  article-title: Efficient adaptive density estimation per image pixel for the task of background subtraction
  publication-title: Pattern Recogn. Lett.
– start-page: 275
  year: 2005
  ident: b0045
  article-title: A model based on ant colony system and rough set theory to feature selection
  publication-title: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation – GECCO ’05
– start-page: 1441
  year: 2010
  end-page: 1446
  ident: b0100
  article-title: Feature selection based on Rough set and modified genetic algorithm for intrusion detection
  publication-title: 2010 5th International Conference on Computer Science & Education
– volume: 28
  start-page: 459
  year: 2007
  end-page: 471
  ident: b0195
  article-title: Feature selection based on rough sets and particle swarm optimization
  publication-title: Pattern Recogn. Lett.
– year: 2008
  ident: b0115
  article-title: Feature selection based-on genetic algorithm for image annotation
  publication-title: Knowl.-Based Syst.
– year: 2016
  ident: b0085
  article-title: Biometric cattle identification approach based on Weber’s Local Descriptor and AdaBoost classifier
  publication-title: Comput. Electron.
– volume: 66
  start-page: 38
  year: 2009
  end-page: 45
  ident: b0135
  article-title: The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars
  publication-title: Comput. Electron. Agric.
– reference: Asuncion, A., Newman, D., 2007. UCI machine learning repository.
– reference: Sweidan, A., El-Bendary, N., Hassanien, A., 2015. Water quality classification approach based on bio-inspired gray wolf optimization. In: 7th IEEE International Conference of Soft Computing and Pattern Recognition, pp. 13–15.
– volume: 9
  start-page: 229
  year: 2009
  end-page: –238
  ident: b0040
  article-title: Investigation into the classification of diseases of sugar beet leaves using multispectral images
  publication-title: EJ van Henten, D.
– volume: 41
  start-page: 2250
  year: 2014
  end-page: 2258
  ident: b0165
  article-title: A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest
  publication-title: Expert Syst. Appl.
– reference: Liu, L., Zhang, W., Shu, S., Jin, X., 2013. Image recognition of wheat disease based on rbf support vector machine. In: Proceedings of International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013), Supported by the Key Technology Projects of Anhui Province, China. No. 1201a0301008.
– start-page: 280
  year: 2011
  end-page: 290
  ident: b0170
  article-title: Heart Sound Feature Reduction Approach for Improving the Heart Valve Diseases Identification
– start-page: 1
  year: 2016
  end-page: 10
  ident: b0030
  article-title: Modified cuckoo search algorithm with rough sets for feature selection
  publication-title: Neural Comput. Appl.
– reference: Pawlak, Z., Rough, S., 1991. Theoretical aspects of reasoning about data.
– start-page: 346
  year: 2014
  end-page: 353
  ident: b0070
  article-title: New approach for feature selection based on rough set and bat algorithm
  publication-title: 2014 9th International Conference on Computer Engineering & Systems (ICCES)
– volume: 2
  start-page: 460
  year: 2012
  ident: b0160
  article-title: Classification of rice leaf diseases based on morphological changes
  publication-title: Int. J. Inf.
– start-page: 278
  year: 2015
  end-page: 283
  ident: b0205
  article-title: Hybrid flower pollination algorithm with rough sets for feature selection
  publication-title: 2015 11th International Computer Engineering Conference (ICENCO)
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: b0015
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
– volume: 5
  start-page: 845
  year: 2004
  end-page: 889
  ident: b0065
  article-title: Feature selection for unsupervised learning
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: b0060
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
– start-page: 1
  year: 2015
  end-page: 13
  ident: b0075
  article-title: Feature Subset Selection Approach by Gray-Wolf Optimization
– volume: 17
  start-page: 903
  year: 2003
  end-page: 929
  ident: b0145
  article-title: A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– reference: Frank, K., Rich, C., Longcore, T., 2006. Effects of artificial night lighting on moths. In: Ecological Consequences of Artificial Night Lighting. http://https://www.google.com/books?hl=en{&}lr={&}id=dEEGtAtR1NcC{&}oi=fnd{&}pg=PA305{&}dq=++++++Effects+of+artificial+night+lighting+on+moths.{%}5Crq{%}5Crq{∼}++++{&}ots=83{_}ad6b9eM{&}sig=cFViFOg4kNnN3QbTDgH8Ak2d2ps.
– volume: 14
  start-page: 471
  year: 1973
  end-page: 482
  ident: b0090
  article-title: Feature lists and confusion matrices
  publication-title: Percept. Psychophys.
– reference: Ali, A., Couceiro, M., Anter, A., 2014. Evaluating an evolutionary particle swarm optimization for fast fuzzy c-means clustering on liver ct images. Comput. Vision Image Process Intell. Syst. Multimedia.
– reference: Basiri, M., Ghasem-Aghaee, N., Aghdam, M., 2008. Using ant colony optimization-based selected features for predicting post-synaptic activity in proteins. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics.
– reference: .
– volume: 11
  start-page: 1160
  year: 2002
  end-page: 1167
  ident: b0095
  article-title: Comparison of texture features based on Gabor filters
  publication-title: IEEE Trans. Image Process.
– volume: 2016
  start-page: 10
  year: 2016
  ident: b0175
  article-title: The prediction of virus mutation using neural networks and rough set techniques
  publication-title: EURASIP J. Bioinformatics Syst. Biol.
– reference: Aghdam, M., Ghasem-Aghaee, N., 2008. Application of ant colony optimization for feature selection in text categorization. In: 2008 IEEE Congress.
– start-page: 823
  year: 2007
  end-page: 830
  ident: b0185
  article-title: Supervised feature selection via dependence estimation
  publication-title: Proceedings of the 24th International Conference on Machine Learning – ICML ’07
– start-page: 487
  year: 2016
  end-page: 506
  ident: b0180
  article-title: Bio-inspired Swarm Techniques for Thermogram Breast Cancer Detection
– volume: 15
  start-page: 843
  year: 2001
  end-page: 873
  ident: b0055
  article-title: Rough set-aided keyword reduction for text categorization
  publication-title: Appl. Artif. Intell.
– volume: 41
  start-page: 1353
  year: 2012
  end-page: 1359
  ident: b0020
  article-title: A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease
  publication-title: Procedia Eng.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b0125
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– year: 2010
  ident: b0120
  article-title: A decision rule-based method for feature selection in predictive data mining
  publication-title: Expert Syst. Appl.
– volume: 102
  start-page: 9
  year: 2009
  end-page: 21
  ident: b0050
  article-title: An image-processing based algorithm to automatically identify plant disease visual symptoms
  publication-title: Biosyst. Eng.
– volume: 21
  start-page: 1033
  year: 2010
  end-page: 1047
  ident: b0210
  article-title: Discriminative semi-supervised feature selection via manifold regularization
  publication-title: IEEE Trans. Neural Networks
– ident: 10.1016/j.compag.2017.02.026_b0155
  doi: 10.1007/978-94-011-3534-4_7
– start-page: 1
  year: 2015
  ident: 10.1016/j.compag.2017.02.026_b0075
– volume: 11
  start-page: 341
  issue: 5
  year: 1982
  ident: 10.1016/j.compag.2017.02.026_b0150
  article-title: Rough sets
  publication-title: Int. J. Comput. Inf. Sci.
  doi: 10.1007/BF01001956
– ident: 10.1016/j.compag.2017.02.026_b0010
  doi: 10.4018/978-1-4666-6030-4.ch001
– start-page: 246
  year: 2015
  ident: 10.1016/j.compag.2017.02.026_b0130
  article-title: Tomato leaves diseases detection approach based on Support Vector Machines
– start-page: 1441
  year: 2010
  ident: 10.1016/j.compag.2017.02.026_b0100
  article-title: Feature selection based on Rough set and modified genetic algorithm for intrusion detection
– start-page: 280
  year: 2011
  ident: 10.1016/j.compag.2017.02.026_b0170
– volume: 27
  start-page: 773
  issue: 7
  year: 2006
  ident: 10.1016/j.compag.2017.02.026_b0215
  article-title: Efficient adaptive density estimation per image pixel for the task of background subtraction
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.11.005
– ident: 10.1016/j.compag.2017.02.026_b0080
– volume: 28
  start-page: 459
  issue: 4
  year: 2007
  ident: 10.1016/j.compag.2017.02.026_b0195
  article-title: Feature selection based on rough sets and particle swarm optimization
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2006.09.003
– start-page: 278
  year: 2015
  ident: 10.1016/j.compag.2017.02.026_b0205
  article-title: Hybrid flower pollination algorithm with rough sets for feature selection
– start-page: 491
  year: 2008
  ident: 10.1016/j.compag.2017.02.026_b0200
  article-title: Grading method of leaf spot disease based on image processing
– year: 2016
  ident: 10.1016/j.compag.2017.02.026_b0085
  article-title: Biometric cattle identification approach based on Weber’s Local Descriptor and AdaBoost classifier
  publication-title: Comput. Electron.
  doi: 10.1016/j.compag.2015.12.022
– start-page: 1
  year: 2016
  ident: 10.1016/j.compag.2017.02.026_b0030
  article-title: Modified cuckoo search algorithm with rough sets for feature selection
  publication-title: Neural Comput. Appl.
– start-page: 823
  year: 2007
  ident: 10.1016/j.compag.2017.02.026_b0185
  article-title: Supervised feature selection via dependence estimation
– ident: 10.1016/j.compag.2017.02.026_b0005
  doi: 10.1109/CEC.2008.4631182
– volume: 102
  start-page: 9
  issue: 1
  year: 2009
  ident: 10.1016/j.compag.2017.02.026_b0050
  article-title: An image-processing based algorithm to automatically identify plant disease visual symptoms
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2008.09.030
– year: 2008
  ident: 10.1016/j.compag.2017.02.026_b0115
  article-title: Feature selection based-on genetic algorithm for image annotation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2008.03.051
– volume: 66
  start-page: 38
  issue: 1
  year: 2009
  ident: 10.1016/j.compag.2017.02.026_b0135
  article-title: The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.11.007
– volume: 14
  start-page: 471
  issue: 3
  year: 1973
  ident: 10.1016/j.compag.2017.02.026_b0090
  article-title: Feature lists and confusion matrices
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03211185
– ident: 10.1016/j.compag.2017.02.026_b0110
  doi: 10.2991/icacsei.2013.77
– volume: 41
  start-page: 1353
  year: 2012
  ident: 10.1016/j.compag.2017.02.026_b0020
  article-title: A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.07.321
– volume: 1
  start-page: 131
  issue: 3
  year: 1997
  ident: 10.1016/j.compag.2017.02.026_b0060
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
  doi: 10.1016/S1088-467X(97)00008-5
– start-page: 346
  year: 2014
  ident: 10.1016/j.compag.2017.02.026_b0070
  article-title: New approach for feature selection based on rough set and bat algorithm
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.compag.2017.02.026_b0015
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS054
– start-page: 291
  year: 2012
  ident: 10.1016/j.compag.2017.02.026_b0140
  article-title: BBA: A binary bat algorithm for feature selection
– ident: 10.1016/j.compag.2017.02.026_b0025
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  ident: 10.1016/j.compag.2017.02.026_b0165
  article-title: A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.09.023
– volume: 9
  start-page: 229
  year: 2009
  ident: 10.1016/j.compag.2017.02.026_b0040
  article-title: Investigation into the classification of diseases of sugar beet leaves using multispectral images
  publication-title: EJ van Henten, D.
– volume: 2
  start-page: 460
  issue: 3
  year: 2012
  ident: 10.1016/j.compag.2017.02.026_b0160
  article-title: Classification of rice leaf diseases based on morphological changes
  publication-title: Int. J. Inf.
– start-page: 487
  year: 2016
  ident: 10.1016/j.compag.2017.02.026_b0180
– volume: 15
  start-page: 167
  issue: 2
  year: 1999
  ident: 10.1016/j.compag.2017.02.026_b0105
  article-title: Modelling prognostic power of cardiac tests using rough sets
  publication-title: Artif. Intell. Med.
  doi: 10.1016/S0933-3657(98)00051-7
– volume: 11
  start-page: 1160
  issue: 10
  year: 2002
  ident: 10.1016/j.compag.2017.02.026_b0095
  article-title: Comparison of texture features based on Gabor filters
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2002.804262
– volume: 2016
  start-page: 10
  issue: 1
  year: 2016
  ident: 10.1016/j.compag.2017.02.026_b0175
  article-title: The prediction of virus mutation using neural networks and rough set techniques
  publication-title: EURASIP J. Bioinformatics Syst. Biol.
  doi: 10.1186/s13637-016-0042-0
– ident: 10.1016/j.compag.2017.02.026_b0190
  doi: 10.1109/SOCPAR.2015.7492777
– volume: 21
  start-page: 1033
  issue: 7
  year: 2010
  ident: 10.1016/j.compag.2017.02.026_b0210
  article-title: Discriminative semi-supervised feature selection via manifold regularization
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2010.2047114
– start-page: 275
  year: 2005
  ident: 10.1016/j.compag.2017.02.026_b0045
  article-title: A model based on ant colony system and rough set theory to feature selection
– volume: 15
  start-page: 843
  issue: 9
  year: 2001
  ident: 10.1016/j.compag.2017.02.026_b0055
  article-title: Rough set-aided keyword reduction for text categorization
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/088395101753210773
– volume: 17
  start-page: 903
  issue: 06
  year: 2003
  ident: 10.1016/j.compag.2017.02.026_b0145
  article-title: A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S021800140300271X
– ident: 10.1016/j.compag.2017.02.026_b0035
– volume: 5
  start-page: 845
  issue: Aug
  year: 2004
  ident: 10.1016/j.compag.2017.02.026_b0065
  article-title: Feature selection for unsupervised learning
  publication-title: J. Mach. Learn. Res.
– year: 2010
  ident: 10.1016/j.compag.2017.02.026_b0120
  article-title: A decision rule-based method for feature selection in predictive data mining
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.031
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.compag.2017.02.026_b0125
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
SSID ssj0016987
Score 2.5086908
Snippet •Feature selection algorithm using the integration of moths-flame optimization and rough set was introduced.•Automatic tomato disease detection approach based...
Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 86
SubjectTerms Agronomy
automatic detection
Blight
Butterflies & moths
data collection
disease detection
Fitness
Fungi
Genetic algorithms
Machine learning
Moth flame optimization
Optimization
Particle swarm optimization
Particle Swarm Optimization (PSO) and Genetic Algorithms (GA)
Plant diseases
powdery mildew
Rough set theory
Size reduction
Solanum lycopersicum var. lycopersicum
Support vector machines
Theory
tomatoes
Tomato’s disease
Title An improved moth flame optimization algorithm based on rough sets for tomato diseases detection
URI https://dx.doi.org/10.1016/j.compag.2017.02.026
https://www.proquest.com/docview/1932166075
https://www.proquest.com/docview/2000484759
https://www.proquest.com/docview/2131870898
Volume 136
WOSCitedRecordID wos000399851200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4ftYezKsnZDg70ZD8tyJPsxjIxusLKHFvJmJFlO2yV2sZ3Qn7Of2qOLndBu7fowCCZWLGH7-3LOkXQuCH2iOqKUxEVIUpWECWVRKCXNQqFLJQFzzRJpi03w4-N0Ps9-jka_-1iYzZJXVXp1lV3-V6ihDcA2obMPgHsYFBrgO4AOR4Adjv8E_LQyoY9NvQFT0uAQlAC6DmqQDSsfdBmI5aJuzruzVWC0WGF2DFy5nlZ3rfM8rFemKozfv2mDQnfWaavatWb7khAuz_O2oo71sRWLxuf12HIHLHUT0u7SFsh6vQxmruiR8wES0hNINHqIIPpR_zrrnBv4aSu2auRIl5ULrzC7Vqvd5QtQiSZP4mR3RZPBNJa5KkmDSKa7QrXPlW1PXP3bW4LfrUFcfLae-wvjssdtLtb4D3m2b-i_wSuxd3i7yN0ouRklj2L4sEdoP-aTDET__vTbbP592KliWepC8v1j9OGZ1ofw9t38zfy5YQhY6-bkOXrmpyV46uj0Ao109RI9nW4hfIXyaYV7YmFDLGyJhXeJhQdiYUssDE2WWNgQCwOxsCMW7omFB2K9RqdfZydfjkJfniNUScK6kIJmjESS0URMCiVBsPNExROpioRIWhJFslSQkpRcxZLwVJZlSiKVxiVYToRL-gbtVXWl3yKcMU40LUjKpE4mlAtRaJLxgkeF6ajHiPZvLVc-d70pobLM78JsjMKh16XL3XLP9bwHJPf2p7Mrc2DZPT0Pe_xyLwra3EyNCGNgk4_Rx-FnkN5mS05Uul63pggsqFCTc_OOawjoXR6lWfrugQ90gJ5s_3KHaK9r1vo9eqw23XnbfPBMvgZknNBc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+moth+flame+optimization+algorithm+based+on+rough+sets+for+tomato+diseases+detection&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Hassanien%2C+Aboul+Ella&rft.au=Gaber%2C+Tarek&rft.au=Mokhtar%2C+Usama&rft.au=Hefny%2C+Hesham&rft.date=2017-04-15&rft.issn=0168-1699&rft.volume=136&rft.spage=86&rft.epage=96&rft_id=info:doi/10.1016%2Fj.compag.2017.02.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2017_02_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon