An improved moth flame optimization algorithm based on rough sets for tomato diseases detection
•Feature selection algorithm using the integration of moths-flame optimization and rough set was introduced.•Automatic tomato disease detection approach based on moths-flame optimization and rough set was proposed.•Dataset of tomato leaves infected with disease was collected.•The results demonstrate...
Gespeichert in:
| Veröffentlicht in: | Computers and electronics in agriculture Jg. 136; S. 86 - 96 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
15.04.2017
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0168-1699, 1872-7107 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Feature selection algorithm using the integration of moths-flame optimization and rough set was introduced.•Automatic tomato disease detection approach based on moths-flame optimization and rough set was proposed.•Dataset of tomato leaves infected with disease was collected.•The results demonstrate a good accuracy when MFO and rough set were used together.•The results were evaluated against Accuracy, Precision, Recall and F-Score.
Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time. |
|---|---|
| AbstractList | Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time. •Feature selection algorithm using the integration of moths-flame optimization and rough set was introduced.•Automatic tomato disease detection approach based on moths-flame optimization and rough set was proposed.•Dataset of tomato leaves infected with disease was collected.•The results demonstrate a good accuracy when MFO and rough set were used together.•The results were evaluated against Accuracy, Precision, Recall and F-Score. Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time. |
| Author | Gaber, Tarek Hefny, Hesham Hassanien, Aboul Ella Mokhtar, Usama |
| Author_xml | – sequence: 1 givenname: Aboul Ella surname: Hassanien fullname: Hassanien, Aboul Ella email: aboitcairo@gmail.com organization: Faculty of Computers and Information, Cairo University, Egypt – sequence: 2 givenname: Tarek surname: Gaber fullname: Gaber, Tarek email: tmgaber@gmail.com organization: Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt – sequence: 3 givenname: Usama surname: Mokhtar fullname: Mokhtar, Usama email: usamamokhtar@yahoo.com organization: Scientific Research Group in Egypt (SRGE), Egypt1http://www.egyptscience.net.1 – sequence: 4 givenname: Hesham surname: Hefny fullname: Hefny, Hesham email: hehefny@hotmail.com organization: Inst. of Stat. Studies and Res., Cairo University, Egypt |
| BookMark | eNqFkUtrWzEQhUVIIM7jH2QhyCab62p05Sspi0AIfUGgm3YtdPWwZa6uHEkOpL--ct1VFg0MDDN8Z2DOuUCnc5odQjdAlkBg-LRdmhR3er2kBPiS0FbDCVqA4LTjQPgpWjRMdDBIeY4uStmSNkvBF0g9zjjEXU6vzuKY6gb7SUeH066GGH7rGtKM9bROOdRNxKMujWurnPbrDS6uFuxTxjVFXRO2obhGFGxddeagvUJnXk_FXf_rl-jXl88_n751zz--fn96fO4MY0Ptemsd0Uz2TK-sGblknBm6Go1lMPYeDEihwYPnho7Axei9AGIE9T0D4GN_ie6Od9srL3tXqoqhGDdNenZpXxSFvtlBhBQfo4QQJhhfyYbevkO3aZ_n9ogC2VMYBsJXjWJHyuRUSnZe7XKIOr8pIOoQkNqqY0DqEJAitNXQZPfvZCbUv4bXrMP0kfjhKHbN1NfgsiomuNk4G3JzXtkU_n_gD8oCsP0 |
| CitedBy_id | crossref_primary_10_1007_s11571_023_10011_x crossref_primary_10_1051_epjconf_202532801004 crossref_primary_10_1177_16878132221085125 crossref_primary_10_3390_pr9122276 crossref_primary_10_1007_s13042_018_0838_1 crossref_primary_10_1155_2020_8812019 crossref_primary_10_1002_jsfa_10987 crossref_primary_10_1007_s12652_021_03406_3 crossref_primary_10_1007_s11042_021_10889_x crossref_primary_10_3390_math10030464 crossref_primary_10_1016_j_procs_2020_03_285 crossref_primary_10_1155_2022_3287561 crossref_primary_10_1007_s13369_021_05478_x crossref_primary_10_1007_s11042_020_10036_y crossref_primary_10_1007_s00521_023_09295_1 crossref_primary_10_1007_s12530_019_09289_2 crossref_primary_10_1016_j_matcom_2021_04_006 crossref_primary_10_3390_a14110314 crossref_primary_10_46604_ijeti_2021_7346 crossref_primary_10_1016_j_asoc_2019_105517 crossref_primary_10_1016_j_ins_2019_04_022 crossref_primary_10_1016_j_asoc_2022_109898 crossref_primary_10_1007_s41348_021_00500_8 crossref_primary_10_1007_s00500_018_03753_y crossref_primary_10_1186_s43067_024_00146_0 crossref_primary_10_3390_electronics11050831 crossref_primary_10_1016_j_eswa_2019_03_043 crossref_primary_10_1007_s11042_019_7278_0 crossref_primary_10_3390_app122312179 crossref_primary_10_1007_s00521_019_04570_6 crossref_primary_10_3390_sym13122388 crossref_primary_10_1088_1742_6596_1767_1_012010 crossref_primary_10_12944_CARJ_11_1_28 crossref_primary_10_1016_j_compbiomed_2023_107538 crossref_primary_10_1080_13682199_2020_1865652 crossref_primary_10_46604_ijeti_2021_8244 crossref_primary_10_1016_j_asoc_2021_107164 crossref_primary_10_1007_s00521_018_3821_6 crossref_primary_10_1079_ab_2025_0050 crossref_primary_10_3103_S1060992X23040100 crossref_primary_10_1007_s00521_021_06099_z crossref_primary_10_1016_j_biosystemseng_2020_03_021 crossref_primary_10_1080_0952813X_2020_1737246 crossref_primary_10_1016_j_compag_2020_105792 crossref_primary_10_1016_j_matcom_2019_06_017 crossref_primary_10_1016_j_matpr_2020_03_600 crossref_primary_10_1016_j_eswa_2020_113544 crossref_primary_10_1109_TFUZZ_2018_2825308 crossref_primary_10_1007_s00521_025_11012_z crossref_primary_10_3390_pr10122475 crossref_primary_10_1109_ACCESS_2020_3005318 crossref_primary_10_1016_j_compag_2018_07_032 crossref_primary_10_1109_ACCESS_2019_2939835 crossref_primary_10_1016_j_knosys_2020_106728 crossref_primary_10_1016_j_suscom_2022_100696 crossref_primary_10_1002_jnm_2675 crossref_primary_10_1007_s11831_019_09324_0 crossref_primary_10_1007_s11831_019_09364_6 crossref_primary_10_1016_j_compbiomed_2022_105563 crossref_primary_10_1007_s11831_023_10037_8 crossref_primary_10_1186_s40537_025_01191_w crossref_primary_10_1016_j_asoc_2021_107772 crossref_primary_10_1049_iet_ipr_2018_6210 crossref_primary_10_1109_ACCESS_2022_3187203 crossref_primary_10_1080_10106049_2022_2112300 crossref_primary_10_3389_fpls_2023_1175515 crossref_primary_10_1016_j_compag_2017_12_010 crossref_primary_10_1016_j_compag_2022_107484 crossref_primary_10_1007_s00521_019_04153_5 crossref_primary_10_1109_ACCESS_2019_2901900 crossref_primary_10_1007_s12065_020_00482_w crossref_primary_10_1109_ACCESS_2020_3029728 crossref_primary_10_1007_s11042_023_15809_9 crossref_primary_10_1016_j_matpr_2020_08_450 crossref_primary_10_2478_acss_2023_0009 crossref_primary_10_1002_int_22658 crossref_primary_10_1007_s11831_022_09801_z crossref_primary_10_3390_e23121637 crossref_primary_10_1371_journal_pone_0317224 crossref_primary_10_1007_s10661_022_10656_x crossref_primary_10_3233_JIFS_169960 |
| Cites_doi | 10.1007/978-94-011-3534-4_7 10.1007/BF01001956 10.4018/978-1-4666-6030-4.ch001 10.1016/j.patrec.2005.11.005 10.1016/j.patrec.2006.09.003 10.1016/j.compag.2015.12.022 10.1109/CEC.2008.4631182 10.1016/j.biosystemseng.2008.09.030 10.1016/j.knosys.2008.03.051 10.1016/j.compag.2008.11.007 10.3758/BF03211185 10.2991/icacsei.2013.77 10.1016/j.proeng.2012.07.321 10.1016/S1088-467X(97)00008-5 10.1214/09-SS054 10.1016/j.eswa.2013.09.023 10.1016/S0933-3657(98)00051-7 10.1109/TIP.2002.804262 10.1186/s13637-016-0042-0 10.1109/SOCPAR.2015.7492777 10.1109/TNN.2010.2047114 10.1080/088395101753210773 10.1142/S021800140300271X 10.1016/j.eswa.2009.06.031 10.1016/j.knosys.2015.07.006 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Apr 15, 2017 |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Apr 15, 2017 |
| DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| DOI | 10.1016/j.compag.2017.02.026 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-7107 |
| EndPage | 96 |
| ExternalDocumentID | 10_1016_j_compag_2017_02_026 S0168169916308225 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO AAYFN ABBOA ABBQC ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACRLP ACZNC ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD AXJTR BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP RIG ROL RPZ SAB SDF SDG SES SNL SPC SPCBC SSA SSH SSV SSZ T5K UNMZH Y6R ~G- ~KM 29F 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACIEU ACLOT ACMHX ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLV HLZ HVGLF HZ~ R2- SBC SEW UHS WUQ ~HD 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| ID | FETCH-LOGICAL-c446t-3dde0a4934a5dcb79474c25bcd41b3f1c198a1f1f7c2b178bff810c82f34117b3 |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399851200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-1699 |
| IngestDate | Thu Oct 02 11:34:24 EDT 2025 Sun Sep 28 11:48:33 EDT 2025 Sun Oct 05 00:16:36 EDT 2025 Sat Nov 29 03:16:20 EST 2025 Tue Nov 18 22:51:08 EST 2025 Fri Feb 23 02:29:53 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Rough set theory Moth flame optimization Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) Tomato’s disease |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c446t-3dde0a4934a5dcb79474c25bcd41b3f1c198a1f1f7c2b178bff810c82f34117b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://usir.salford.ac.uk/id/eprint/52072/1/MFORSFS-Tomoato-DiseaseDetection-Accepted_Version-2017.pdf |
| PQID | 1932166075 |
| PQPubID | 24069 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2131870898 proquest_miscellaneous_2000484759 proquest_journals_1932166075 crossref_primary_10_1016_j_compag_2017_02_026 crossref_citationtrail_10_1016_j_compag_2017_02_026 elsevier_sciencedirect_doi_10_1016_j_compag_2017_02_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-15 |
| PublicationDateYYYYMMDD | 2017-04-15 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Dy, Brodley (b0065) 2004; 5 Pawlak (b0150) 1982; 11 Asuncion, A., Newman, D., 2007. UCI machine learning repository. Salama, Hassanien, Fahmy, Kim (b0170) 2011 Zivkovic, van der Heijden (b0215) 2006; 27 Mokhtar, Ali, Hassenian, Hefny (b0130) 2015 Camargo, Smith (b0050) 2009; 102 Ali, A., Couceiro, M., Anter, A., 2014. Evaluating an evolutionary particle swarm optimization for fast fuzzy c-means clustering on liver ct images. Comput. Vision Image Process Intell. Syst. Multimedia. Guo, Wang, Zhao, Xie, Lin, Zhou (b0100) 2010 Oliveira, Sabourin, Bortolozzi, Suen (b0145) 2003; 17 Basiri, M., Ghasem-Aghaee, N., Aghdam, M., 2008. Using ant colony optimization-based selected features for predicting post-synaptic activity in proteins. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Liu, L., Zhang, W., Shu, S., Jin, X., 2013. Image recognition of wheat disease based on rbf support vector machine. In: Proceedings of International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013), Supported by the Key Technology Projects of Anhui Province, China. No. 1201a0301008. Sayed, Soliman, Hassanien (b0180) 2016 Emary, Zawbaa, Grosan, Hassenian (b0075) 2015 Bauer, Korc, Förstner (b0040) 2009; 9 Frank, K., Rich, C., Longcore, T., 2006. Effects of artificial night lighting on moths. In: Ecological Consequences of Artificial Night Lighting. http://https://www.google.com/books?hl=en{&}lr={&}id=dEEGtAtR1NcC{&}oi=fnd{&}pg=PA305{&}dq=++++++Effects+of+artificial+night+lighting+on+moths.{%}5Crq{%}5Crq{∼}++++{&}ots=83{_}ad6b9eM{&}sig=cFViFOg4kNnN3QbTDgH8Ak2d2ps. Wang, Yang, Teng, Xia, Jensen (b0195) 2007; 28 Grigorescu, Petkov, Kruizinga (b0095) 2002; 11 Pawlak, Z., Rough, S., 1991. Theoretical aspects of reasoning about data. Rodrigues, Pereira, Nakamura, Costa, Yang, Souza, Papa (b0165) 2014; 41 Dash, Liu (b0060) 1997; 1 Lu, Zhao, Zhang (b0115) 2008 Mirjalili (b0125) 2015; 89 Gaber, Tharwat, Hassanien, Snasel (b0085) 2016 Sweidan, A., El-Bendary, N., Hassanien, A., 2015. Water quality classification approach based on bio-inspired gray wolf optimization. In: 7th IEEE International Conference of Soft Computing and Pattern Recognition, pp. 13–15. Asraf, Nooritawati, Rizam (b0020) 2012; 41 Zawbaa, Hassanien, Emary, Yamany, Parv (b0205) 2015 Nakamura, Pereira, Costa, Rodrigues, Papa, Yang (b0140) 2012 Phadikar, Sil, Das (b0160) 2012; 2 Geyer, DeWald (b0090) 1973; 14 Emary, Yamany, Hassanien (b0070) 2014 Chouchoulas, Shen (b0055) 2001; 15 Song, Smola, Gretton, Borgwardt, Bedo (b0185) 2007 . Arlot, Celisse (b0015) 2010; 4 Naidu, Perry, Pierce, Mekuria (b0135) 2009; 66 Weizheng, Yachun, Zhanliang, Hongda (b0200) 2008 Zenglin, King, Lyu, Rong (b0210) 2010; 21 Salama, Hassanien, Mostafa (b0175) 2016; 2016 Lutu, Engelbrecht (b0120) 2010 Aziz, Hassanien (b0030) 2016 Bello, Nowe, Caballero, Gómez, Vrancx (b0045) 2005 Komorowski, Øhrn (b0105) 1999; 15 Aghdam, M., Ghasem-Aghaee, N., 2008. Application of ant colony optimization for feature selection in text categorization. In: 2008 IEEE Congress. Phadikar (10.1016/j.compag.2017.02.026_b0160) 2012; 2 10.1016/j.compag.2017.02.026_b0010 Lutu (10.1016/j.compag.2017.02.026_b0120) 2010 Zivkovic (10.1016/j.compag.2017.02.026_b0215) 2006; 27 10.1016/j.compag.2017.02.026_b0035 Sayed (10.1016/j.compag.2017.02.026_b0180) 2016 Asraf (10.1016/j.compag.2017.02.026_b0020) 2012; 41 10.1016/j.compag.2017.02.026_b0110 10.1016/j.compag.2017.02.026_b0155 Dy (10.1016/j.compag.2017.02.026_b0065) 2004; 5 Wang (10.1016/j.compag.2017.02.026_b0195) 2007; 28 Emary (10.1016/j.compag.2017.02.026_b0075) 2015 Mirjalili (10.1016/j.compag.2017.02.026_b0125) 2015; 89 Emary (10.1016/j.compag.2017.02.026_b0070) 2014 Oliveira (10.1016/j.compag.2017.02.026_b0145) 2003; 17 10.1016/j.compag.2017.02.026_b0190 Nakamura (10.1016/j.compag.2017.02.026_b0140) 2012 Zawbaa (10.1016/j.compag.2017.02.026_b0205) 2015 Pawlak (10.1016/j.compag.2017.02.026_b0150) 1982; 11 Rodrigues (10.1016/j.compag.2017.02.026_b0165) 2014; 41 Gaber (10.1016/j.compag.2017.02.026_b0085) 2016 Song (10.1016/j.compag.2017.02.026_b0185) 2007 Salama (10.1016/j.compag.2017.02.026_b0170) 2011 10.1016/j.compag.2017.02.026_b0005 Zenglin (10.1016/j.compag.2017.02.026_b0210) 2010; 21 Komorowski (10.1016/j.compag.2017.02.026_b0105) 1999; 15 10.1016/j.compag.2017.02.026_b0025 Salama (10.1016/j.compag.2017.02.026_b0175) 2016; 2016 Bauer (10.1016/j.compag.2017.02.026_b0040) 2009; 9 Weizheng (10.1016/j.compag.2017.02.026_b0200) 2008 Camargo (10.1016/j.compag.2017.02.026_b0050) 2009; 102 10.1016/j.compag.2017.02.026_b0080 Grigorescu (10.1016/j.compag.2017.02.026_b0095) 2002; 11 Dash (10.1016/j.compag.2017.02.026_b0060) 1997; 1 Bello (10.1016/j.compag.2017.02.026_b0045) 2005 Lu (10.1016/j.compag.2017.02.026_b0115) 2008 Mokhtar (10.1016/j.compag.2017.02.026_b0130) 2015 Naidu (10.1016/j.compag.2017.02.026_b0135) 2009; 66 Chouchoulas (10.1016/j.compag.2017.02.026_b0055) 2001; 15 Guo (10.1016/j.compag.2017.02.026_b0100) 2010 Aziz (10.1016/j.compag.2017.02.026_b0030) 2016 Arlot (10.1016/j.compag.2017.02.026_b0015) 2010; 4 Geyer (10.1016/j.compag.2017.02.026_b0090) 1973; 14 |
| References_xml | – volume: 11 start-page: 341 year: 1982 end-page: 356 ident: b0150 article-title: Rough sets publication-title: Int. J. Comput. Inf. Sci. – start-page: 491 year: 2008 end-page: 494 ident: b0200 article-title: Grading method of leaf spot disease based on image processing publication-title: 2008 International Conference on Computer Science and Software Engineering – start-page: 246 year: 2015 end-page: 250 ident: b0130 article-title: Tomato leaves diseases detection approach based on Support Vector Machines publication-title: 2015 11th International Computer Engineering Conference (ICENCO) – volume: 15 start-page: 167 year: 1999 end-page: 191 ident: b0105 article-title: Modelling prognostic power of cardiac tests using rough sets publication-title: Artif. Intell. Med. – start-page: 291 year: 2012 end-page: 297 ident: b0140 article-title: BBA: A binary bat algorithm for feature selection publication-title: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images – volume: 27 start-page: 773 year: 2006 end-page: 780 ident: b0215 article-title: Efficient adaptive density estimation per image pixel for the task of background subtraction publication-title: Pattern Recogn. Lett. – start-page: 275 year: 2005 ident: b0045 article-title: A model based on ant colony system and rough set theory to feature selection publication-title: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation – GECCO ’05 – start-page: 1441 year: 2010 end-page: 1446 ident: b0100 article-title: Feature selection based on Rough set and modified genetic algorithm for intrusion detection publication-title: 2010 5th International Conference on Computer Science & Education – volume: 28 start-page: 459 year: 2007 end-page: 471 ident: b0195 article-title: Feature selection based on rough sets and particle swarm optimization publication-title: Pattern Recogn. Lett. – year: 2008 ident: b0115 article-title: Feature selection based-on genetic algorithm for image annotation publication-title: Knowl.-Based Syst. – year: 2016 ident: b0085 article-title: Biometric cattle identification approach based on Weber’s Local Descriptor and AdaBoost classifier publication-title: Comput. Electron. – volume: 66 start-page: 38 year: 2009 end-page: 45 ident: b0135 article-title: The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars publication-title: Comput. Electron. Agric. – reference: Asuncion, A., Newman, D., 2007. UCI machine learning repository. – reference: Sweidan, A., El-Bendary, N., Hassanien, A., 2015. Water quality classification approach based on bio-inspired gray wolf optimization. In: 7th IEEE International Conference of Soft Computing and Pattern Recognition, pp. 13–15. – volume: 9 start-page: 229 year: 2009 end-page: –238 ident: b0040 article-title: Investigation into the classification of diseases of sugar beet leaves using multispectral images publication-title: EJ van Henten, D. – volume: 41 start-page: 2250 year: 2014 end-page: 2258 ident: b0165 article-title: A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest publication-title: Expert Syst. Appl. – reference: Liu, L., Zhang, W., Shu, S., Jin, X., 2013. Image recognition of wheat disease based on rbf support vector machine. In: Proceedings of International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013), Supported by the Key Technology Projects of Anhui Province, China. No. 1201a0301008. – start-page: 280 year: 2011 end-page: 290 ident: b0170 article-title: Heart Sound Feature Reduction Approach for Improving the Heart Valve Diseases Identification – start-page: 1 year: 2016 end-page: 10 ident: b0030 article-title: Modified cuckoo search algorithm with rough sets for feature selection publication-title: Neural Comput. Appl. – reference: Pawlak, Z., Rough, S., 1991. Theoretical aspects of reasoning about data. – start-page: 346 year: 2014 end-page: 353 ident: b0070 article-title: New approach for feature selection based on rough set and bat algorithm publication-title: 2014 9th International Conference on Computer Engineering & Systems (ICCES) – volume: 2 start-page: 460 year: 2012 ident: b0160 article-title: Classification of rice leaf diseases based on morphological changes publication-title: Int. J. Inf. – start-page: 278 year: 2015 end-page: 283 ident: b0205 article-title: Hybrid flower pollination algorithm with rough sets for feature selection publication-title: 2015 11th International Computer Engineering Conference (ICENCO) – volume: 4 start-page: 40 year: 2010 end-page: 79 ident: b0015 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. – volume: 5 start-page: 845 year: 2004 end-page: 889 ident: b0065 article-title: Feature selection for unsupervised learning publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 131 year: 1997 end-page: 156 ident: b0060 article-title: Feature selection for classification publication-title: Intell. Data Anal. – start-page: 1 year: 2015 end-page: 13 ident: b0075 article-title: Feature Subset Selection Approach by Gray-Wolf Optimization – volume: 17 start-page: 903 year: 2003 end-page: 929 ident: b0145 article-title: A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition publication-title: Int. J. Pattern Recognit. Artif. Intell. – reference: Frank, K., Rich, C., Longcore, T., 2006. Effects of artificial night lighting on moths. In: Ecological Consequences of Artificial Night Lighting. http://https://www.google.com/books?hl=en{&}lr={&}id=dEEGtAtR1NcC{&}oi=fnd{&}pg=PA305{&}dq=++++++Effects+of+artificial+night+lighting+on+moths.{%}5Crq{%}5Crq{∼}++++{&}ots=83{_}ad6b9eM{&}sig=cFViFOg4kNnN3QbTDgH8Ak2d2ps. – volume: 14 start-page: 471 year: 1973 end-page: 482 ident: b0090 article-title: Feature lists and confusion matrices publication-title: Percept. Psychophys. – reference: Ali, A., Couceiro, M., Anter, A., 2014. Evaluating an evolutionary particle swarm optimization for fast fuzzy c-means clustering on liver ct images. Comput. Vision Image Process Intell. Syst. Multimedia. – reference: Basiri, M., Ghasem-Aghaee, N., Aghdam, M., 2008. Using ant colony optimization-based selected features for predicting post-synaptic activity in proteins. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. – reference: . – volume: 11 start-page: 1160 year: 2002 end-page: 1167 ident: b0095 article-title: Comparison of texture features based on Gabor filters publication-title: IEEE Trans. Image Process. – volume: 2016 start-page: 10 year: 2016 ident: b0175 article-title: The prediction of virus mutation using neural networks and rough set techniques publication-title: EURASIP J. Bioinformatics Syst. Biol. – reference: Aghdam, M., Ghasem-Aghaee, N., 2008. Application of ant colony optimization for feature selection in text categorization. In: 2008 IEEE Congress. – start-page: 823 year: 2007 end-page: 830 ident: b0185 article-title: Supervised feature selection via dependence estimation publication-title: Proceedings of the 24th International Conference on Machine Learning – ICML ’07 – start-page: 487 year: 2016 end-page: 506 ident: b0180 article-title: Bio-inspired Swarm Techniques for Thermogram Breast Cancer Detection – volume: 15 start-page: 843 year: 2001 end-page: 873 ident: b0055 article-title: Rough set-aided keyword reduction for text categorization publication-title: Appl. Artif. Intell. – volume: 41 start-page: 1353 year: 2012 end-page: 1359 ident: b0020 article-title: A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease publication-title: Procedia Eng. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b0125 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – year: 2010 ident: b0120 article-title: A decision rule-based method for feature selection in predictive data mining publication-title: Expert Syst. Appl. – volume: 102 start-page: 9 year: 2009 end-page: 21 ident: b0050 article-title: An image-processing based algorithm to automatically identify plant disease visual symptoms publication-title: Biosyst. Eng. – volume: 21 start-page: 1033 year: 2010 end-page: 1047 ident: b0210 article-title: Discriminative semi-supervised feature selection via manifold regularization publication-title: IEEE Trans. Neural Networks – ident: 10.1016/j.compag.2017.02.026_b0155 doi: 10.1007/978-94-011-3534-4_7 – start-page: 1 year: 2015 ident: 10.1016/j.compag.2017.02.026_b0075 – volume: 11 start-page: 341 issue: 5 year: 1982 ident: 10.1016/j.compag.2017.02.026_b0150 article-title: Rough sets publication-title: Int. J. Comput. Inf. Sci. doi: 10.1007/BF01001956 – ident: 10.1016/j.compag.2017.02.026_b0010 doi: 10.4018/978-1-4666-6030-4.ch001 – start-page: 246 year: 2015 ident: 10.1016/j.compag.2017.02.026_b0130 article-title: Tomato leaves diseases detection approach based on Support Vector Machines – start-page: 1441 year: 2010 ident: 10.1016/j.compag.2017.02.026_b0100 article-title: Feature selection based on Rough set and modified genetic algorithm for intrusion detection – start-page: 280 year: 2011 ident: 10.1016/j.compag.2017.02.026_b0170 – volume: 27 start-page: 773 issue: 7 year: 2006 ident: 10.1016/j.compag.2017.02.026_b0215 article-title: Efficient adaptive density estimation per image pixel for the task of background subtraction publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.11.005 – ident: 10.1016/j.compag.2017.02.026_b0080 – volume: 28 start-page: 459 issue: 4 year: 2007 ident: 10.1016/j.compag.2017.02.026_b0195 article-title: Feature selection based on rough sets and particle swarm optimization publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2006.09.003 – start-page: 278 year: 2015 ident: 10.1016/j.compag.2017.02.026_b0205 article-title: Hybrid flower pollination algorithm with rough sets for feature selection – start-page: 491 year: 2008 ident: 10.1016/j.compag.2017.02.026_b0200 article-title: Grading method of leaf spot disease based on image processing – year: 2016 ident: 10.1016/j.compag.2017.02.026_b0085 article-title: Biometric cattle identification approach based on Weber’s Local Descriptor and AdaBoost classifier publication-title: Comput. Electron. doi: 10.1016/j.compag.2015.12.022 – start-page: 1 year: 2016 ident: 10.1016/j.compag.2017.02.026_b0030 article-title: Modified cuckoo search algorithm with rough sets for feature selection publication-title: Neural Comput. Appl. – start-page: 823 year: 2007 ident: 10.1016/j.compag.2017.02.026_b0185 article-title: Supervised feature selection via dependence estimation – ident: 10.1016/j.compag.2017.02.026_b0005 doi: 10.1109/CEC.2008.4631182 – volume: 102 start-page: 9 issue: 1 year: 2009 ident: 10.1016/j.compag.2017.02.026_b0050 article-title: An image-processing based algorithm to automatically identify plant disease visual symptoms publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2008.09.030 – year: 2008 ident: 10.1016/j.compag.2017.02.026_b0115 article-title: Feature selection based-on genetic algorithm for image annotation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2008.03.051 – volume: 66 start-page: 38 issue: 1 year: 2009 ident: 10.1016/j.compag.2017.02.026_b0135 article-title: The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2008.11.007 – volume: 14 start-page: 471 issue: 3 year: 1973 ident: 10.1016/j.compag.2017.02.026_b0090 article-title: Feature lists and confusion matrices publication-title: Percept. Psychophys. doi: 10.3758/BF03211185 – ident: 10.1016/j.compag.2017.02.026_b0110 doi: 10.2991/icacsei.2013.77 – volume: 41 start-page: 1353 year: 2012 ident: 10.1016/j.compag.2017.02.026_b0020 article-title: A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.07.321 – volume: 1 start-page: 131 issue: 3 year: 1997 ident: 10.1016/j.compag.2017.02.026_b0060 article-title: Feature selection for classification publication-title: Intell. Data Anal. doi: 10.1016/S1088-467X(97)00008-5 – start-page: 346 year: 2014 ident: 10.1016/j.compag.2017.02.026_b0070 article-title: New approach for feature selection based on rough set and bat algorithm – volume: 4 start-page: 40 year: 2010 ident: 10.1016/j.compag.2017.02.026_b0015 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 – start-page: 291 year: 2012 ident: 10.1016/j.compag.2017.02.026_b0140 article-title: BBA: A binary bat algorithm for feature selection – ident: 10.1016/j.compag.2017.02.026_b0025 – volume: 41 start-page: 2250 issue: 5 year: 2014 ident: 10.1016/j.compag.2017.02.026_b0165 article-title: A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.09.023 – volume: 9 start-page: 229 year: 2009 ident: 10.1016/j.compag.2017.02.026_b0040 article-title: Investigation into the classification of diseases of sugar beet leaves using multispectral images publication-title: EJ van Henten, D. – volume: 2 start-page: 460 issue: 3 year: 2012 ident: 10.1016/j.compag.2017.02.026_b0160 article-title: Classification of rice leaf diseases based on morphological changes publication-title: Int. J. Inf. – start-page: 487 year: 2016 ident: 10.1016/j.compag.2017.02.026_b0180 – volume: 15 start-page: 167 issue: 2 year: 1999 ident: 10.1016/j.compag.2017.02.026_b0105 article-title: Modelling prognostic power of cardiac tests using rough sets publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(98)00051-7 – volume: 11 start-page: 1160 issue: 10 year: 2002 ident: 10.1016/j.compag.2017.02.026_b0095 article-title: Comparison of texture features based on Gabor filters publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2002.804262 – volume: 2016 start-page: 10 issue: 1 year: 2016 ident: 10.1016/j.compag.2017.02.026_b0175 article-title: The prediction of virus mutation using neural networks and rough set techniques publication-title: EURASIP J. Bioinformatics Syst. Biol. doi: 10.1186/s13637-016-0042-0 – ident: 10.1016/j.compag.2017.02.026_b0190 doi: 10.1109/SOCPAR.2015.7492777 – volume: 21 start-page: 1033 issue: 7 year: 2010 ident: 10.1016/j.compag.2017.02.026_b0210 article-title: Discriminative semi-supervised feature selection via manifold regularization publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2010.2047114 – start-page: 275 year: 2005 ident: 10.1016/j.compag.2017.02.026_b0045 article-title: A model based on ant colony system and rough set theory to feature selection – volume: 15 start-page: 843 issue: 9 year: 2001 ident: 10.1016/j.compag.2017.02.026_b0055 article-title: Rough set-aided keyword reduction for text categorization publication-title: Appl. Artif. Intell. doi: 10.1080/088395101753210773 – volume: 17 start-page: 903 issue: 06 year: 2003 ident: 10.1016/j.compag.2017.02.026_b0145 article-title: A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S021800140300271X – ident: 10.1016/j.compag.2017.02.026_b0035 – volume: 5 start-page: 845 issue: Aug year: 2004 ident: 10.1016/j.compag.2017.02.026_b0065 article-title: Feature selection for unsupervised learning publication-title: J. Mach. Learn. Res. – year: 2010 ident: 10.1016/j.compag.2017.02.026_b0120 article-title: A decision rule-based method for feature selection in predictive data mining publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.06.031 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.compag.2017.02.026_b0125 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 |
| SSID | ssj0016987 |
| Score | 2.5086908 |
| Snippet | •Feature selection algorithm using the integration of moths-flame optimization and rough set was introduced.•Automatic tomato disease detection approach based... Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 86 |
| SubjectTerms | Agronomy automatic detection Blight Butterflies & moths data collection disease detection Fitness Fungi Genetic algorithms Machine learning Moth flame optimization Optimization Particle swarm optimization Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) Plant diseases powdery mildew Rough set theory Size reduction Solanum lycopersicum var. lycopersicum Support vector machines Theory tomatoes Tomato’s disease |
| Title | An improved moth flame optimization algorithm based on rough sets for tomato diseases detection |
| URI | https://dx.doi.org/10.1016/j.compag.2017.02.026 https://www.proquest.com/docview/1932166075 https://www.proquest.com/docview/2000484759 https://www.proquest.com/docview/2131870898 |
| Volume | 136 |
| WOSCitedRecordID | wos000399851200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4ftYezKsnZDg70ZD8tyJPsxjIxusLKHFvJmJFlO2yV2sZ3Qn7Of2qOLndBu7fowCCZWLGH7-3LOkXQuCH2iOqKUxEVIUpWECWVRKCXNQqFLJQFzzRJpi03w4-N0Ps9-jka_-1iYzZJXVXp1lV3-V6ihDcA2obMPgHsYFBrgO4AOR4Adjv8E_LQyoY9NvQFT0uAQlAC6DmqQDSsfdBmI5aJuzruzVWC0WGF2DFy5nlZ3rfM8rFemKozfv2mDQnfWaavatWb7khAuz_O2oo71sRWLxuf12HIHLHUT0u7SFsh6vQxmruiR8wES0hNINHqIIPpR_zrrnBv4aSu2auRIl5ULrzC7Vqvd5QtQiSZP4mR3RZPBNJa5KkmDSKa7QrXPlW1PXP3bW4LfrUFcfLae-wvjssdtLtb4D3m2b-i_wSuxd3i7yN0ouRklj2L4sEdoP-aTDET__vTbbP592KliWepC8v1j9OGZ1ofw9t38zfy5YQhY6-bkOXrmpyV46uj0Ao109RI9nW4hfIXyaYV7YmFDLGyJhXeJhQdiYUssDE2WWNgQCwOxsCMW7omFB2K9RqdfZydfjkJfniNUScK6kIJmjESS0URMCiVBsPNExROpioRIWhJFslSQkpRcxZLwVJZlSiKVxiVYToRL-gbtVXWl3yKcMU40LUjKpE4mlAtRaJLxgkeF6ajHiPZvLVc-d70pobLM78JsjMKh16XL3XLP9bwHJPf2p7Mrc2DZPT0Pe_xyLwra3EyNCGNgk4_Rx-FnkN5mS05Uul63pggsqFCTc_OOawjoXR6lWfrugQ90gJ5s_3KHaK9r1vo9eqw23XnbfPBMvgZknNBc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+moth+flame+optimization+algorithm+based+on+rough+sets+for+tomato+diseases+detection&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Hassanien%2C+Aboul+Ella&rft.au=Gaber%2C+Tarek&rft.au=Mokhtar%2C+Usama&rft.au=Hefny%2C+Hesham&rft.date=2017-04-15&rft.issn=0168-1699&rft.volume=136&rft.spage=86&rft.epage=96&rft_id=info:doi/10.1016%2Fj.compag.2017.02.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2017_02_026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |