Respiration Monitoring via Forcecardiography Sensors
In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients’ discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic senso...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 21; číslo 12; s. 3996 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
09.06.2021
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients’ discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous recording of different physiological data. This study presents a performance analysis of respiration monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration (EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is a novel technique that records the cardiac-induced vibrations of the chest wall via specific force sensors, which provide seismocardiogram-like information, along with a novel component that seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component (R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR (sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99, 0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland–Altman limits of agreement: ±0.61 s vs. ±1.5 s). This study represents a first proof of concept for the simultaneous recording of respiration signals and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory interactions, also paving the way for the continuous, long-term monitoring of patients with heart and pulmonary diseases. |
|---|---|
| AbstractList | In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients’ discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous recording of different physiological data. This study presents a performance analysis of respiration monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration (EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is a novel technique that records the cardiac-induced vibrations of the chest wall via specific force sensors, which provide seismocardiogram-like information, along with a novel component that seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component (R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR (sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99, 0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland–Altman limits of agreement: ±0.61 s vs. ±1.5 s). This study represents a first proof of concept for the simultaneous recording of respiration signals and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory interactions, also paving the way for the continuous, long-term monitoring of patients with heart and pulmonary diseases. In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients' discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous recording of different physiological data. This study presents a performance analysis of respiration monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration (EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is a novel technique that records the cardiac-induced vibrations of the chest wall via specific force sensors, which provide seismocardiogram-like information, along with a novel component that seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component (R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR (sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99, 0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland-Altman limits of agreement: ±0.61 s vs. ±1.5 s). This study represents a first proof of concept for the simultaneous recording of respiration signals and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory interactions, also paving the way for the continuous, long-term monitoring of patients with heart and pulmonary diseases.In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients' discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous recording of different physiological data. This study presents a performance analysis of respiration monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration (EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is a novel technique that records the cardiac-induced vibrations of the chest wall via specific force sensors, which provide seismocardiogram-like information, along with a novel component that seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component (R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR (sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99, 0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland-Altman limits of agreement: ±0.61 s vs. ±1.5 s). This study represents a first proof of concept for the simultaneous recording of respiration signals and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory interactions, also paving the way for the continuous, long-term monitoring of patients with heart and pulmonary diseases. |
| Author | Andreozzi, Emilio Polley, Caitlin Esposito, Daniele Gargiulo, Gaetano D. Bifulco, Paolo Punzo, Vincenzo Centracchio, Jessica |
| AuthorAffiliation | 3 The MARCS Institute, Western Sydney University, Penrith, NSW 2751, Australia 1 Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, 80125 Napoli, Italy; jessica.centracchio@unina.it (J.C.); vinc.punzo@studenti.unina.it (V.P.); daniele.esposito@unina.it (D.E.) 2 School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia; caitlin.polley@westernsydney.edu.au (C.P.); g.gargiulo@uws.edu.au (G.D.G.) |
| AuthorAffiliation_xml | – name: 2 School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia; caitlin.polley@westernsydney.edu.au (C.P.); g.gargiulo@uws.edu.au (G.D.G.) – name: 3 The MARCS Institute, Western Sydney University, Penrith, NSW 2751, Australia – name: 1 Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, 80125 Napoli, Italy; jessica.centracchio@unina.it (J.C.); vinc.punzo@studenti.unina.it (V.P.); daniele.esposito@unina.it (D.E.) |
| Author_xml | – sequence: 1 givenname: Emilio orcidid: 0000-0003-4829-3941 surname: Andreozzi fullname: Andreozzi, Emilio – sequence: 2 givenname: Jessica orcidid: 0000-0003-3422-8727 surname: Centracchio fullname: Centracchio, Jessica – sequence: 3 givenname: Vincenzo surname: Punzo fullname: Punzo, Vincenzo – sequence: 4 givenname: Daniele orcidid: 0000-0003-0716-8431 surname: Esposito fullname: Esposito, Daniele – sequence: 5 givenname: Caitlin orcidid: 0000-0002-1918-0393 surname: Polley fullname: Polley, Caitlin – sequence: 6 givenname: Gaetano D. orcidid: 0000-0002-2616-2804 surname: Gargiulo fullname: Gargiulo, Gaetano D. – sequence: 7 givenname: Paolo orcidid: 0000-0002-9585-971X surname: Bifulco fullname: Bifulco, Paolo |
| BookMark | eNplkU1rXCEUhqWkNJ-L_IOBbNrFNOrRe3VTKCFfkFJokrU4epw43NGp3gnk39fJJKVJV4o-5zl63n2yk3JCQo4Z_Qqg6WnljHHQuvtA9pjgYqo4pzv_7HfJfq0LSjkAqE9kFwSnvdJ6j4hfWFex2DHmNPmRUxxziWk-eYx2cpGLQ2eLj3le7OrhaXKLqeZSD8nHYIeKRy_rAbm_OL87u5re_Ly8Pvt-M3VCdOMUrEYhgu65dTPHeq4Qe-jAS6H6QL1TM-8lBpAQUIreBzbrBfdUOKAaGRyQ663XZ7swqxKXtjyZbKN5PshlbmwZoxvQaMZUCKCcgE1zZTUTTnYyKK46qWVzfdu6VuvZEr3DNBY7vJG-vUnxwczzo2nz2zia4POLoOTfa6yjWcbqcBhswryuhrdfCUa1EA09eYcu8rqkNqoNJZlmwFWjTreUK7nWgsG4OD4H0frHwTBqNumav-m2ii_vKl6f_z_7B5Z3o7E |
| CitedBy_id | crossref_primary_10_3390_s22239339 crossref_primary_10_1038_s41598_023_33319_4 crossref_primary_10_3390_s23115351 crossref_primary_10_3390_machines10010057 crossref_primary_10_1109_JSEN_2024_3448539 crossref_primary_10_3390_s23198114 crossref_primary_10_3390_s24051525 crossref_primary_10_3390_s23136200 crossref_primary_10_3390_s25051608 crossref_primary_10_1109_TIM_2024_3400346 crossref_primary_10_3389_frobt_2022_778594 crossref_primary_10_3390_bioengineering9030089 crossref_primary_10_1667_RADE_22_00012_1 crossref_primary_10_3390_s24144432 crossref_primary_10_1088_1674_4926_24090035 crossref_primary_10_3389_fphys_2021_725716 crossref_primary_10_3390_machines10111017 crossref_primary_10_3390_s23104684 crossref_primary_10_1145_3596599 crossref_primary_10_3390_bioengineering9040167 crossref_primary_10_1016_j_icte_2025_04_002 crossref_primary_10_3390_fi14060183 crossref_primary_10_3390_s22197566 crossref_primary_10_3390_electronics11152444 crossref_primary_10_1007_s12013_024_01568_3 crossref_primary_10_1049_sil2_1548873 crossref_primary_10_3390_bios14020090 crossref_primary_10_3390_s24072235 crossref_primary_10_3390_bioengineering9090444 crossref_primary_10_3390_mi12111282 |
| Cites_doi | 10.1007/BF01617716 10.1088/0950-7671/39/9/308 10.1007/s11325-018-1755-y 10.1007/s13246-017-0612-9 10.1007/978-3-319-63856-0_21 10.1145/2370216.2370261 10.1364/BOE.8.004838 10.1016/j.sna.2018.07.006 10.3390/s17071464 10.1109/MeMeA.2011.5966735 10.1109/10.544342 10.1109/JSEN.2018.2877617 10.1109/JSEN.2019.2960194 10.3390/s18041067 10.3390/s19040908 10.1088/0967-3334/33/10/1643 10.3390/s19143085 10.1109/IEMBS.2005.1615897 10.1109/JSEN.2020.3023486 10.1088/0957-0233/19/12/125302 10.1016/j.measurement.2005.07.005 10.1109/JSEN.2019.2917617 10.1109/JSEN.2009.2031845 10.3390/s20061596 10.1007/978-3-031-01617-2 10.1109/LSENS.2017.2787099 10.1109/JSEN.2014.2312353 10.1007/978-3-540-36841-0_494 10.3390/machines2010087 10.1038/s41746-019-0083-3 10.3390/s140813830 10.1088/0967-3334/36/2/N35 10.1016/0250-6874(86)80053-1 10.3390/s17010171 10.1080/10255842.2017.1406081 10.7567/JJAP.52.04CL05 10.1109/ISSC.2017.7983620 10.1109/SAS.2015.7133567 10.3390/polym11091518 10.3390/s17051050 10.1016/0924-2716(90)90055-G 10.1109/TBME.2007.910679 10.1109/JSEN.2014.2339739 10.1007/978-3-642-03904-1_78 10.3390/s17092108 10.1109/JSEN.2017.2787556 10.1155/2015/151859 10.1152/jappl.1975.38.2.360 10.1016/B978-1-4377-1604-7.00007-5 10.1109/JSEN.2010.2082524 10.3389/fnbot.2019.00114 10.3390/s150819618 10.1007/978-3-319-30973-6 10.3390/s18040995 10.3390/mi7030035 10.1109/JSEN.2020.2994264 10.3390/s19010088 10.1016/j.ijpsycho.2005.02.003 10.1109/TITB.2009.2037614 10.3389/fphys.2020.00635 10.3390/s150716372 10.1088/1361-6579/ab299e 10.21014/acta_imeko.v4i3.289 10.3390/s18072144 10.1007/s11517-012-0954-0 10.1007/BF02348078 10.1109/EMBC.2018.8512958 10.1109/LED.2004.832657 10.1111/j.1475-097X.1984.tb00808.x 10.1364/BOE.7.004941 10.3390/s20123408 10.1088/1752-7163/aa8dbd 10.1109/IEMBS.2010.5627359 10.3390/ma10111334 10.1088/0967-3334/37/4/610 10.3390/s20061583 10.1155/2015/752540 10.1109/TBME.2018.2856700 10.1109/TBME.2016.2600945 10.1002/ppul.21416 10.1109/TBME.2010.2061846 10.21105/joss.00671 10.1088/1361-6579/abaaf0 10.5370/JEET.2014.9.1.334 10.1109/TBME.2016.2621037 10.1109/TBME.2006.871888 10.3390/s18082553 10.1109/JSEN.2018.2791400 10.3390/s17040893 10.3390/s20185446 10.3390/s20143885 10.3390/s8031508 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s21123996 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_9118ff38c43c4468a914c565f8286595 PMC8228286 10_3390_s21123996 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c446t-3a9e44f972acbc1728ee7363d5487f0dc8bdd5ef353fe547df1b742d04c309e13 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666705500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:32:29 EST 2025 Tue Nov 04 01:37:44 EST 2025 Sun Nov 09 10:00:13 EST 2025 Wed Nov 19 11:40:50 EST 2025 Sat Nov 29 07:08:44 EST 2025 Tue Nov 18 22:39:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-3a9e44f972acbc1728ee7363d5487f0dc8bdd5ef353fe547df1b742d04c309e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0716-8431 0000-0002-1918-0393 0000-0002-9585-971X 0000-0003-3422-8727 0000-0003-4829-3941 0000-0002-2616-2804 |
| OpenAccessLink | https://www.proquest.com/docview/2545191328?pq-origsite=%requestingapplication% |
| PMID | 34207899 |
| PQID | 2545191328 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9118ff38c43c4468a914c565f8286595 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8228286 proquest_miscellaneous_2548410944 proquest_journals_2545191328 crossref_citationtrail_10_3390_s21123996 crossref_primary_10_3390_s21123996 |
| PublicationCentury | 2000 |
| PublicationDate | 20210609 |
| PublicationDateYYYYMMDD | 2021-06-09 |
| PublicationDate_xml | – month: 6 year: 2021 text: 20210609 day: 9 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 ref_93 Massaroni (ref_61) 2020; 21 Yoshiya (ref_12) 1975; 38 ref_91 ref_90 Hoffmann (ref_76) 2011; 11 Lee (ref_30) 2008; 8 Charlton (ref_74) 2016; 37 Moussavi (ref_17) 2006; 1 ref_10 Zhao (ref_13) 2005; 38 ref_98 ref_97 ref_95 Yoon (ref_50) 2014; 9 ref_19 ref_16 Marks (ref_22) 1995; 11 Hassan (ref_71) 2017; 8 Adams (ref_66) 1990; 45 Choudhry (ref_87) 2020; 20 Teichmann (ref_46) 2011; 3 Corbishley (ref_6) 2008; 55 Folke (ref_1) 2003; 41 Kano (ref_32) 2018; 2 Saatchi (ref_2) 2011; 46 Abuella (ref_72) 2019; 20 ref_24 Gargiulo (ref_78) 2015; 36 ref_20 Laguna (ref_57) 2006; 53 Lu (ref_14) 2008; 19 ref_28 Sarro (ref_21) 1986; 10 Javaid (ref_100) 2017; 64 ref_26 Massaroni (ref_7) 2020; 11 Hu (ref_15) 2009; 9 ref_70 Yang (ref_38) 2015; 15 ref_77 Massaroni (ref_29) 2018; 18 ref_75 Storck (ref_23) 1996; 43 Reyes (ref_18) 2014; 14 Houtveen (ref_55) 2006; 59 ref_83 Gil (ref_60) 2013; 51 Fiorillo (ref_39) 2018; 281 ref_81 Esposito (ref_92) 2020; 13 ref_80 ref_89 ref_88 ref_86 ref_84 Gao (ref_58) 2018; 41 Atalay (ref_40) 2015; 15 Wang (ref_54) 2015; 15 Kundu (ref_44) 2013; 52 ref_56 Shivananju (ref_34) 2014; 14 Larsen (ref_53) 1984; 4 Tardi (ref_11) 2015; 2015 Kalkan (ref_27) 2004; 25 Yang (ref_99) 2018; 66 Lilly (ref_9) 1950; 2 Milici (ref_52) 2018; 18 ref_68 ref_65 ref_64 ref_63 ref_62 Elfaramawy (ref_82) 2019; 19 ref_35 ref_33 Liu (ref_59) 2020; 41 Sedghamiz (ref_96) 2018; 3 ref_31 Kroschel (ref_69) 2018; 2018 Chu (ref_4) 2019; 2 Scilingo (ref_41) 2010; 14 ref_37 Stuijk (ref_73) 2016; 7 Pandia (ref_49) 2012; 33 Liu (ref_8) 2019; 40 ref_47 Massaroni (ref_85) 2019; 19 ref_45 Massaroni (ref_67) 2017; 20 ref_43 ref_42 ref_101 Zakeri (ref_51) 2017; 64 ref_3 Gargiulo (ref_79) 2014; 2 ref_48 Cooper (ref_25) 1962; 39 ref_5 Singh (ref_36) 2018; 12 |
| References_xml | – volume: 11 start-page: 159 year: 1995 ident: ref_22 article-title: Measurement of respiratory rate and timing using a nasal thermocouple publication-title: J. Clin. Monit. doi: 10.1007/BF01617716 – volume: 39 start-page: 467 year: 1962 ident: ref_25 article-title: A fast-response pyroelectric thermal detector publication-title: J. Sci. Instrum. doi: 10.1088/0950-7671/39/9/308 – ident: ref_56 doi: 10.1007/s11325-018-1755-y – ident: ref_65 – volume: 41 start-page: 59 year: 2018 ident: ref_58 article-title: A principal component analysis based data fusion method for ECG-derived respiration from single-lead ECG publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-017-0612-9 – ident: ref_20 doi: 10.1007/978-3-319-63856-0_21 – ident: ref_63 doi: 10.1145/2370216.2370261 – volume: 8 start-page: 4838 year: 2017 ident: ref_71 article-title: Novel health monitoring method using an rgb camera publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.004838 – volume: 281 start-page: 156 year: 2018 ident: ref_39 article-title: Theory, technology and applications of piezoresistive sensors: A review publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2018.07.006 – ident: ref_28 doi: 10.3390/s17071464 – ident: ref_75 doi: 10.1109/MeMeA.2011.5966735 – volume: 43 start-page: 1187 year: 1996 ident: ref_23 article-title: Heat transfer evaluation of the nasal thermistor technique publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.544342 – volume: 19 start-page: 2 year: 2019 ident: ref_82 article-title: A Wireless Respiratory Monitoring System Using a Wearable Patch Sensor Network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2877617 – ident: ref_48 – ident: ref_10 – volume: 20 start-page: 3859 year: 2019 ident: ref_72 article-title: Non-contact vital signs monitoring through visible light sensing publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2960194 – ident: ref_101 doi: 10.3390/s18041067 – ident: ref_5 doi: 10.3390/s19040908 – volume: 33 start-page: 1643 year: 2012 ident: ref_49 article-title: Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer publication-title: Physiol. Meas. doi: 10.1088/0967-3334/33/10/1643 – ident: ref_70 doi: 10.3390/s19143085 – ident: ref_19 doi: 10.1109/IEMBS.2005.1615897 – ident: ref_97 – volume: 21 start-page: 12821 year: 2020 ident: ref_61 article-title: Contactless Methods for Measuring Respiratory Rate: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3023486 – volume: 19 start-page: 125302 year: 2008 ident: ref_14 article-title: Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/19/12/125302 – volume: 38 start-page: 230 year: 2005 ident: ref_13 article-title: Novel target type flowmeter based on a differential fiber Bragg grating sensor publication-title: Measurement doi: 10.1016/j.measurement.2005.07.005 – volume: 19 start-page: 17 year: 2019 ident: ref_85 article-title: Smart Textile Based on Piezoresistive Sensing Elements for Respiratory Monitoring publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2917617 – volume: 9 start-page: 1952 year: 2009 ident: ref_15 article-title: A simple fiber-optic flowmeter based on bending loss publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2009.2031845 – ident: ref_98 doi: 10.3390/s20061596 – volume: 1 start-page: 1 year: 2006 ident: ref_17 article-title: Fundamentals of respiratory sounds and analysis publication-title: Synth. Lect. Biomed. Eng. doi: 10.1007/978-3-031-01617-2 – volume: 2 start-page: 1 year: 2018 ident: ref_32 article-title: Silica Nanoparticle-Based Portable Respiration Sensor for Analysis of Respiration Rate, Pattern, and Phase during Exercise publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2017.2787099 – volume: 14 start-page: 2615 year: 2014 ident: ref_34 article-title: Highly sensitive carbon nanotubes coated etched fiber bragg grating sensor for humidity sensing publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2312353 – ident: ref_24 doi: 10.1007/978-3-540-36841-0_494 – volume: 2 start-page: 87 year: 2014 ident: ref_79 article-title: Problems in assessment of novel biopotential front-end with dry electrode: A brief review publication-title: Machines doi: 10.3390/machines2010087 – volume: 2 start-page: 8 year: 2019 ident: ref_4 article-title: Respiration rate and volume measurements using wearable strain sensors publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0083-3 – volume: 14 start-page: 13830 year: 2014 ident: ref_18 article-title: Tracheal sounds acquisition using smartphones publication-title: Sensors doi: 10.3390/s140813830 – volume: 36 start-page: N35 year: 2015 ident: ref_78 article-title: Electro-resistive bands for non-invasive cardiac and respiration monitoring, a feasibility study publication-title: Physiol. Meas. doi: 10.1088/0967-3334/36/2/N35 – volume: 10 start-page: 321 year: 1986 ident: ref_21 article-title: Thermal sensors based on the seebeck effect publication-title: Sens. Actuators doi: 10.1016/0250-6874(86)80053-1 – ident: ref_64 – ident: ref_16 doi: 10.3390/s17010171 – volume: 20 start-page: 1678 year: 2017 ident: ref_67 article-title: Analysis of breathing via optoelectronic systems: Comparison of four methods for computing breathing volumes and thoraco-abdominal motion pattern publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2017.1406081 – volume: 52 start-page: 04CL05 year: 2013 ident: ref_44 article-title: A wearable capacitive sensor for monitoring human respiratory rate publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.04CL05 – ident: ref_31 doi: 10.1109/ISSC.2017.7983620 – ident: ref_45 doi: 10.1109/SAS.2015.7133567 – volume: 3 start-page: 2695 year: 2011 ident: ref_46 article-title: Non-contacting monitoring of respiration and pulse based on capacitive coupling with thoracic tissue publication-title: Proc. World Congr. Eng. – ident: ref_83 doi: 10.3390/polym11091518 – ident: ref_88 doi: 10.3390/s17051050 – ident: ref_26 – volume: 45 start-page: 152 year: 1990 ident: ref_66 article-title: Evaluating regional body surface motion during breathing using stereophotogrammetry publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/0924-2716(90)90055-G – volume: 55 start-page: 1 year: 2008 ident: ref_6 article-title: Breathing Detection: Towards a Miniaturized, Wearable, Battery-Operated Monitoring System publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.910679 – volume: 15 start-page: 110 year: 2015 ident: ref_40 article-title: Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2339739 – ident: ref_42 doi: 10.1007/978-3-642-03904-1_78 – ident: ref_94 doi: 10.3390/s17092108 – volume: 18 start-page: 2125 year: 2018 ident: ref_29 article-title: Fiber Bragg Grating Probe for Relative Humidity and Respiratory Frequency Estimation: Assessment During Mechanical Ventilation publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2787556 – ident: ref_77 doi: 10.1155/2015/151859 – volume: 38 start-page: 360 year: 1975 ident: ref_12 article-title: A bidirectional respiratory flowmeter using the hot-wire principle publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1975.38.2.360 – ident: ref_95 doi: 10.1016/B978-1-4377-1604-7.00007-5 – volume: 11 start-page: 1112 year: 2011 ident: ref_76 article-title: Respiratory Monitoring System on the Basis of Capacitive Textile Force Sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2010.2082524 – volume: 13 start-page: 114 year: 2020 ident: ref_92 article-title: A Piezoresistive Array Armband With Reduced Number of Sensors for Hand Gesture Recognition publication-title: Front. Neurorobotics doi: 10.3389/fnbot.2019.00114 – volume: 15 start-page: 19618 year: 2015 ident: ref_38 article-title: A low-power and portable biomedical device for respiratory monitoring with a stable power source publication-title: Sensors doi: 10.3390/s150819618 – ident: ref_68 doi: 10.1007/978-3-319-30973-6 – ident: ref_37 doi: 10.3390/s18040995 – volume: 2018 start-page: 310 year: 2018 ident: ref_69 article-title: Contactless measurement of the respiration frequency by vibrometry publication-title: Stud. Sprachkommun. Elektron. Sprachsignalverarbeitung – ident: ref_35 doi: 10.3390/mi7030035 – volume: 20 start-page: 18 year: 2020 ident: ref_87 article-title: Design, Development and Characterization of Textile Stitch-Based Piezoresistive Sensors for Wearable Monitoring publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2994264 – ident: ref_3 doi: 10.3390/s19010088 – volume: 59 start-page: 97 year: 2006 ident: ref_55 article-title: Validation of the thoracic impedance derived respiratory signal using multilevel analysis publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2005.02.003 – volume: 14 start-page: 378 year: 2010 ident: ref_41 article-title: Comparative evaluation of susceptibility to motion artifact in different wearable systems for monitoring respiratory rate publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2037614 – volume: 11 start-page: 635 year: 2020 ident: ref_7 article-title: Remote Respiratory Monitoring in the Time of COVID-19 publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00635 – volume: 15 start-page: 16372 year: 2015 ident: ref_54 article-title: Instantaneous respiratory estimation from thoracic impedance by empirical mode decomposition publication-title: Sensors doi: 10.3390/s150716372 – volume: 40 start-page: 07TR01 year: 2019 ident: ref_8 article-title: Recent development of respiratory rate measurement technologies publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab299e – ident: ref_81 doi: 10.21014/acta_imeko.v4i3.289 – ident: ref_47 doi: 10.3390/s18072144 – volume: 51 start-page: 233 year: 2013 ident: ref_60 article-title: Deriving respiration from photoplethysmographic pulse width publication-title: Med Biol. Eng. Comput. doi: 10.1007/s11517-012-0954-0 – volume: 41 start-page: 377 year: 2003 ident: ref_1 article-title: Critical review of non-invasive respiratory monitoring in medical care publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02348078 – ident: ref_43 doi: 10.1109/EMBC.2018.8512958 – volume: 25 start-page: 526 year: 2004 ident: ref_27 article-title: A rapid-response, high-sensitivity nanophase humidity sensor for respiratory monitoring publication-title: IEEE Electron. Device. Lett. doi: 10.1109/LED.2004.832657 – volume: 4 start-page: 333 year: 1984 ident: ref_53 article-title: Impedance pneumography for long-term monitoring of respiration during sleep in adult males publication-title: Clin. Physiol. doi: 10.1111/j.1475-097X.1984.tb00808.x – volume: 7 start-page: 4941 year: 2016 ident: ref_73 article-title: Robust respiration detection from remote photoplethysmography publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.004941 – ident: ref_86 doi: 10.3390/s20123408 – volume: 12 start-page: 026003 year: 2018 ident: ref_36 article-title: Real-time human respiration carbon dioxide measurement device for cardiorespiratory assessment publication-title: J. Breath Res. doi: 10.1088/1752-7163/aa8dbd – ident: ref_80 doi: 10.1109/IEMBS.2010.5627359 – ident: ref_93 doi: 10.3390/ma10111334 – volume: 37 start-page: 610 year: 2016 ident: ref_74 article-title: An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/4/610 – ident: ref_84 doi: 10.3390/s20061583 – volume: 2015 start-page: 752540 year: 2015 ident: ref_11 article-title: Experimental assessment of a variable orifice flowmeter for respiratory monitoring publication-title: J. Sens. doi: 10.1155/2015/752540 – volume: 66 start-page: 784 year: 2018 ident: ref_99 article-title: An Independent Component Analysis Approach to Motion Noise Cancellation of Cardio-Mechanical Signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2856700 – volume: 64 start-page: 1277 year: 2017 ident: ref_100 article-title: Quantifying and Reducing Motion Artifacts in Wearable Seismocardiogram Measurements During Walking to Assess Left Ventricular Health publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2600945 – volume: 46 start-page: 523 year: 2011 ident: ref_2 article-title: Respiration Rate Monitoring Methods: A Review publication-title: Pediatric Pulmonol. doi: 10.1002/ppul.21416 – ident: ref_62 doi: 10.1109/TBME.2010.2061846 – volume: 3 start-page: 671 year: 2018 ident: ref_96 article-title: BioSigKit: A Matlab Toolbox and Interface for Analysis of BioSignals publication-title: J. Open Source Softw. doi: 10.21105/joss.00671 – volume: 41 start-page: 094001 year: 2020 ident: ref_59 article-title: Comparison of different modulations of photoplethysmography in extracting respiratory rate: From a physiological perspective publication-title: Physiol. Meas. doi: 10.1088/1361-6579/abaaf0 – volume: 9 start-page: 334 year: 2014 ident: ref_50 article-title: Improvement of dynamic respiration monitoring through sensor fusion of accelerometer and gyro-sensor publication-title: J. Electr. Eng. Technol. doi: 10.5370/JEET.2014.9.1.334 – volume: 64 start-page: 1786 year: 2017 ident: ref_51 article-title: Analyzing Seismocardiogram Cycles to Identify the Respiratory Phases publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2621037 – volume: 53 start-page: 1273 year: 2006 ident: ref_57 article-title: A robust method for ECG-based estimation of the respiratory frequency during stress testing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.871888 – ident: ref_91 doi: 10.3390/s18082553 – volume: 18 start-page: 2145 year: 2018 ident: ref_52 article-title: Wireless Wearable Magnetometer-Based Sensor for Sleep Quality Monitoring publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2791400 – ident: ref_33 doi: 10.3390/s17040893 – volume: 2 start-page: 113 year: 1950 ident: ref_9 article-title: Flowmeter for recording respiratory flow of human subjects publication-title: Method. Med. Res. – ident: ref_89 doi: 10.3390/s20185446 – ident: ref_90 doi: 10.3390/s20143885 – volume: 8 start-page: 1508 year: 2008 ident: ref_30 article-title: Synthesis and characterization of carbon nitride films for micro humidity sensors publication-title: Sensors doi: 10.3390/s8031508 |
| SSID | ssj0023338 |
| Score | 2.4937356 |
| Snippet | In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients’ discomfort and improve the... In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients' discomfort and improve the... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3996 |
| SubjectTerms | Abdomen Accelerometers Antennas continuous monitoring Electrodes force sensor force-sensitive resistors forcecardiography Heart Humidity Patients Physiology Respiration Sensors Sleep Textiles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEB1EPOhB_MTqKlU8eCnbNuk2Oaq4eFrED9hbSZMJLkhX2t39_U7abtmC4MVrM9DkTYfMayZvAG4xRoU8wYBpiURQmAmENSzIkxE3QoUcUdfNJtLJREyn8mWj1ZerCWvkgRvghhSMwlomNGeaqItQMuKashDr7j8nslYvDVO5JlMt1WLEvBodIUakflgRzXGXOEe93acW6e9llv26yI2NZnwA-22G6N83MzuELSyOYG9DN_AY-Gt7QE6g-k1UugF_NVP-eF5q1HWVaSNG7b8RU52X1Ql8jJ_eH5-Dtv1B4Ba6CJiSyLmVaax0rl0fKcSUjZhxJMOGRovcmAQtS5jFhKfGRjkRXRNyzUKJETuF7WJe4Bn4lttYhion2CyPQ1RKRwQoM7nJiTEwD-7WsGS61QZ3LSq-MuIIDsGsQ9CDm870uxHE-M3owWHbGTgN6_oBeTZrPZv95VkPBmvPZG1gVRnxWco5iUILD667YQoJd86hCpwvaxvBI-Kt3IO059HehPojxeyzFtemhMm9__w_VnABu7ErgXE_beQAthflEi9hR68Ws6q8qr_YH85L8ak priority: 102 providerName: Directory of Open Access Journals |
| Title | Respiration Monitoring via Forcecardiography Sensors |
| URI | https://www.proquest.com/docview/2545191328 https://www.proquest.com/docview/2548410944 https://pubmed.ncbi.nlm.nih.gov/PMC8228286 https://doaj.org/article/9118ff38c43c4468a914c565f8286595 |
| Volume | 21 |
| WOSCitedRecordID | wos000666705500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOvBGhZRUQBy5Rk9jZOKeKVruCQ1erAtJyihx7XFZCSUm2PfLbmXGy20ZCvXDxwR7JTmbGnm88ngH4gClqlBlGwhRIAEXYSDkroiqbSqt0LBGNLzaRLxZqtSqWg8OtG8Iqt3ui36htY9hHfkRAhowNwk7q-PJ3xFWj-HZ1KKFxH_a5bDbLeb66AVyC8FefTUgQtD_qCOzwU87p6AzyqfpH9uU4OvLWcTN_8r8LfQqPB0Mz_NRLxjO4h_VzeHQr_eALkOfDPTvxJuyVmwfC67UO501r0Phg1T6ndfiVAG_Tdi_h-3z27fRzNFRRiAxBvU0kdIFSuiJPtakMl6NCzMVUWMYqLrZGVdZm6EQmHGYyty6pCC_bWBoRF5iIV7BXNzW-htBJlxaxrqaZczKNUWuTGCmErWxFwEME8HH7X0szpBjnShe_SoIazIJyx4IA3u9IL_u8Gv8iOmHm7Ag4FbbvaNqLctCsknZr5ZxQtBD-YKWLRBoyUx0_kM-KLIDDLZ_KQT-78oZJAbzbDZNm8XWJrrG58jRKJgR_ZQD5SCRGCxqP1OufPkc32V08_5u7Jz-AhynHyLBXpziEvU17hW_hgbnerLt24oXZt2oC-yezxfJ84n0G1J79mVHf8svZ8sdfpZ8HlQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcylsNFAgIJC5Rk9jZxAeEeK1atawQFGlvqWOPYSWUtMm2iD_Fb-xMHttGQtx64BpbiZP5Mp7PHn8D8AJj1CgTDIRRSARF2CBzVgRFMpE206FENG2xiXQ2y-Zz9XkN_gxnYTitcvCJraO2leE18m0iMhRsEHfK3hwdB1w1indXhxIaHSz28PcvomzN690PZN-XcTz9ePB-J-irCgSGqM8yEFqhlE6lsTaF4fJMiKmYCMuxuwutyQprE3QiEQ4TmVoXFcQfbSiNCBVGgu57Ba6SH0-Z7KXzc4IniO916kVCqHC7IXLFR0cnozmvLQ0wimfH2ZgXprfprf_tw9yGjT6Q9t92yL8Da1jehZsX5BXvgfzS5xEQ9vzOeXGDf7rQ_rSqDZo2GbfT7Pa_EqGv6uY-fLuUYT-A9bIqcRN8J12sQl1MEudkHKLWJjJSCFvYgoiV8ODVYMfc9BLqXMnjZ05Uik2er0zuwfNV16NON-Rvnd4xGFYdWOq7vVDV3_Pec-Q0G2XOiYwGwi-caRVJQ2G4YwGARCUebA24yHv_0-TnoPDg2aqZPAdvB-kSq5O2TyYjovfSg3QEwdGAxi3l4kerQU5xJT__4b8f_hSu7xx82s_3d2d7j-BGzPlAvIKltmB9WZ_gY7hmTpeLpn7S_kg-HF42QM8Ahh5fKg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I0IFAgIJC7RJrGzsQ8IAWXFqrBa8ZDaU3DscbsSSkqyLeKv8esY50UjIW49cI1HsZP5PJ7PHs8APMUYFfIEA6YlEkFhJhDWsCBPZtwIFXJE3RSbSJdLsb8vV1vwq78L48Iqe5vYGGpTardHPiUiQ84GcScxtV1YxGp3_vL4e-AqSLmT1r6cRguRPfz5g-hb_WKxS7p-Fsfzt5_fvAu6CgOBJhq0CZiSyLmVaax0rl2pJsSUzZhxfrwNjRa5MQlaljCLCU-NjXLikibkmoUSI0bvvQDb5JLzeALbq8WH1cFA9xixvzaXEWMynNZEtdxF0tloBWwKBYy823Fs5pnFbn7tf_5N1-Fq52L7r9o5cQO2sLgJV84kXrwF_GMXYUCo9Fuz5hr807Xy52WlUTdhum02b_8TUf2yqm_Dl3MZ9h2YFGWBd8G33MYyVPkssZbHISqlI80ZM7nJiXIxD573Os10l1zd1fj4lhHJcurPBvV78GQQPW4zivxN6LUDxiDgkoA3D8rqMOtsSkbrlLCWCRqI-2ChZMQ1OejWpQZIZOLBTo-RrLNMdfYHIB48HprJpriDIlVgedLICB4R8ecepCM4jgY0binWR012cvI4Xf_3_t35I7hEuMzeL5Z79-Fy7AKF3NaW3IHJpjrBB3BRn27WdfWwm1U-fD1vhP4G215peQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiration+Monitoring+via+Forcecardiography+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Andreozzi%2C+Emilio&rft.au=Centracchio%2C+Jessica&rft.au=Punzo%2C+Vincenzo&rft.au=Esposito%2C+Daniele&rft.date=2021-06-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=12&rft.spage=3996&rft_id=info:doi/10.3390%2Fs21123996&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21123996 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |