Support Vector Machine Classifier With Pinball Loss

Traditionally, the hinge loss is used to construct support vector machine (SVM) classifiers. The hinge loss is related to the shortest distance between sets and the corresponding classifier is hence sensitive to noise and unstable for re-sampling. In contrast, the pinball loss is related to the quan...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 36; no. 5; pp. 984 - 997
Main Authors: Xiaolin Huang, Lei Shi, Suykens, Johan A. K.
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.05.2014
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Traditionally, the hinge loss is used to construct support vector machine (SVM) classifiers. The hinge loss is related to the shortest distance between sets and the corresponding classifier is hence sensitive to noise and unstable for re-sampling. In contrast, the pinball loss is related to the quantile distance and the result is less sensitive. The pinball loss has been deeply studied and widely applied in regression but it has not been used for classification. In this paper, we propose a SVM classifier with the pinball loss, called pin-SVM, and investigate its properties, including noise insensitivity, robustness, and misclassification error. Besides, insensitive zone is applied to the pin-SVM for a sparse model. Compared to the SVM with the hinge loss, the proposed pin-SVM has the same computational complexity and enjoys noise insensitivity and re-sampling stability.
AbstractList Traditionally, the hinge loss is used to construct support vector machine (SVM) classifiers. The hinge loss is related to the shortest distance between sets and the corresponding classifier is hence sensitive to noise and unstable for re-sampling. In contrast, the pinball loss is related to the quantile distance and the result is less sensitive. The pinball loss has been deeply studied and widely applied in regression but it has not been used for classification. In this paper, we propose a SVM classifier with the pinball loss, called pin-SVM, and investigate its properties, including noise insensitivity, robustness, and misclassification error. Besides, insensitive zone is applied to the pin-SVM for a sparse model. Compared to the SVM with the hinge loss, the proposed pin-SVM has the same computational complexity and enjoys noise insensitivity and re-sampling stability.Traditionally, the hinge loss is used to construct support vector machine (SVM) classifiers. The hinge loss is related to the shortest distance between sets and the corresponding classifier is hence sensitive to noise and unstable for re-sampling. In contrast, the pinball loss is related to the quantile distance and the result is less sensitive. The pinball loss has been deeply studied and widely applied in regression but it has not been used for classification. In this paper, we propose a SVM classifier with the pinball loss, called pin-SVM, and investigate its properties, including noise insensitivity, robustness, and misclassification error. Besides, insensitive zone is applied to the pin-SVM for a sparse model. Compared to the SVM with the hinge loss, the proposed pin-SVM has the same computational complexity and enjoys noise insensitivity and re-sampling stability.
Traditionally, the hinge loss is used to construct support vector machine (SVM) classifiers. The hinge loss is related to the shortest distance between sets and the corresponding classifier is hence sensitive to noise and unstable for re-sampling. In contrast, the pinball loss is related to the quantile distance and the result is less sensitive. The pinball loss has been deeply studied and widely applied in regression but it has not been used for classification. In this paper, we propose a SVM classifier with the pinball loss, called pin-SVM, and investigate its properties, including noise insensitivity, robustness, and misclassification error. Besides, insensitive zone is applied to the pin-SVM for a sparse model. Compared to the SVM with the hinge loss, the proposed pin-SVM has the same computational complexity and enjoys noise insensitivity and re-sampling stability.
Author Xiaolin Huang
Lei Shi
Suykens, Johan A. K.
Author_xml – sequence: 1
  surname: Xiaolin Huang
  fullname: Xiaolin Huang
  email: huangxl06@mails.tsinghua.edu.cn
  organization: Dept. of Electr. Eng. (ESAT-STADIUS), Katholieke Univ. Leuven, Leuven, Belgium
– sequence: 2
  surname: Lei Shi
  fullname: Lei Shi
  email: leishi@fudan.edu.cn
  organization: Dept. of Electr. Eng. (ESAT-STADIUS), Katholieke Univ. Leuven, Leuven, Belgium
– sequence: 3
  givenname: Johan A. K.
  surname: Suykens
  fullname: Suykens, Johan A. K.
  email: johan.suykens@esat.kuleuven.be
  organization: Dept. of Electr. Eng. (ESAT-STADIUS), Katholieke Univ. Leuven, Leuven, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28496714$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/26353231$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1LHEEQBuAmGOJqcs0lEAYkkMtsuvq7j7JoIqxEiJpj09Nbgy2zM5vumUP-fXrdVUGQnOryVFH11hE56IceCfkIdA5A7bfrq9PLizmjwOegzRsyY6BobZllB2RGQbHaGGYOyVHO95SCkJS_I4dMcckZhxnhv6bNZkhjdYthHFJ16cNd7LFadD7n2EZM1e843lVXsW9811XLIef35G3ru4wf9vWY3JyfXS9-1Muf3y8Wp8s6CKHGmq2YaalnYSWNVgotcsMDAgjFgQZt27asbBothFyxRgJTXmvJGNONCQH5Mfm6m7tJw58J8-jWMQfsOt_jMGUHGkByZbj6P1UlIqosmEJPXtD7YUp9OcSBFNJyrbku6vNeTc0aV26T4tqnv-4xuQK-7IHPwXdt8n2I-dkZYZUGUZzYuZBKdAlbF-Loxzj0Y_Kxc0Dd9pHu4ZFu-8hy13bL-Yu2x8mvNnzaNUREfMJKUcGN5f8AsvajLg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s00500_022_07040_9
crossref_primary_10_1016_j_cie_2022_108630
crossref_primary_10_1016_j_patcog_2019_107106
crossref_primary_10_1007_s10489_017_1087_9
crossref_primary_10_1007_s13042_020_01124_4
crossref_primary_10_1007_s00186_022_00798_6
crossref_primary_10_1016_j_ins_2023_119402
crossref_primary_10_1016_j_patcog_2023_110134
crossref_primary_10_1016_j_engappai_2018_08_003
crossref_primary_10_1016_j_knosys_2023_110819
crossref_primary_10_1002_mma_9588
crossref_primary_10_3390_app14093641
crossref_primary_10_1007_s00521_022_07882_2
crossref_primary_10_1016_j_ijar_2024_109281
crossref_primary_10_1007_s00357_018_9249_y
crossref_primary_10_1007_s11227_023_05082_w
crossref_primary_10_1002_cem_3472
crossref_primary_10_1016_j_chemolab_2018_03_014
crossref_primary_10_1016_j_eswa_2023_120189
crossref_primary_10_1007_s00521_022_07460_6
crossref_primary_10_1016_j_patcog_2024_110544
crossref_primary_10_1016_j_asoc_2024_112331
crossref_primary_10_1007_s10700_017_9282_z
crossref_primary_10_1007_s00500_018_3350_3
crossref_primary_10_1007_s10489_022_03237_5
crossref_primary_10_1016_j_asoc_2019_105483
crossref_primary_10_1016_j_joi_2020_101121
crossref_primary_10_1007_s42952_021_00154_0
crossref_primary_10_1007_s40745_020_00253_5
crossref_primary_10_1016_j_neunet_2023_12_013
crossref_primary_10_1061_JWRMD5_WRENG_6867
crossref_primary_10_1016_j_eswa_2023_122497
crossref_primary_10_1007_s00521_017_2966_z
crossref_primary_10_1007_s10489_020_01847_5
crossref_primary_10_1016_j_ins_2019_04_032
crossref_primary_10_1109_TPAMI_2021_3092177
crossref_primary_10_1016_j_ipm_2020_102381
crossref_primary_10_1007_s00521_017_3099_0
crossref_primary_10_1109_TSMC_2019_2896642
crossref_primary_10_1016_j_asoc_2021_107929
crossref_primary_10_3390_risks10080154
crossref_primary_10_1016_j_neucom_2025_129728
crossref_primary_10_1016_j_patcog_2024_110637
crossref_primary_10_1007_s10489_025_06356_x
crossref_primary_10_1007_s11222_025_10631_9
crossref_primary_10_1007_s10994_022_06238_0
crossref_primary_10_1007_s10462_021_10127_8
crossref_primary_10_1002_ett_3820
crossref_primary_10_1155_2019_7102946
crossref_primary_10_1016_j_knosys_2023_111214
crossref_primary_10_1088_1757_899X_394_5_052001
crossref_primary_10_3233_JIFS_169807
crossref_primary_10_1016_j_ejor_2024_04_028
crossref_primary_10_1007_s11063_025_11783_5
crossref_primary_10_1109_ACCESS_2023_3262270
crossref_primary_10_3390_sym13091652
crossref_primary_10_1016_j_knosys_2022_109990
crossref_primary_10_1016_j_engappai_2023_107567
crossref_primary_10_1016_j_neucom_2014_08_033
crossref_primary_10_1177_1748006X211047308
crossref_primary_10_1016_j_asoc_2024_111454
crossref_primary_10_1016_j_neunet_2024_106767
crossref_primary_10_1007_s10489_019_01422_7
crossref_primary_10_1016_j_procs_2022_11_211
crossref_primary_10_1007_s00521_018_3843_0
crossref_primary_10_1016_j_asoc_2021_108231
crossref_primary_10_1016_j_apm_2024_115694
crossref_primary_10_1007_s10489_022_04400_8
crossref_primary_10_1016_j_aei_2025_103371
crossref_primary_10_3390_electronics13020438
crossref_primary_10_1016_j_knosys_2017_03_012
crossref_primary_10_1007_s11063_020_10346_0
crossref_primary_10_1007_s11042_024_19228_2
crossref_primary_10_1109_ACCESS_2019_2935008
crossref_primary_10_1007_s43674_021_00026_4
crossref_primary_10_32604_cmc_2023_033417
crossref_primary_10_1016_j_ipm_2021_102809
crossref_primary_10_1016_j_neunet_2023_07_021
crossref_primary_10_1016_j_eswa_2023_122168
crossref_primary_10_1016_j_neunet_2025_107942
crossref_primary_10_1007_s42243_020_00501_1
crossref_primary_10_1016_j_eswa_2024_123883
crossref_primary_10_1007_s13042_024_02121_7
crossref_primary_10_1007_s00521_025_11237_y
crossref_primary_10_1016_j_asoc_2024_111311
crossref_primary_10_1016_j_patcog_2022_108706
crossref_primary_10_1109_TFUZZ_2024_3421638
crossref_primary_10_1016_j_neucom_2024_127669
crossref_primary_10_1007_s00521_019_04627_6
crossref_primary_10_1080_00207721_2020_1765047
crossref_primary_10_1109_TPAMI_2021_3075339
crossref_primary_10_1016_j_knosys_2022_110074
crossref_primary_10_1016_j_engappai_2023_106427
crossref_primary_10_1007_s11227_024_06697_3
crossref_primary_10_1016_j_neunet_2024_107087
crossref_primary_10_1007_s00357_024_09488_w
crossref_primary_10_1016_j_engappai_2020_103635
crossref_primary_10_1109_TNNLS_2017_2734812
crossref_primary_10_1109_ACCESS_2021_3089847
crossref_primary_10_1007_s10994_021_06061_z
crossref_primary_10_1016_j_neucom_2018_06_070
crossref_primary_10_1371_journal_pone_0212361
crossref_primary_10_1007_s10489_020_02085_5
crossref_primary_10_1016_j_patcog_2020_107395
crossref_primary_10_1016_j_asoc_2019_02_022
crossref_primary_10_1016_j_engappai_2021_104458
crossref_primary_10_1109_TKDE_2025_3582849
crossref_primary_10_3934_math_2025369
crossref_primary_10_1016_j_ins_2021_04_031
crossref_primary_10_1007_s10489_025_06799_2
crossref_primary_10_1088_1742_6596_1631_1_012181
crossref_primary_10_1016_j_engappai_2025_111020
crossref_primary_10_1007_s44163_023_00057_5
crossref_primary_10_3389_fnins_2020_00837
crossref_primary_10_1007_s12243_020_00767_2
crossref_primary_10_1007_s10489_020_01865_3
crossref_primary_10_1016_j_neucom_2025_130101
crossref_primary_10_1016_j_asoc_2022_109209
crossref_primary_10_1016_j_engappai_2023_107730
crossref_primary_10_1007_s00138_020_01058_5
crossref_primary_10_1088_1757_899X_569_5_052061
crossref_primary_10_1109_TNNLS_2020_2978858
crossref_primary_10_1109_TNNLS_2015_2513006
crossref_primary_10_3390_sym14020289
crossref_primary_10_1016_j_chemolab_2017_11_018
crossref_primary_10_1016_j_chemolab_2019_03_010
crossref_primary_10_1109_TNNLS_2016_2547324
crossref_primary_10_1016_j_asoc_2020_106840
crossref_primary_10_1007_s10489_017_0961_9
crossref_primary_10_1016_j_ejor_2023_04_025
crossref_primary_10_1016_j_ins_2023_119136
crossref_primary_10_1007_s00521_020_05225_7
crossref_primary_10_1109_ACCESS_2020_3010096
crossref_primary_10_1109_TSMC_2024_3375021
crossref_primary_10_1145_3409264
crossref_primary_10_1016_j_knosys_2019_105211
crossref_primary_10_1109_ACCESS_2018_2877444
crossref_primary_10_1109_TAI_2023_3330136
crossref_primary_10_1007_s00521_018_3921_3
crossref_primary_10_1109_ACCESS_2022_3212535
crossref_primary_10_1109_TIT_2022_3222266
crossref_primary_10_1007_s00521_022_07814_0
crossref_primary_10_1109_ACCESS_2019_2941986
crossref_primary_10_1109_TFUZZ_2017_2752138
crossref_primary_10_1016_j_patcog_2025_112021
crossref_primary_10_1016_j_chemolab_2017_07_008
crossref_primary_10_1109_TCYB_2022_3165879
crossref_primary_10_1002_widm_1546
crossref_primary_10_1109_TFUZZ_2023_3296503
crossref_primary_10_1007_s11063_022_10930_6
crossref_primary_10_1016_j_giq_2019_101407
crossref_primary_10_1007_s11063_018_9890_9
crossref_primary_10_1109_TNNLS_2016_2616445
crossref_primary_10_1093_comjnl_bxaf020
crossref_primary_10_1109_ACCESS_2020_3022087
crossref_primary_10_1109_ACCESS_2024_3406439
crossref_primary_10_1016_j_asoc_2021_107099
crossref_primary_10_1016_j_neunet_2024_106476
crossref_primary_10_1109_ACCESS_2019_2940983
crossref_primary_10_1007_s11063_018_9875_8
crossref_primary_10_1016_j_neucom_2021_06_044
crossref_primary_10_1109_ACCESS_2024_3462964
crossref_primary_10_3390_info15040235
crossref_primary_10_1016_j_eswa_2023_122759
crossref_primary_10_1007_s10489_019_01465_w
crossref_primary_10_1007_s11222_024_10382_z
crossref_primary_10_1016_j_neunet_2025_107998
crossref_primary_10_3233_JIFS_191845
crossref_primary_10_3390_math12243935
crossref_primary_10_1016_j_artint_2023_103877
crossref_primary_10_1109_TNNLS_2017_2654357
crossref_primary_10_3390_math10203736
crossref_primary_10_1016_j_engappai_2023_105991
crossref_primary_10_1007_s10479_022_04922_x
crossref_primary_10_1007_s12559_024_10307_y
crossref_primary_10_1016_j_ces_2025_121386
crossref_primary_10_1109_ACCESS_2023_3237641
crossref_primary_10_1007_s10489_022_03707_w
crossref_primary_10_1007_s00521_022_07655_x
crossref_primary_10_1016_j_ins_2019_03_023
crossref_primary_10_1080_10106049_2021_1923833
crossref_primary_10_1109_TCSS_2021_3122828
crossref_primary_10_1016_j_knosys_2018_07_022
crossref_primary_10_1007_s13042_017_0708_2
crossref_primary_10_1109_TPAMI_2021_3087160
crossref_primary_10_1016_j_asoc_2021_107232
crossref_primary_10_1007_s10462_020_09836_3
crossref_primary_10_1016_j_neunet_2022_03_006
crossref_primary_10_1016_j_neucom_2025_130893
crossref_primary_10_1016_j_knosys_2021_106801
crossref_primary_10_1016_j_chemolab_2018_04_003
crossref_primary_10_1016_j_patcog_2024_110469
crossref_primary_10_1109_TNNLS_2020_3027062
crossref_primary_10_1109_LSP_2019_2949390
crossref_primary_10_1007_s00521_021_06173_6
crossref_primary_10_1016_j_bspc_2024_107191
crossref_primary_10_1109_JBHI_2021_3059910
crossref_primary_10_1016_j_ejor_2020_11_027
crossref_primary_10_1016_j_eswa_2024_123480
crossref_primary_10_1109_TNNLS_2023_3258464
crossref_primary_10_1016_j_asoc_2022_109125
crossref_primary_10_1016_j_neucom_2014_05_063
crossref_primary_10_1109_ACCESS_2024_3485214
crossref_primary_10_1145_3086820
crossref_primary_10_1109_ACCESS_2019_2919185
crossref_primary_10_1109_ACCESS_2024_3504814
crossref_primary_10_1016_j_patcog_2021_107860
crossref_primary_10_1016_j_eswa_2022_119413
crossref_primary_10_3390_sym16101373
crossref_primary_10_1109_TPAMI_2024_3465535
crossref_primary_10_1109_TFUZZ_2023_3333571
crossref_primary_10_1016_j_asoc_2023_110899
crossref_primary_10_1007_s11634_020_00390_y
crossref_primary_10_1016_j_eswa_2023_121331
crossref_primary_10_1007_s13042_019_00957_y
crossref_primary_10_1080_01919512_2025_2535441
crossref_primary_10_1016_j_knosys_2015_12_005
crossref_primary_10_1007_s13748_025_00368_x
crossref_primary_10_1109_TNNLS_2023_3280349
crossref_primary_10_1016_j_neucom_2018_08_079
crossref_primary_10_1016_j_compeleceng_2024_109925
crossref_primary_10_1016_j_patcog_2017_03_011
crossref_primary_10_1016_j_knosys_2018_02_010
crossref_primary_10_3390_s21186260
crossref_primary_10_1016_j_neucom_2023_126458
crossref_primary_10_1186_s40537_021_00464_4
crossref_primary_10_1016_j_asoc_2024_112349
crossref_primary_10_1016_j_neucom_2024_128258
crossref_primary_10_1007_s10489_023_04511_w
crossref_primary_10_1016_j_epsr_2022_108803
crossref_primary_10_1007_s10489_022_03183_2
crossref_primary_10_3233_IDA_205613
Cites_doi 10.1093/oso/9780198538493.001.0001
10.1109/IJCNN.2013.6706864
10.1109/TPAMI.2008.225
10.1198/016214507000000617
10.1109/72.950155
10.1142/9789812776655
10.1162/089976602753633411
10.1109/TSMCC.2002.807277
10.1198/016214505000000907
10.1016/j.spl.2004.03.002
10.1017/CBO9780511618796
10.1016/j.ins.2006.03.015
10.1023/A:1018628609742
10.1017/CBO9780511754098
10.3150/10-BEJ267
10.1109/TCSII.2004.824044
10.1016/j.ins.2007.12.012
10.1007/978-1-4757-2440-0
10.1016/j.ins.2007.03.028
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7TB
F28
FR3
7X8
DOI 10.1109/TPAMI.2013.178
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
Technology Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 997
ExternalDocumentID 3377376261
26353231
28496714
10_1109_TPAMI_2013_178
6604389
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7TB
F28
FR3
7X8
ID FETCH-LOGICAL-c446t-2d28f0a2cd58766e9e383ce1146310c79ff1788b7445d2b5126a7752227b8cce3
IEDL.DBID RIE
ISICitedReferencesCount 253
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336054200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 17:06:53 EDT 2025
Sun Sep 28 03:19:21 EDT 2025
Sun Nov 30 05:26:36 EST 2025
Mon Jul 21 05:51:16 EDT 2025
Wed Apr 02 07:15:13 EDT 2025
Tue Nov 18 22:11:23 EST 2025
Sat Nov 29 05:15:56 EST 2025
Wed Aug 27 02:47:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords pinball loss
support vector machine
Classification
Function evaluation
Data analysis
Stability
Vector support machine
Noise immunity
Sampling
Computational complexity
Quantile
Signal to noise ratio
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-2d28f0a2cd58766e9e383ce1146310c79ff1788b7445d2b5126a7752227b8cce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://lirias.kuleuven.be/bitstream/123456789/417138/2/12-162.pdf
PMID 26353231
PQID 1545937737
PQPubID 85458
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2013_178
proquest_miscellaneous_1620106918
proquest_journals_1545937737
pubmed_primary_26353231
proquest_miscellaneous_1711536836
ieee_primary_6604389
pascalfrancis_primary_28496714
crossref_primary_10_1109_TPAMI_2013_178
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2014
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References zhang (ref10) 0
ref13
ref15
xu (ref9) 2009; 10
ref14
ref33
ref11
ref32
zhang (ref29) 2004; 5
lanckriet (ref7) 2003; 3
ref1
steinwart (ref22) 2008
ref16
ref19
ref18
mason (ref23) 0
bi (ref2) 0
christmann (ref20) 2004; 5
suykens (ref31) 1999; 9
yoon (ref12) 0; 3
herbrich (ref4) 0; 2
frank (ref34) 2010
ref24
ref26
ref25
shivaswamy (ref8) 2006; 7
ref21
steinwart (ref17) 0
ref27
guyon (ref3) 1996
ref6
ref5
bishop (ref30) 1995
reid (ref28) 2011; 12
References_xml – year: 1995
  ident: ref30
  publication-title: Neural Networks for Pattern Recognition
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 12
  start-page: 731
  year: 2011
  ident: ref28
  article-title: Information, divergence and risk for binary experiments
  publication-title: J Mach Learn Res
– start-page: 181
  year: 1996
  ident: ref3
  article-title: Discovering informative patterns and data cleaning
  publication-title: Advances in Knowledge Discovery and Data Mining
– ident: ref33
  doi: 10.1109/IJCNN.2013.6706864
– ident: ref27
  doi: 10.1109/TPAMI.2008.225
– start-page: 512
  year: 0
  ident: ref23
  article-title: Boosting algorithms as gradient descent in function space
  publication-title: Proc NIPS
– ident: ref24
  doi: 10.1198/016214507000000617
– ident: ref11
  doi: 10.1109/72.950155
– ident: ref19
  doi: 10.1142/9789812776655
– volume: 7
  start-page: 1283
  year: 2006
  ident: ref8
  article-title: Second order cone programming approaches for handling missing and uncertain data
  publication-title: J Mach Learn Res
– ident: ref32
  doi: 10.1162/089976602753633411
– ident: ref5
  doi: 10.1109/TSMCC.2002.807277
– ident: ref26
  doi: 10.1198/016214505000000907
– ident: ref25
  doi: 10.1016/j.spl.2004.03.002
– year: 2010
  ident: ref34
  publication-title: UCI Machine Learning Repository
– volume: 3
  start-page: 2049
  year: 0
  ident: ref12
  article-title: A role of total margin in support vector machines
  publication-title: Proc Int Joint Conf Neural Networks
– ident: ref21
  doi: 10.1017/CBO9780511618796
– ident: ref13
  doi: 10.1016/j.ins.2006.03.015
– start-page: 305
  year: 0
  ident: ref17
  article-title: How SVMs can estimate quantiles and the median
  publication-title: Proc NIPS
– start-page: 161
  year: 0
  ident: ref2
  article-title: Support vector classification with input data uncertainty
  publication-title: Proc NIPS
– volume: 9
  start-page: 293
  year: 1999
  ident: ref31
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– ident: ref16
  doi: 10.1017/CBO9780511754098
– ident: ref18
  doi: 10.3150/10-BEJ267
– ident: ref6
  doi: 10.1109/TCSII.2004.824044
– ident: ref15
  doi: 10.1016/j.ins.2007.12.012
– volume: 3
  start-page: 555
  year: 2003
  ident: ref7
  article-title: A robust minimax approach to classification
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 880
  year: 0
  ident: ref4
  article-title: Adaptive margin support vector machines for classification
  publication-title: Proc 9th Int Conf Artificial Neural Networks
– volume: 5
  start-page: 1225
  year: 2004
  ident: ref29
  article-title: Statistical analysis of some multi-category large margin classification methods
  publication-title: J Mach Learn Res
– ident: ref1
  doi: 10.1007/978-1-4757-2440-0
– year: 2008
  ident: ref22
  publication-title: Support Vector Machines
– volume: 10
  start-page: 1485
  year: 2009
  ident: ref9
  article-title: Robustness and regularization of support vector machines
  publication-title: J Mach Learn Res
– ident: ref14
  doi: 10.1016/j.ins.2007.03.028
– volume: 5
  start-page: 1007
  year: 2004
  ident: ref20
  article-title: On robustness properties of convex risk minimization methods for pattern recognition
  publication-title: J Mach Learn Res
– start-page: 3
  year: 0
  ident: ref10
  article-title: Using class-center vectors to build support vector machines
  publication-title: Proc IEEE Signal Processing Soc Workshop Neural Networks for Signal Processing
SSID ssj0014503
Score 2.5896506
Snippet Traditionally, the hinge loss is used to construct support vector machine (SVM) classifiers. The hinge loss is related to the shortest distance between sets...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 984
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Classification
Classifier design and evaluation
Classifiers
Computer science; control theory; systems
Data processing. List processing. Character string processing
Exact sciences and technology
Fasteners
Hinges
Kernel
Loss measurement
Memory organisation. Data processing
Noise
Optimization
Quantiles
Regression
Robustness
Software
Support vector machines
Theoretical computing
Title Support Vector Machine Classifier With Pinball Loss
URI https://ieeexplore.ieee.org/document/6604389
https://www.ncbi.nlm.nih.gov/pubmed/26353231
https://www.proquest.com/docview/1545937737
https://www.proquest.com/docview/1620106918
https://www.proquest.com/docview/1711536836
Volume 36
WOSCitedRecordID wos000336054200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6oEeCuXRpsDKlSpxIZDEjic-IgSiEqA90HZvkePYYqVVttoHv5-xk01BAqTeImWUOOOZ-Bt7Zj6AH04USgiKTmySmVhoNLHmJokTk2pONuREFVhLbvDurhiN1HANTvpaGGttSD6zp_4ynOXXU7P0W2VnUvpzK7UO64jY1mr1JwYiDyzIhGDIwymM6Bo0pok6ux-e3_70WVz8NEVP0OcbsPCMpy_WokCu4lMj9Zy041pai7dxZ1h_rrb-b-Tb8KnDmey8NYzPsGabHdhacTiwzqV34OOzhoS7wD3JJwFy9jts5rPbkGppWaDOHDtaQtmf8eKBDcdNpScTdkOftQe_ri7vL67jjlYhNhT7LeKszgqX6MzUOf0KpVWWolRjfXkyYT2DyjlSU1GhEHmdVYQIpEbMfdFsVRhj-T5sNNPGfgXGUdssrwj6ChQqybQzqk4cx0paR5FnBPFKwaXpeo576otJGWKPRJVhbko_NyW9NILjXv5v223jTcldr-VeqlNwBIMX89ffp1VYSUxFBIerCS07b52XHkYSTEOOEXzvb5Of-cMT3djpkmSkzxuQKi3ekUHC11wWXEbwpTWWfwPobO7b6wM_gE16vmhTKQ9hYzFb2iP4YB4X4_lsQAY_KgbB4J8AroH4Bw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4xhjT2MBgMFmDMSJP2spTEduz4ESEQiLbqQ2G8RY5ja5WqFNF2v39nJw1Dgkl7i-ST7Jzvct_F5_sAvjmeK84xO7EJNTHX0sSamSROTKoZ2pDjZWAt6cvhML-_V6M1-NHdhbHWhuIz2_OP4Sy_mpml_1V2KoQ_t1Jv4G3GOU2b21rdmQHPAg8yYhj0cUwk2haNaaJOx6OzwbWv42K9VHqKPt-ChVGWPotGgV7FF0fqOerHNcQWryPPEIEut_5v7dvwoUWa5KwxjY-wZusd2FqxOJDWqXfg_V8tCXeBeZpPhOTkLvzOJ4NQbGlJIM-cOAyi5Odk8YuMJnWpp1PSx9f6BLeXF-Pzq7glVogNZn-LmFY0d4mmpsrwYyisspinGusvKCPaM1I5h2rKS8l5VtESMYHQUmb-2myZG2PZHqzXs9p-BsKktjQrEfxyyVVCtTOqShyTpbAOc88I4pWCC9N2HffkF9MiZB-JKsLeFH5vCpw0gu-d_EPTb-NVyV2v5U6qVXAEx8_2rxvHOKyETHkER6sNLVp_nRceSCJQk0xGcNINo6f54xNd29kSZYSvHBAqzf8hIxFhM5EzEcF-YyxPC2ht7uDlhX-Fd1fjQb_oXw9vDmET5-JNYeURrC8el_YLbJjfi8n88TiY_R_hIPpm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+Vector+Machine+Classifier+With+Pinball+Loss&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Huang%2C+Xiaolin&rft.au=Shi%2C+Lei&rft.au=Suykens%2C+Johan+A+K&rft.date=2014-05-01&rft.eissn=1939-3539&rft.volume=36&rft.issue=5&rft.spage=984&rft_id=info:doi/10.1109%2FTPAMI.2013.178&rft_id=info%3Apmid%2F26353231&rft.externalDocID=26353231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon