Learned Block Iterative Shrinkage Thresholding Algorithm for Photothermal Super Resolution Imaging

Block-sparse regularization is already well known in active thermal imaging and is used for multiple-measurement-based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. We show the benefits of using a learned block iter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 15; s. 5533
Hlavní autoři: Hauffen, Jan Christian, Kästner, Linh, Ahmadi, Samim, Jung, Peter, Caire, Giuseppe, Ziegler, Mathias
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 25.07.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Block-sparse regularization is already well known in active thermal imaging and is used for multiple-measurement-based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. We show the benefits of using a learned block iterative shrinkage thresholding algorithm (LBISTA) that is able to learn the choice of regularization parameters, without the need to manually select them. In addition, LBISTA enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present LBISTA and compare it with state-of-the-art block iterative shrinkage thresholding using synthetically generated and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations. Thus, this allows us to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super-resolution imaging.
AbstractList Block-sparse regularization is already well known in active thermal imaging and is used for multiple-measurement-based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. We show the benefits of using a learned block iterative shrinkage thresholding algorithm (LBISTA) that is able to learn the choice of regularization parameters, without the need to manually select them. In addition, LBISTA enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present LBISTA and compare it with state-of-the-art block iterative shrinkage thresholding using synthetically generated and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations. Thus, this allows us to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super-resolution imaging.
Block-sparse regularization is already well known in active thermal imaging and is used for multiple-measurement-based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. We show the benefits of using a learned block iterative shrinkage thresholding algorithm (LBISTA) that is able to learn the choice of regularization parameters, without the need to manually select them. In addition, LBISTA enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present LBISTA and compare it with state-of-the-art block iterative shrinkage thresholding using synthetically generated and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations. Thus, this allows us to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super-resolution imaging.Block-sparse regularization is already well known in active thermal imaging and is used for multiple-measurement-based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. We show the benefits of using a learned block iterative shrinkage thresholding algorithm (LBISTA) that is able to learn the choice of regularization parameters, without the need to manually select them. In addition, LBISTA enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present LBISTA and compare it with state-of-the-art block iterative shrinkage thresholding using synthetically generated and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations. Thus, this allows us to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super-resolution imaging.
Author Ahmadi, Samim
Kästner, Linh
Jung, Peter
Caire, Giuseppe
Ziegler, Mathias
Hauffen, Jan Christian
AuthorAffiliation 1 Communication and Information Theory, Berlin Institute of Technology, 10623 Berlin, Germany; caire@tu-berlin.de
3 Department of Non-Destructive Testing, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany; samim_193@hotmail.de (S.A.); mathias.ziegler@bam.de (M.Z.)
2 Industry Grade Networks and Clouds, Faculty of Electrical Engineering, and Computer Science, Berlin Institute of Technology, 10623 Berlin, Germany; d.kaestner@tu-berlin.de
AuthorAffiliation_xml – name: 1 Communication and Information Theory, Berlin Institute of Technology, 10623 Berlin, Germany; caire@tu-berlin.de
– name: 3 Department of Non-Destructive Testing, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany; samim_193@hotmail.de (S.A.); mathias.ziegler@bam.de (M.Z.)
– name: 2 Industry Grade Networks and Clouds, Faculty of Electrical Engineering, and Computer Science, Berlin Institute of Technology, 10623 Berlin, Germany; d.kaestner@tu-berlin.de
Author_xml – sequence: 1
  givenname: Jan Christian
  orcidid: 0000-0003-4071-1600
  surname: Hauffen
  fullname: Hauffen, Jan Christian
– sequence: 2
  givenname: Linh
  orcidid: 0000-0001-5263-4687
  surname: Kästner
  fullname: Kästner, Linh
– sequence: 3
  givenname: Samim
  surname: Ahmadi
  fullname: Ahmadi, Samim
– sequence: 4
  givenname: Peter
  orcidid: 0000-0001-7679-9697
  surname: Jung
  fullname: Jung, Peter
– sequence: 5
  givenname: Giuseppe
  surname: Caire
  fullname: Caire, Giuseppe
– sequence: 6
  givenname: Mathias
  surname: Ziegler
  fullname: Ziegler, Mathias
BookMark eNplkk1v1DAQhi3Uin7AgX8QiQsclvojieMLUqn4WGmlVrScrYk9Sbx14sV2KvHvSdmC2nIay37eZ6zRnJCDKUxIyBtGPwih6FninFVVJcQLcsxKXq4azunBo_MROUlpSykXQjQvyZGoGtVQ0RyTdoMQJ7TFJx_MbbHOGCG7Oyyuh-imW-ixuBkipiF466a-OPd9iC4PY9GFWFwNIYc8YBzBF9fzDmPxHVPwc3ZhKtYj9EvmFTnswCd8_VBPyY8vn28uvq02l1_XF-eblSnLOq9425VCCSyFbUEqVFwpYztZ8lbWijesrMA0XWuNYhykNE3dihIaBrRGxqw4Jeu91wbY6l10I8RfOoDTfy5C7DXE7IxHDVgDyK4T3HYlhU61cqlGWgstNW2zuD7uXbu5HdEanHIE_0T69GVyg-7DnVZCUMmqRfDuQRDDzxlT1qNLBr2HCcOcNK9VTRmtOFvQt8_QbZjjtIxKc0mplFxVfKHO9pSJIaWInTYuw_2cl_7Oa0b1_S7of7uwJN4_S_z9_v_sb03CtiY
CitedBy_id crossref_primary_10_1080_17686733_2023_2223392
crossref_primary_10_3390_s22218476
crossref_primary_10_1038_s41598_023_30494_2
Cites_doi 10.1080/17686733.2019.1686896
10.1109/TIM.2022.3154803
10.1137/S0036139994277828
10.1109/TIT.2011.2143890
10.1109/TSP.2011.2105478
10.1109/MSP.2007.4286571
10.1109/TII.2021.3054411
10.1201/9781439895214
10.1002/9783527693306
10.1080/17686733.2019.1655247
10.1109/IEMBS.2005.1616506
10.1109/CVPR.2018.00291
10.3390/s18020609
10.1038/s41598-020-64796-6
10.1364/OPTICA.4.000017
10.1080/17686733.2020.1829889
10.1109/MMAR.2013.6669964
10.1137/080716542
10.1109/TNNLS.2020.2980383
10.1109/TIT.2006.871582
10.1016/j.mser.2008.11.001
10.1016/j.optlaseng.2020.106279
10.1109/TSP.2017.2708040
10.1038/s41598-020-77979-y
10.1088/0266-5611/21/1/012
10.1016/j.ndteint.2020.102228
10.1016/j.bbe.2018.03.009
10.1109/TSP.2012.2196694
10.1063/1.4995410
10.1109/ICASSP.2009.4960226
10.3390/met10010103
10.1002/admt.201800717
10.1109/ACCESS.2020.2978237
10.1016/j.ijheatmasstransfer.2018.11.089
10.1007/s10114-013-1564-y
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22155533
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ae6aa7ff32df40af9b7f40c7ddab0cb8
PMC9330715
10_3390_s22155533
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  grantid: 400857558
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-2bf4393e43dba79e9299cdf742b76928145ac8fbdc912a77c86b34a81a06e11d3
IEDL.DBID 7X7
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839702700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:42:22 EDT 2025
Tue Nov 04 02:00:27 EST 2025
Thu Sep 04 17:00:06 EDT 2025
Tue Oct 07 07:10:38 EDT 2025
Tue Nov 18 22:16:51 EST 2025
Sat Nov 29 07:10:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-2bf4393e43dba79e9299cdf742b76928145ac8fbdc912a77c86b34a81a06e11d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5263-4687
0000-0001-7679-9697
0000-0003-4071-1600
OpenAccessLink https://www.proquest.com/docview/2700772952?pq-origsite=%requestingapplication%
PMID 35898038
PQID 2700772952
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ae6aa7ff32df40af9b7f40c7ddab0cb8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9330715
proquest_miscellaneous_2696010521
proquest_journals_2700772952
crossref_citationtrail_10_3390_s22155533
crossref_primary_10_3390_s22155533
PublicationCentury 2000
PublicationDate 20220725
PublicationDateYYYYMMDD 2022-07-25
PublicationDate_xml – month: 7
  year: 2022
  text: 20220725
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Donoho (ref_14) 2006; 52
Lv (ref_21) 2011; 59
Lin (ref_24) 2013; 29
Ahmadi (ref_32) 2020; 10
Beck (ref_16) 2009; 2
Murray (ref_27) 2017; 4
Metz (ref_36) 2021; 18
Ahmadi (ref_31) 2020; 134
ref_34
Hung (ref_9) 2009; 64
Ahmadi (ref_26) 2021; 17
Samadi (ref_7) 2020; 10
ref_10
Kim (ref_19) 2020; 8
Recinella (ref_5) 2019; 131
Baraniuk (ref_15) 2007; 24
Altenburg (ref_35) 2020; 19
Bryan (ref_11) 1996; 56
Burgholzer (ref_29) 2020; 7
ref_18
ref_17
Wang (ref_37) 2021; 32
ref_39
ref_38
Wang (ref_12) 2004; 21
Boufounos (ref_25) 2011; 57
Strzelecki (ref_4) 2018; 38
ref_22
ref_43
ref_20
ref_41
ref_1
ref_3
Burgholzer (ref_28) 2017; 111
Elhamifar (ref_23) 2012; 60
Seppala (ref_33) 2016; 12
Ahmadi (ref_40) 2022; 71
Ahmadi (ref_30) 2020; 111
Borgerding (ref_42) 2017; 65
ref_8
Kukreja (ref_13) 2006; 39
Ortega (ref_2) 2019; 4
ref_6
References_xml – volume: 39
  start-page: 814
  year: 2006
  ident: ref_13
  article-title: A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification
  publication-title: IFAC Proc.
– volume: 18
  start-page: 50
  year: 2021
  ident: ref_36
  article-title: Active thermography for quality assurance of 3D-printed polymer structures
  publication-title: Quant. Infrared Thermogr. J.
  doi: 10.1080/17686733.2019.1686896
– volume: 71
  start-page: 4502509
  year: 2022
  ident: ref_40
  article-title: Photothermal-SR-Net: A Customized Deep Unfolding Neural Network for Photothermal Super Resolution Imaging
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3154803
– volume: 56
  start-page: 715
  year: 1996
  ident: ref_11
  article-title: An inverse problem in thermal imaging
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139994277828
– volume: 57
  start-page: 3864
  year: 2011
  ident: ref_25
  article-title: Sparse recovery from combined fusion frame measurements
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2143890
– volume: 59
  start-page: 1371
  year: 2011
  ident: ref_21
  article-title: The Group Lasso for Stable Recovery of Block-Sparse Signal Representations
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2105478
– volume: 24
  start-page: 187
  year: 2007
  ident: ref_15
  article-title: Compressive Sensing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.4286571
– volume: 17
  start-page: 7368
  year: 2021
  ident: ref_26
  article-title: Multidimensional Reconstruction of Internal Defects in Additively Manufactured Steel Using Photothermal Super Resolution Combined With Virtual Wave-Based Image Processing
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3054411
– ident: ref_10
  doi: 10.1201/9781439895214
– ident: ref_1
  doi: 10.1002/9783527693306
– volume: 7
  start-page: 268
  year: 2020
  ident: ref_29
  article-title: Blind structured illumination as excitation for super-resolution photothermal radiometry
  publication-title: Quant. Infrared Thermogr. J.
  doi: 10.1080/17686733.2019.1655247
– ident: ref_6
  doi: 10.1109/IEMBS.2005.1616506
– ident: ref_18
– ident: ref_39
  doi: 10.1109/CVPR.2018.00291
– ident: ref_3
  doi: 10.3390/s18020609
– volume: 10
  start-page: 7857
  year: 2020
  ident: ref_7
  article-title: Low-cost active thermography using cellphone infrared cameras: From early detection of dental caries to quantification of THC in oral fluid
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-64796-6
– volume: 4
  start-page: 17
  year: 2017
  ident: ref_27
  article-title: Super-resolution photoacoustic microscopy using blind structured illumination
  publication-title: Optica
  doi: 10.1364/OPTICA.4.000017
– volume: 19
  start-page: 97
  year: 2020
  ident: ref_35
  article-title: In-situ monitoring of a laser metal deposition (LMD) process: Comparison of MWIR, SWIR and high-speed NIR thermography
  publication-title: Quant. Infrared Thermogr. J.
  doi: 10.1080/17686733.2020.1829889
– ident: ref_41
  doi: 10.1109/MMAR.2013.6669964
– volume: 2
  start-page: 183
  year: 2009
  ident: ref_16
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 32
  start-page: 1110
  year: 2021
  ident: ref_37
  article-title: Feature Selection Using a Neural Network With Group Lasso Regularization and Controlled Redundancy
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2980383
– ident: ref_8
– volume: 12
  start-page: 71
  year: 2016
  ident: ref_33
  article-title: Infrared thermography of welding zones produced by polymer extrusion additive manufacturing
  publication-title: Addit. Manuf.
– volume: 52
  start-page: 1289
  year: 2006
  ident: ref_14
  article-title: Compressed Sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 64
  start-page: 73
  year: 2009
  ident: ref_9
  article-title: Review and comparison of shearography and active thermography for nondestructive evaluation
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2008.11.001
– volume: 134
  start-page: 106279
  year: 2020
  ident: ref_31
  article-title: Super resolution laser line scanning thermography
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2020.106279
– volume: 65
  start-page: 4293
  year: 2017
  ident: ref_42
  article-title: AMP-Inspired Deep Networks for Sparse Linear Inverse Problems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2708040
– volume: 10
  start-page: 22357
  year: 2020
  ident: ref_32
  article-title: Laser excited super resolution thermal imaging for nondestructive inspection of internal defects
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-77979-y
– volume: 21
  start-page: 183
  year: 2004
  ident: ref_12
  article-title: Hiearchical Bayesian models for inverse problems in heat conduction
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/1/012
– volume: 111
  start-page: 102228
  year: 2020
  ident: ref_30
  article-title: Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques
  publication-title: NDT E Int. J.
  doi: 10.1016/j.ndteint.2020.102228
– volume: 38
  start-page: 602
  year: 2018
  ident: ref_4
  article-title: Thermal modelling and screening method for skin pathologies using active thermography
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.03.009
– volume: 60
  start-page: 4094
  year: 2012
  ident: ref_23
  article-title: Block-sparse recovery via convex optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2196694
– volume: 111
  start-page: 031908
  year: 2017
  ident: ref_28
  article-title: Super-resolution thermographic imaging using blind structured illumination
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4995410
– ident: ref_38
– ident: ref_17
– ident: ref_22
  doi: 10.1109/ICASSP.2009.4960226
– ident: ref_34
  doi: 10.3390/met10010103
– ident: ref_43
– volume: 4
  start-page: 1800717
  year: 2019
  ident: ref_2
  article-title: Active mixing of disparate inks for multimaterial 3D printing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800717
– volume: 8
  start-page: 45874
  year: 2020
  ident: ref_19
  article-title: Element-Wise Adaptive Thresholds for Learned Iterative Shrinkage Thresholding Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978237
– ident: ref_20
– volume: 131
  start-page: 558
  year: 2019
  ident: ref_5
  article-title: Technology, application and potential of dynamic breast thermography for the detection of breast cancer
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.11.089
– volume: 29
  start-page: 1401
  year: 2013
  ident: ref_24
  article-title: Block sparse recovery via mixed l 2/l 1 minimization
  publication-title: Acta Math. Sin. Engl. Ser.
  doi: 10.1007/s10114-013-1564-y
SSID ssj0023338
Score 2.3874283
Snippet Block-sparse regularization is already well known in active thermal imaging and is used for multiple-measurement-based inverse problems. The main bottleneck of...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5533
SubjectTerms 3-D printers
active thermal imaging
Algorithms
Applied mathematics
block-sparsity
Cameras
deep unfolding
defect reconstruction
Defects
Heat detection
Inverse problems
Investigations
iterative shrinkage thresholding algorithm
laser thermography
Lasers
Mathematical models
Nondestructive testing
Optimization techniques
Regularization methods
Sparsity
Thermography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1C6CE9lDZpqdO0KKGHXkxsSZasY1IakksIJIHcjD67S7LeZdeb39-R7F3WUOilJ4M1YHlmJM3TSG8AvmvDROAiJlk5AhRuXG4Kp3OjalvTgAGudanYhLy9rZ-e1N1Oqa94JqynB-4Vd6690FqGwKgLvNBBGYlPK53TprAmXfMtpNqAqQFqMURePY8QQ1B_vqK4slUVY6PVJ5H0jyLL8bnInYXm6j28GyJEctH37APs-fYQ3u7wBh6BSayo3pFLXIqeyU1iRsZpi9xPUOAZpwjygDZaDaklcvHye76cdpMZwRCV3E3mXbp3NcPP3K8XfkniJn7vguRmluoWfYTHq18PP6_zoVhCbhHRdTk1AWML5jlzRkvlMexR1gVEvkYKReuSV9rWwTirSqqltLUwjOu61IXwZenYJ9hv563_DERQXnHnlSwqygX3BjFkaRVKlVXwtsjgx0aJjR2YxGNBi5cGEUXUd7PVdwZnW9FFT5_xN6HLaImtQGS8Ti_QD5rBD5p_-UEGJxs7NsMwXDUxqx7hQ0UzON024wCKWRHd-vkaZYSKoBTDmAzkyP6jDo1b2ukkUXHH7SBZVsf_4w--wAGNdyuKSJ1xAvvdcu2_whv72k1Xy2_Jv_8AVJAGtw
  priority: 102
  providerName: Directory of Open Access Journals
Title Learned Block Iterative Shrinkage Thresholding Algorithm for Photothermal Super Resolution Imaging
URI https://www.proquest.com/docview/2700772952
https://www.proquest.com/docview/2696010521
https://pubmed.ncbi.nlm.nih.gov/PMC9330715
https://doaj.org/article/ae6aa7ff32df40af9b7f40c7ddab0cb8
Volume 22
WOSCitedRecordID wos000839702700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvhGBURnEgUu0xHbi-IRW1IkeVkVsSOUU-XOdtialSTnyt_Pspt0iIS5cHCl-ki295-f387N_D6GPUtHcsdwnWRkAFKZMrBIjYyUKXRAHAa42odgEn82K-VyU_YFb21-r3PnE4KhNo_0Z-bFPkPpIMCOfVz9jXzXKZ1f7Ehr30aEvm-3tnM9vARcF_LVlE6IA7Y9bAvtbllE62IMCVf8gvhzejryz3Zw--d-JPkWP-0ATn2wt4xm6Z-vn6NEd-sEXSAVyVWvwGHa0azwNBMvg_fD5AgSuwdPgC1B122eo8MnNJQzULZYYIl1cLpouPN9awjDnm5VdY58L2Foyni5D-aOX6Pvp5OLL17ivuRBrAIZdTJSDEIVaRo2SXFiInoQ2DgC04rkgRcoyqQunjBYpkZzrIleUySKVSW7T1NBX6KBuavsa4ZywjBkreJIRljOrAIqmWoBUmjmrkwh92mmh0j0hua-LcVMBMPEKq_YKi9CHvehqy8LxN6GxV-VewBNnhx_N-rLq12ElbS4ld44S41ginVAcvpobI1WiVRGho51Wq341t9WtSiP0ft8N69AnV2Rtmw3I5MJjW4iGIsQHBjSY0LCnvloERm9_qsTT7M2_B3-LHhL_-CLx3BpH6KBbb-w79ED_6q7a9SiYfmiLETocT2blt1E4YYD27PcE_pXTs_LHHxVcGGU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceCMMBRYEEher9u7a6z0g1AJVo5aoUoOUm9mXm6qNHRIHxJ_iNzLr2GktIW49cLJkj7x-fDszn8f7DcAbpVla8NQXWTkSFK5tqCOrQi0zk9ECE1xjm2YTYjjMxmN5tAG_u7Uw_rfKzic2jtpWxn8j3_YFUp8JJvTD7Hvou0b56mrXQmMFiwP36ydStsX7wSd8v28p3fs8-rgftl0FQoPUpw6pLjAIM8eZ1UpIh_mBNLZAiqhFKmkW80SZrNDWyJgqIUyWasZVFqsodXFsGZ73GlxHPy482RPjC4LHkO-t1IsYk9H2gmI8TRLGejGvaQ3Qy2f7f2NeCm97d_-3B3MP7rSJNNlZIf8-bLjyAdy-JK_4EHQjHuss2cWIfUYGjYA0endyPEGDM_SkZIRQXrQVOLJzfoI3Vk-mBDN5cjSp6mZ52hSHOV7O3Jz4WsdqppLBtGnv9Ai-XslNPobNsirdEyAp5Qm3TooooTzlTiPVjo1EqzgpnIkCeNe99dy0guu-78d5jsTLAyRfAySA12vT2Upl5G9Gux46awMvDN7sqOYneetncuVSpURRMGoLHqlCaoFbI6xVOjI6C2CrQ1HeeqtFfgGhAF6tD6Of8cUjVbpqiTap9Nwds70ARA-wvQvqHylPJ41iuf9qJuLk6b8Hfwk390dfDvPDwfDgGdyifqFJ5HVEtmCzni_dc7hhftSni_mLZtoR-HbVcP4DfgVu4A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYECiwIJC5W7N2113tAqKVERIUoUotUTmafTdXGDnmA-Gv8OmYdJ9QS4tYDJ0v2yM9vZ-bz7H4D8FJplnmehSIrR4LCtY10bFWkZW5y6jHBNbZuNiGGw_z4WI624Nd6LUyYVrn2ibWjtpUJ_8h7oUAaMsGU9nwzLWK03387_RaFDlKh0rpup7GCyIH7-QPp2_zNYB-_9StK---P3n2Img4DkUEatIio9hiQmePMaiWkw1xBGuuRLmqRSZonPFUm99oamVAlhMkzzbjKExVnLkksw_NegW1MyTntwPZo8Gn0ZUP3GLK_lZYRYzLuzSlG1zRlrBUB60YBrey2PTfzQrDr3_qfX9NtuNmk2GR3NSbuwJYr78KNC8KL90DXsrLOkj2M5WdkUEtLo98nh2M0OEMfS44Q5POmNkd2z0_wwRbjCcEcn4zG1aJeuDbByxwup25GQhVkNYbJYFI3froPny_lIR9Ap6xK9xBIRnnKrZMiTinPuNNIwhMj0SpJvTNxF16vEVCYRoo9dAQ5L5CSBbAUG7B04cXGdLrSH_mb0V6A0cYgSIbXO6rZSdF4oEK5TCnhPaPW81h5qQVujbBW6djovAs7a0QVjR-bF3_g1IXnm8PogUJZSZWuWqJNJgOrxzywC6IF3tYNtY-Up-Nayzz8TxNJ-ujfF38G1xDFxcfB8OAxXKdhBUocBEZ2oLOYLd0TuGq-L07ns6fNGCTw9bLx_BuVKXkv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learned+Block+Iterative+Shrinkage+Thresholding+Algorithm+for+Photothermal+Super+Resolution+Imaging&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hauffen%2C+Jan+Christian&rft.au=K%C3%A4stner%2C+Linh&rft.au=Ahmadi%2C+Samim&rft.au=Jung%2C+Peter&rft.date=2022-07-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5533&rft_id=info:doi/10.3390%2Fs22155533&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon