Representing and Retrieving Video Shots in Human-Centric Brain Imaging Space
Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, textu...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 22; číslo 7; s. 2723 - 2736 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.07.2013
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed dense individualized and common connectivity-based cortical landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their regions of interests (ROIs) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain's comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian process regression (GPR) algorithm, and a manifold structure is then inferred, in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset demonstrate the superiority of the proposed work in comparison with traditional methods. |
|---|---|
| AbstractList | Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed dense individualized and common connectivity-based cortical landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their regions of interests (ROIs) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain's comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian process regression (GPR) algorithm, and a manifold structure is then inferred, in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset demonstrate the superiority of the proposed work in comparison with traditional methods. Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their ROIs (regions of interests) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain’s comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian Process Regression (GPR) algorithm, and a manifold structure is then inferred in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset have demonstrated the superiority of the proposed work in comparison with traditional methods. Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed dense individualized and common connectivity-based cortical landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their regions of interests (ROIs) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain's comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian process regression (GPR) algorithm, and a manifold structure is then inferred, in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset demonstrate the superiority of the proposed work in comparison with traditional methods.Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed dense individualized and common connectivity-based cortical landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their regions of interests (ROIs) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain's comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian process regression (GPR) algorithm, and a manifold structure is then inferred, in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset demonstrate the superiority of the proposed work in comparison with traditional methods. |
| Author | Cui, Guangbin Jiang, Xi Han, Junwei Li, Kaiming Hu, Xintao Zhu, Dajiang Guo, Lei Ji, Xiang Liu, Tianming |
| AuthorAffiliation | 3 Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China 2 Department of Computer Science and Bioimaging Research Center, The University of Georgia, USA 1 School of Automation, Northwestern Polytechnical University, Xi’an, 710072, China |
| AuthorAffiliation_xml | – name: 1 School of Automation, Northwestern Polytechnical University, Xi’an, 710072, China – name: 2 Department of Computer Science and Bioimaging Research Center, The University of Georgia, USA – name: 3 Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China |
| Author_xml | – sequence: 1 givenname: Junwei surname: Han fullname: Han, Junwei email: junweihan2010@gmail.com organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Xiang surname: Ji fullname: Ji, Xiang email: xiangji123@gmail.com organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Xintao surname: Hu fullname: Hu, Xintao email: xintao.hu@gmail.com organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Dajiang surname: Zhu fullname: Zhu, Dajiang email: dajiang.zhu@gmail.com organization: Department of Computer Science, The University of Georgia, Athens, GA, USA – sequence: 5 givenname: Kaiming surname: Li fullname: Li, Kaiming email: likaiming@gmail.com organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 6 givenname: Xi surname: Jiang fullname: Jiang, Xi email: superjx2318@gmail.com organization: Department of Computer Science, The University of Georgia, Athens, GA, USA – sequence: 7 givenname: Guangbin surname: Cui fullname: Cui, Guangbin email: cgbtd@yahoo.com.cn organization: Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China – sequence: 8 givenname: Lei surname: Guo fullname: Guo, Lei email: lguo@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 9 givenname: Tianming surname: Liu fullname: Liu, Tianming email: tianming.liu@gmail.com organization: Department of Computer Science, The University of Georgia, Athens, GA, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27599763$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23568507$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctvEzEQxi1URB9wR0JCe0HissGv9WYuSBAVGikSqC1crYl3NjXa9ab2phL_fb1KCI8DF9sz_n0z9nzn7CQMgRh7KfhMCA7vbpdfZ5ILNZOyMiDgCTsToEXJuZYn-cyruqyFhlN2ntIPzoWuhHnGTqWqzLzi9RlbXdM2UqIw-rApMDTFNY3R08MUfvcNDcXN3TCmwofiatdjKBeZjd4VHyPm3LLHzYTebNHRc_a0xS7Ri8N-wb59urxdXJWrL5-Xiw-r0mltxlJiy6WBNZIjNKqRKi8cVN0CVxqq-drVSEoSEYBbVw24nKNmTm1LBlBdsPf7utvduqfGTS_Czm6j7zH-tAN6-_dN8Hd2MzxYBXOtQOQCbw8F4nC_ozTa3idHXYeBhl2yQlVK17UWJqOv_-x1bPJrhBl4cwAwOezaiMH59JurK4DaqMzxPefikFKk9ogIbic3bXbTTm7ag5tZYv6ROD_i6IfpV777n_DVXujzDI99jAYtQalHzRms5w |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_jvcir_2019_01_020 crossref_primary_10_1109_ACCESS_2019_2919242 crossref_primary_10_1016_j_jvcir_2019_01_021 crossref_primary_10_1016_j_future_2021_05_014 crossref_primary_10_1016_j_neucom_2016_05_017 crossref_primary_10_1016_j_jvcir_2019_102716 crossref_primary_10_1016_j_neucom_2019_06_066 crossref_primary_10_1007_s10729_019_09489_x crossref_primary_10_1109_TNNLS_2015_2461554 crossref_primary_10_3389_fnbot_2019_00073 crossref_primary_10_1109_TMM_2022_3167805 crossref_primary_10_1016_j_image_2019_115768 crossref_primary_10_1016_j_future_2020_07_019 crossref_primary_10_1063_1_4982952 crossref_primary_10_1109_TIP_2015_2446191 crossref_primary_10_1016_j_jvcir_2019_102680 crossref_primary_10_1109_ACCESS_2019_2903332 crossref_primary_10_1109_TVT_2019_2899972 crossref_primary_10_1016_j_jvcir_2019_01_035 crossref_primary_10_1016_j_jvcir_2019_01_037 crossref_primary_10_1109_ACCESS_2019_2902658 crossref_primary_10_1109_TCYB_2014_2358647 crossref_primary_10_1016_j_jvcir_2019_01_038 crossref_primary_10_1016_j_neunet_2020_04_012 crossref_primary_10_1016_j_jvcir_2019_102704 crossref_primary_10_1109_TCYB_2019_2894498 crossref_primary_10_1016_j_jvcir_2019_102709 crossref_primary_10_1109_ACCESS_2019_2932204 crossref_primary_10_1186_s12938_019_0681_y crossref_primary_10_1007_s11042_020_09421_4 crossref_primary_10_1109_TCYB_2015_2402751 crossref_primary_10_1109_TCYB_2015_2418092 crossref_primary_10_1109_TGRS_2023_3266838 crossref_primary_10_1016_j_future_2020_04_047 crossref_primary_10_1109_TCYB_2019_2910151 crossref_primary_10_1109_TNNLS_2014_2369426 crossref_primary_10_1109_TCYB_2019_2959261 crossref_primary_10_1109_THMS_2013_2296871 crossref_primary_10_1016_j_jvcir_2019_102613 crossref_primary_10_1016_j_jvcir_2019_102612 crossref_primary_10_3390_rs15051259 crossref_primary_10_1016_j_jvcir_2019_02_001 crossref_primary_10_1007_s40747_020_00188_7 crossref_primary_10_1109_ACCESS_2020_2968460 crossref_primary_10_1109_TGRS_2023_3256373 crossref_primary_10_1109_TAMD_2015_2429580 crossref_primary_10_3390_math11122766 crossref_primary_10_1109_LGRS_2017_2776899 crossref_primary_10_1016_j_jvcir_2019_01_040 crossref_primary_10_1109_THMS_2020_3027534 crossref_primary_10_1016_j_neucom_2013_11_052 crossref_primary_10_1145_3342219 crossref_primary_10_1109_JSTARS_2020_3019582 crossref_primary_10_1016_j_neucom_2019_09_085 crossref_primary_10_1016_j_jvcir_2019_102724 crossref_primary_10_1109_ACCESS_2020_2980290 crossref_primary_10_1109_TCYB_2020_2989158 crossref_primary_10_1016_j_jvcir_2019_102600 crossref_primary_10_3390_rs11060694 crossref_primary_10_1109_TVT_2019_2907269 crossref_primary_10_3390_rs12010143 crossref_primary_10_1016_j_jvcir_2019_02_011 crossref_primary_10_1166_jmihi_2021_3341 crossref_primary_10_1016_j_jvcir_2019_02_012 crossref_primary_10_1016_j_jvcir_2019_02_010 crossref_primary_10_1097_MD_0000000000016105 crossref_primary_10_1016_j_ins_2014_12_055 crossref_primary_10_1109_ACCESS_2019_2918728 crossref_primary_10_1007_s11042_020_09303_9 crossref_primary_10_1016_j_ins_2013_12_039 crossref_primary_10_1109_ACCESS_2019_2903121 crossref_primary_10_1016_j_cmpb_2020_105809 crossref_primary_10_1016_j_ins_2014_11_020 crossref_primary_10_1016_j_jvcir_2019_102632 crossref_primary_10_1016_j_jvcir_2019_102631 crossref_primary_10_1109_ACCESS_2019_2904749 crossref_primary_10_1016_j_jvcir_2019_102630 crossref_primary_10_1109_JSTARS_2022_3150843 crossref_primary_10_1007_s11045_015_0370_3 crossref_primary_10_1016_j_jvcir_2019_02_029 crossref_primary_10_1109_TCYB_2021_3061147 crossref_primary_10_1016_j_jvcir_2019_102634 crossref_primary_10_1016_j_jvcir_2019_102633 crossref_primary_10_1097_MD_0000000000016406 crossref_primary_10_1109_TVT_2019_2905598 crossref_primary_10_1016_j_jvcir_2019_02_022 crossref_primary_10_1016_j_future_2021_02_007 crossref_primary_10_1016_j_jvcir_2019_102637 crossref_primary_10_1002_acs_2991 crossref_primary_10_1109_ACCESS_2019_2897692 crossref_primary_10_1109_TCYB_2019_2931735 crossref_primary_10_1109_ACCESS_2020_2974158 crossref_primary_10_1186_s13640_019_0470_3 crossref_primary_10_1016_j_patcog_2020_107448 crossref_primary_10_1016_j_future_2020_12_010 crossref_primary_10_1097_MD_0000000000016532 crossref_primary_10_1016_j_future_2019_06_008 crossref_primary_10_3389_fninf_2020_581897 crossref_primary_10_1016_j_patrec_2019_02_012 crossref_primary_10_1109_ACCESS_2019_2900662 crossref_primary_10_1007_s13246_019_00778_x crossref_primary_10_1109_TCYB_2015_2399172 crossref_primary_10_1016_j_jvcir_2019_102629 crossref_primary_10_1016_j_jvcir_2019_02_033 crossref_primary_10_1016_j_jvcir_2019_02_034 crossref_primary_10_1016_j_jvcir_2019_02_032 crossref_primary_10_1108_SR_05_2019_0124 crossref_primary_10_1016_j_ins_2014_10_040 crossref_primary_10_1109_TMM_2019_2944260 crossref_primary_10_1016_j_image_2019_08_002 crossref_primary_10_1016_j_neucom_2019_07_074 crossref_primary_10_1007_s11042_019_08004_2 crossref_primary_10_1016_j_media_2021_102063 crossref_primary_10_1109_ACCESS_2019_2900672 crossref_primary_10_1109_ACCESS_2019_2924933 crossref_primary_10_3389_fncom_2017_00106 crossref_primary_10_1007_s11682_014_9293_0 crossref_primary_10_1016_j_comnet_2019_04_016 crossref_primary_10_1109_TCDS_2020_2976610 crossref_primary_10_1007_s00138_020_01059_4 crossref_primary_10_1016_j_jvcir_2017_04_010 crossref_primary_10_1177_00368504211005480 crossref_primary_10_1007_s11571_014_9291_3 crossref_primary_10_1016_j_jvcir_2019_03_014 crossref_primary_10_1109_ACCESS_2019_2898644 crossref_primary_10_1016_j_jvcir_2019_03_012 crossref_primary_10_1016_j_inffus_2024_102526 crossref_primary_10_1016_j_jvcir_2019_03_013 crossref_primary_10_1109_ACCESS_2019_2901943 crossref_primary_10_1007_s11042_020_08690_3 crossref_primary_10_1109_TIP_2015_2390975 crossref_primary_10_1016_j_cmpb_2020_105610 crossref_primary_10_1016_j_jvcir_2019_102647 crossref_primary_10_1016_j_jvcir_2019_01_013 crossref_primary_10_1016_j_jvcir_2019_01_014 crossref_primary_10_1016_j_jvcir_2019_102645 crossref_primary_10_1016_j_jvcir_2019_01_015 crossref_primary_10_1016_j_jvcir_2019_01_016 crossref_primary_10_1016_j_jvcir_2019_01_017 crossref_primary_10_1016_j_jvcir_2019_01_018 crossref_primary_10_1016_j_jvcir_2019_01_019 crossref_primary_10_1016_j_comnet_2019_04_021 crossref_primary_10_1016_j_compbiomed_2020_103659 crossref_primary_10_1109_TAFFC_2015_2411280 crossref_primary_10_1016_j_jocn_2019_04_033 crossref_primary_10_1109_TIP_2021_3078319 crossref_primary_10_1016_j_jvcir_2019_03_005 crossref_primary_10_1016_j_neucom_2019_05_069 crossref_primary_10_1109_TAMD_2015_2446499 crossref_primary_10_1109_TIP_2019_2922072 |
| Cites_doi | 10.1523/JNEUROSCI.3278-09.2009 10.1007/s11263-005-1838-7 10.1109/ICIP.2011.6116505 10.1523/JNEUROSCI.0559-09.2009 10.1145/1631272.1631463 10.1016/j.eswa.2010.09.133 10.1016/S1053-8119(03)00112-5 10.2307/2684655 10.1007/3-540-57868-4_57 10.1214/aos/1016218223 10.1016/j.cogbrainres.2003.09.009 10.1109/MMUL.2002.1022858 10.1016/j.jneumeth.2010.01.014 10.1016/S0896-6273(04)00070-4 10.1038/nrn893 10.1523/JNEUROSCI.0333-10.2010 10.1023/B:VISI.0000029664.99615.94 10.1109/TSMCC.2011.2109710 10.1038/nature06713 10.1109/TPAMI.2007.56 10.1109/CVPR.2008.4587618 10.1016/j.neuron.2009.11.008 10.1126/science.1089506 10.1109/76.718510 10.1038/nrn1201 10.1016/j.patrec.2008.02.009 10.1109/JPROC.2009.2038406 10.1016/j.neuroimage.2011.08.037 10.1109/TIP.2009.2032939 10.1126/science.1174521 10.1109/TIP.2006.877491 10.1007/s11042-006-0085-4 10.1007/s11263-008-0204-y 10.1152/jn.90531.2008 10.1109/TMM.2011.2172201 10.1145/1873951.1874016 10.1145/1027527.1027532 10.1111/j.1469-8986.2009.00834.x |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS |
| Copyright_xml | – notice: 2014 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1109/TIP.2013.2256919 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 2736 |
| ExternalDocumentID | PMC3984391 23568507 27599763 10_1109_TIP_2013_2256919 6494293 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL087923 – fundername: NIBIB NIH HHS grantid: K01 EB006878 – fundername: NHLBI NIH HHS grantid: R01 HL087923-03S2 – fundername: NIDA NIH HHS grantid: R01 DA033393 – fundername: NIBIB NIH HHS grantid: EB 006878 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c446t-2af0269baecea63d2363d0937f9034958bc7ae32eee99cb5d9c58bed8effe69a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 160 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321924600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Tue Sep 30 16:32:20 EDT 2025 Sun Sep 28 06:17:52 EDT 2025 Thu Apr 03 06:56:54 EDT 2025 Mon Jul 21 09:13:54 EDT 2025 Sat Nov 29 03:20:51 EST 2025 Tue Nov 18 22:30:38 EST 2025 Wed Aug 27 06:27:17 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Similarity Image processing Wireless telecommunication General packet radio service Mapping Texture Video signal processing Accuracy Semantics Image sequence Imaging Database Connectedness Mobile radiocommunication Computer vision Redundancy Algorithm Nuclear magnetic resonance imaging video shot retrieval Interest region Gaussian process Frame based representation Brain imaging space Signal processing Gaussian process regression Feature extraction Medical imagery functional magnetic resonance imaging Functional imaging |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-2af0269baecea63d2363d0937f9034958bc7ae32eee99cb5d9c58bed8effe69a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3984391 |
| PMID | 23568507 |
| PQID | 1353477416 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1353477416 pascalfrancis_primary_27599763 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3984391 crossref_citationtrail_10_1109_TIP_2013_2256919 crossref_primary_10_1109_TIP_2013_2256919 pubmed_primary_23568507 ieee_primary_6494293 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref59 ref15 ref55 ref11 laird (ref37) 2009; 3 ref54 cao (ref58) 2011 (ref48) 2005 ref17 ref16 ref18 zhang (ref22) 2011 friston (ref27) 2009; 326 ref51 cheng (ref56) 2011 scott (ref57) 2011 li (ref19) 2010 ref41 ref44 rasmussen (ref23) 2006 ref8 bay (ref5) 2006 ref7 ref4 ref3 petersohn (ref50) 2004 ref35 zhu (ref21) 2012 ref34 naphade (ref49) 2005 ref36 ref31 ref30 ref33 ref32 zhao (ref53) 2010 lomax (ref43) 2007 ref2 ref1 hall (ref45) 1999 ref39 ref38 schneider (ref40) 2002 duda (ref52) 2001 zhou (ref26) 2003 ref24 zhou (ref47) 2003 abramowitz (ref42) 1964 ref25 ref20 hasson (ref14) 2004; 303 ref28 hu (ref10) 2011; 41 ref29 he (ref46) 2004 rui (ref9) 1998; 8 li (ref6) 2005; 2 15016991 - Science. 2004 Mar 12;303(5664):1634-40 12814595 - Neuroimage. 2003 Jun;19(2 Pt 1):466-70 20631176 - J Neurosci. 2010 Jul 14;30(28):9477-87 19710310 - J Neurosci. 2009 Aug 26;29(34):10573-81 15003179 - Neuron. 2004 Mar 4;41(5):809-23 19783505 - IEEE Trans Image Process. 2010 Jan;19(1):174-84 19945387 - Neuron. 2009 Nov 25;64(4):446-7 21875672 - Neuroimage. 2012 Jan 16;59(2):1382-93 19636392 - Front Neuroinform. 2009 Jul 09;3:23 22490548 - Cereb Cortex. 2013 Apr;23(4):786-800 19497008 - Psychophysiology. 2009 Sep;46(5):1100-7 18684903 - J Neurophysiol. 2008 Oct;100(4):1800-12 14659500 - Brain Res Cogn Brain Res. 2003 Dec;18(1):89-96 20096730 - J Neurosci Methods. 2010 Dec 15;194(1):34-45 21705394 - Cereb Cortex. 2012 Apr;22(4):854-64 17224612 - IEEE Trans Pattern Anal Mach Intell. 2007 Mar;29(3):411-26 19940182 - J Neurosci. 2009 Nov 25;29(47):14864-8 14523382 - Nat Rev Neurosci. 2003 Oct;4(10):829-39 18322462 - Nature. 2008 Mar 20;452(7185):352-5 12154362 - Nat Rev Neurosci. 2002 Aug;3(8):606-16 17022278 - IEEE Trans Image Process. 2006 Oct;15(10):3170-7 19833961 - Science. 2009 Oct 16;326(5951):399-403 |
| References_xml | – ident: ref33 doi: 10.1523/JNEUROSCI.3278-09.2009 – ident: ref59 doi: 10.1007/s11263-005-1838-7 – start-page: 346 year: 2006 ident: ref5 article-title: SURF:Speeded up robust features publication-title: Proc Eur Conf Comput Vis – start-page: 321 year: 2003 ident: ref47 article-title: Learning with local and global consistency publication-title: Proc Neural Inf Process Syst – start-page: 169 year: 2003 ident: ref26 article-title: Ranking on data manifolds publication-title: Proc 18th Ann Conf Neural Inf Process Syst – year: 2002 ident: ref40 publication-title: E-Prime Reference Guide – ident: ref20 doi: 10.1109/ICIP.2011.6116505 – year: 2001 ident: ref52 publication-title: Pattern Classication – ident: ref15 doi: 10.1523/JNEUROSCI.0559-09.2009 – ident: ref11 doi: 10.1145/1631272.1631463 – ident: ref55 doi: 10.1016/j.eswa.2010.09.133 – ident: ref41 doi: 10.1016/S1053-8119(03)00112-5 – ident: ref44 doi: 10.2307/2684655 – start-page: 184 year: 2004 ident: ref50 article-title: Fraunhofer HHI at TRECVID 2004:Shot boundary detection system publication-title: Proc Text REtrieval Conf – year: 1964 ident: ref42 publication-title: Handbook of Mathematical Functions – ident: ref54 doi: 10.1007/3-540-57868-4_57 – ident: ref51 doi: 10.1214/aos/1016218223 – start-page: 171 year: 2010 ident: ref19 article-title: Human-friendly attention models for video summarization publication-title: Proc 12th ACM Conf Multimodal Inter – ident: ref34 doi: 10.1016/j.cogbrainres.2003.09.009 – ident: ref1 doi: 10.1109/MMUL.2002.1022858 – ident: ref29 doi: 10.1016/j.jneumeth.2010.01.014 – volume: 3 start-page: 1 year: 2009 ident: ref37 article-title: ALE meta-analysis workflows via the BrainMap database:Progress towards a probabilistic functional brain atlas publication-title: Neuroinformatics – ident: ref32 doi: 10.1016/S0896-6273(04)00070-4 – start-page: 1 year: 2011 ident: ref56 article-title: Team SRI-Sarnoff's AURORA system @ TRECVID 2011 publication-title: Proc NIST TRECVID Workshop – year: 2005 ident: ref48 publication-title: TRECVID Database – ident: ref39 doi: 10.1038/nrn893 – start-page: 1 year: 2011 ident: ref58 article-title: IBM research and Columbia University TRECVID-2011 multimedia event detection (MED) system publication-title: Proc NIST TRECVID Workshop – ident: ref28 doi: 10.1523/JNEUROSCI.0333-10.2010 – ident: ref4 doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 41 start-page: 797 year: 2011 ident: ref10 article-title: A survey on visual content-based video indexing and retrieval publication-title: IEEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/TSMCC.2011.2109710 – start-page: 1 year: 2011 ident: ref57 article-title: TRECVid 2011 experiments at Dublin City University publication-title: Proc NIST TRECVID Workshop – ident: ref16 doi: 10.1038/nature06713 – ident: ref7 doi: 10.1109/TPAMI.2007.56 – ident: ref13 doi: 10.1109/CVPR.2008.4587618 – ident: ref31 doi: 10.1016/j.neuron.2009.11.008 – volume: 303 start-page: 1634 year: 2004 ident: ref14 article-title: Intersubject synchronization of cortical activity during natural vision publication-title: Science doi: 10.1126/science.1089506 – volume: 8 start-page: 644 year: 1998 ident: ref9 article-title: Relevance feedback:A power tool for interactive content-based image retrieval publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/76.718510 – ident: ref30 doi: 10.1038/nrn1201 – start-page: 235 year: 1999 ident: ref45 article-title: Feature selection for machine learning:Comparing a correlation-based filter approach to the wrapper publication-title: Proc FLAIRS Conf – volume: 2 start-page: 524 year: 2005 ident: ref6 article-title: A bayesian hierarchical model for learning natural scene categories publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref2 doi: 10.1016/j.patrec.2008.02.009 – year: 2010 ident: ref53 article-title: Advancing feature selection research-ASU feature selection repository – ident: ref12 doi: 10.1109/JPROC.2009.2038406 – ident: ref38 doi: 10.1016/j.neuroimage.2011.08.037 – year: 2006 ident: ref23 publication-title: Gaussian Processes for Machine Learning – ident: ref8 doi: 10.1109/TIP.2009.2032939 – volume: 326 start-page: 399 year: 2009 ident: ref27 article-title: Modalities, modes, and models in functional neuroimaging publication-title: Science doi: 10.1126/science.1174521 – ident: ref25 doi: 10.1109/TIP.2006.877491 – ident: ref3 doi: 10.1007/s11042-006-0085-4 – year: 2005 ident: ref49 article-title: A light scale concept ontology for multimedia understanding for TRECVID 2005 – ident: ref24 doi: 10.1007/s11263-008-0204-y – ident: ref36 doi: 10.1152/jn.90531.2008 – year: 2011 ident: ref22 publication-title: Predicting Functional Cortical ROIs Via DTI-Derived Fiber Shape Models – ident: ref18 doi: 10.1109/TMM.2011.2172201 – year: 2012 ident: ref21 publication-title: DICCCOL Dense Individualized and Common Connectivity-Based Cortical Landmarks – ident: ref17 doi: 10.1145/1873951.1874016 – start-page: 17 year: 2004 ident: ref46 article-title: Learning an image manifold for retrieval publication-title: Proc 12th ACM Int Conf Multimedia doi: 10.1145/1027527.1027532 – year: 2007 ident: ref43 publication-title: Statistical Concepts A Second Course – ident: ref35 doi: 10.1111/j.1469-8986.2009.00834.x – reference: 19940182 - J Neurosci. 2009 Nov 25;29(47):14864-8 – reference: 19636392 - Front Neuroinform. 2009 Jul 09;3:23 – reference: 12154362 - Nat Rev Neurosci. 2002 Aug;3(8):606-16 – reference: 20631176 - J Neurosci. 2010 Jul 14;30(28):9477-87 – reference: 19710310 - J Neurosci. 2009 Aug 26;29(34):10573-81 – reference: 18322462 - Nature. 2008 Mar 20;452(7185):352-5 – reference: 18684903 - J Neurophysiol. 2008 Oct;100(4):1800-12 – reference: 22490548 - Cereb Cortex. 2013 Apr;23(4):786-800 – reference: 14659500 - Brain Res Cogn Brain Res. 2003 Dec;18(1):89-96 – reference: 21875672 - Neuroimage. 2012 Jan 16;59(2):1382-93 – reference: 14523382 - Nat Rev Neurosci. 2003 Oct;4(10):829-39 – reference: 15016991 - Science. 2004 Mar 12;303(5664):1634-40 – reference: 19497008 - Psychophysiology. 2009 Sep;46(5):1100-7 – reference: 21705394 - Cereb Cortex. 2012 Apr;22(4):854-64 – reference: 15003179 - Neuron. 2004 Mar 4;41(5):809-23 – reference: 19945387 - Neuron. 2009 Nov 25;64(4):446-7 – reference: 20096730 - J Neurosci Methods. 2010 Dec 15;194(1):34-45 – reference: 19833961 - Science. 2009 Oct 16;326(5951):399-403 – reference: 17224612 - IEEE Trans Pattern Anal Mach Intell. 2007 Mar;29(3):411-26 – reference: 19783505 - IEEE Trans Image Process. 2010 Jan;19(1):174-84 – reference: 17022278 - IEEE Trans Image Process. 2006 Oct;15(10):3170-7 – reference: 12814595 - Neuroimage. 2003 Jun;19(2 Pt 1):466-70 |
| SSID | ssj0014516 |
| Score | 2.5016518 |
| Snippet | Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2723 |
| SubjectTerms | Algorithms Applied sciences Artificial intelligence Biological and medical sciences Brain Brain imaging space Brain Mapping - methods Computer science; control theory; systems Computerized, statistical medical data processing and models in biomedicine Exact sciences and technology Feature extraction Functional magnetic resonance imaging Gaussian process regression Humans Image processing Image Processing, Computer-Assisted - methods Information theory Information, signal and communications theory Magnetic Resonance Imaging Medical management aid. Diagnosis aid Medical sciences Pattern recognition. Digital image processing. Computational geometry Regression Analysis Semantics Signal processing Streaming media Telecommunications and information theory Video Recording - methods video shot retrieval Visualization Young Adult |
| Title | Representing and Retrieving Video Shots in Human-Centric Brain Imaging Space |
| URI | https://ieeexplore.ieee.org/document/6494293 https://www.ncbi.nlm.nih.gov/pubmed/23568507 https://www.proquest.com/docview/1353477416 https://pubmed.ncbi.nlm.nih.gov/PMC3984391 |
| Volume | 22 |
| WOSCitedRecordID | wos000321924600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9wwDBZt2UP30G7ttqbrDg_2Ulh6WRzH9uM6VlYYpbTduLfg2AoNbElp7vr7azm57G6UwV6CiWWILSmWLFkfwIfEVqJKeBrrpPIOilAu1i6tYldqlWhrMXNlAJuQFxdqNtOXG_BxvAuDiCH5DE-oGWL5rrULOiqb5pn2v0--CZtS5v1drTFiQICzIbIpZCy92b8MSSZ6enN-STlc_MTLbq4_UaHQlItcCcKQXdmNArwKJUeazq9P1QNbPGV5_p1AubIjne3-31xewM5gebLPvai8hA1s9mB3sELZoOPdHjxfKVG4D9-vQqosBkAJZhrHrgIGF51DsJ-1w5Zd37bzjtUNCwGBOJwX15adEvgEO_8dYJDYtffN8RX8OPt68-VbPCAwxNa7ifM4NZX30XRp0KLJuUu5fyTeoqk01bURqrTSIE_97LS2pXDa-nfoFCWj5Nrw17DVtA0eAENuucGMkwuTEZahzERSCWX87siV1BFMl5wo7FCenFAyfhXBTUl04dlYEBuLgY0RHI8j7vrSHP-g3ScWjHTD6kcwWWP22J9Kob2h5gneL7lfeL2jYIppsF10BeGFZJLs2Qje9NLwZ_QgXRHINTkZCaim93pPU9-G2t5cK7oLffj0976F7TTAcVC68BFsze8X-A6e2Yd53d1PvFrM1CSoxSMGBwiM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcKLQ8wqMYiQsS6Ro7ju0jIKquWFZVu6DeIsd21EiQoGaX34_HyYZdVCFxiaJ4IsX-xvGMZzwfwGtqK1FRzlJNq-CgCOVS7ViVulIrqq31mSsj2YScz9XFhT7dgbfjWRjvfUw-80d4G2P5rrUr3Cqb5JkOv09-A26KLGO0P601xgyQcjbGNoVMZTD810FJqieL6SlmcfGjoL25foelQhkXuRLIIruxHkWCFUyPNF0YoaqntrjO9vw7hXJjTTre-7_e3Id7g-1J3vfK8gB2fLMPe4MdSoZZ3u3D3Y0ihQcwO4vJsj5SShDTOHIWWbhwJ4J8q51vyfllu-xI3ZAYEkjjjnFtyQeknyDTH5EIiZwH79w_hK_HnxYfT9KBgyG1wVFcpsxUwUvTpfHWm5w7xsOFBpum0ljZRqjSSuM5C73T2pbCaRueeacwHSXXhj-C3aZt_BMgnltufMbRicmQzVBmglZCmbA-ciV1ApM1EoUdCpQjT8b3IjoqVBcBxgJhLAYYE3gzvvGzL87xD9kDhGCUG0Y_gcMtsMd2JoUOploQeLVGvwgzD8MppvHtqiuQMSSTaNEm8LjXhj9vD9qVgNzSk1EAq3pvtzT1ZazuzbXC09BPr__el3D7ZPFlVsym88_P4A6L5ByYPPwcdpdXK_8Cbtlfy7q7OoyT4zeqcArr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representing+and+Retrieving+Video+Shots+in+Human-Centric+Brain+Imaging+Space&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Han%2C+Junwei&rft.au=Ji%2C+Xiang&rft.au=Hu%2C+Xintao&rft.au=Zhu%2C+Dajiang&rft.date=2013-07-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=22&rft.issue=7&rft.spage=2723&rft.epage=2736&rft_id=info:doi/10.1109%2FTIP.2013.2256919&rft_id=info%3Apmid%2F23568507&rft.externalDocID=6494293 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |