Representing and Retrieving Video Shots in Human-Centric Brain Imaging Space

Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, textu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 22; no. 7; pp. 2723 - 2736
Main Authors: Han, Junwei, Ji, Xiang, Hu, Xintao, Zhu, Dajiang, Li, Kaiming, Jiang, Xi, Cui, Guangbin, Guo, Lei, Liu, Tianming
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.07.2013
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed dense individualized and common connectivity-based cortical landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their regions of interests (ROIs) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain's comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian process regression (GPR) algorithm, and a manifold structure is then inferred, in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset demonstrate the superiority of the proposed work in comparison with traditional methods.
AbstractList Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed dense individualized and common connectivity-based cortical landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their regions of interests (ROIs) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain's comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian process regression (GPR) algorithm, and a manifold structure is then inferred, in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset demonstrate the superiority of the proposed work in comparison with traditional methods.
Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their ROIs (regions of interests) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain’s comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian Process Regression (GPR) algorithm, and a manifold structure is then inferred in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset have demonstrated the superiority of the proposed work in comparison with traditional methods.
Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed dense individualized and common connectivity-based cortical landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their regions of interests (ROIs) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain's comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian process regression (GPR) algorithm, and a manifold structure is then inferred, in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset demonstrate the superiority of the proposed work in comparison with traditional methods.Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and computer vision communities. A great deal of effort has been devoted to the extraction of low-level visual features, such as color, shape, texture, and motion for characterizing and retrieving video shots. However, the accuracy of these feature descriptors is still far from satisfaction due to the well-known semantic gap. In order to alleviate the problem, this paper investigates a novel methodology of representing and retrieving video shots using human-centric high-level features derived in brain imaging space (BIS) where brain responses to natural stimulus of video watching can be explored and interpreted. At first, our recently developed dense individualized and common connectivity-based cortical landmarks (DICCCOL) system is employed to locate large-scale functional brain networks and their regions of interests (ROIs) that are involved in the comprehension of video stimulus. Then, functional connectivities between various functional ROI pairs are utilized as BIS features to characterize the brain's comprehension of video semantics. Then an effective feature selection procedure is applied to learn the most relevant features while removing redundancy, which results in the formation of the final BIS features. Afterwards, a mapping from low-level visual features to high-level semantic features in the BIS is built via the Gaussian process regression (GPR) algorithm, and a manifold structure is then inferred, in which video key frames are represented by the mapped feature vectors in the BIS. Finally, the manifold-ranking algorithm concerning the relationship among all data is applied to measure the similarity between key frames of video shots. Experimental results on the TRECVID 2005 dataset demonstrate the superiority of the proposed work in comparison with traditional methods.
Author Cui, Guangbin
Jiang, Xi
Han, Junwei
Li, Kaiming
Hu, Xintao
Zhu, Dajiang
Guo, Lei
Ji, Xiang
Liu, Tianming
AuthorAffiliation 3 Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
2 Department of Computer Science and Bioimaging Research Center, The University of Georgia, USA
1 School of Automation, Northwestern Polytechnical University, Xi’an, 710072, China
AuthorAffiliation_xml – name: 1 School of Automation, Northwestern Polytechnical University, Xi’an, 710072, China
– name: 2 Department of Computer Science and Bioimaging Research Center, The University of Georgia, USA
– name: 3 Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
Author_xml – sequence: 1
  givenname: Junwei
  surname: Han
  fullname: Han, Junwei
  email: junweihan2010@gmail.com
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Xiang
  surname: Ji
  fullname: Ji, Xiang
  email: xiangji123@gmail.com
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Xintao
  surname: Hu
  fullname: Hu, Xintao
  email: xintao.hu@gmail.com
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Dajiang
  surname: Zhu
  fullname: Zhu, Dajiang
  email: dajiang.zhu@gmail.com
  organization: Department of Computer Science, The University of Georgia, Athens, GA, USA
– sequence: 5
  givenname: Kaiming
  surname: Li
  fullname: Li, Kaiming
  email: likaiming@gmail.com
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 6
  givenname: Xi
  surname: Jiang
  fullname: Jiang, Xi
  email: superjx2318@gmail.com
  organization: Department of Computer Science, The University of Georgia, Athens, GA, USA
– sequence: 7
  givenname: Guangbin
  surname: Cui
  fullname: Cui, Guangbin
  email: cgbtd@yahoo.com.cn
  organization: Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
– sequence: 8
  givenname: Lei
  surname: Guo
  fullname: Guo, Lei
  email: lguo@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 9
  givenname: Tianming
  surname: Liu
  fullname: Liu, Tianming
  email: tianming.liu@gmail.com
  organization: Department of Computer Science, The University of Georgia, Athens, GA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27599763$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23568507$$D View this record in MEDLINE/PubMed
BookMark eNp9kctvEzEQxi1URB9wR0JCe0HissGv9WYuSBAVGikSqC1crYl3NjXa9ab2phL_fb1KCI8DF9sz_n0z9nzn7CQMgRh7KfhMCA7vbpdfZ5ILNZOyMiDgCTsToEXJuZYn-cyruqyFhlN2ntIPzoWuhHnGTqWqzLzi9RlbXdM2UqIw-rApMDTFNY3R08MUfvcNDcXN3TCmwofiatdjKBeZjd4VHyPm3LLHzYTebNHRc_a0xS7Ri8N-wb59urxdXJWrL5-Xiw-r0mltxlJiy6WBNZIjNKqRKi8cVN0CVxqq-drVSEoSEYBbVw24nKNmTm1LBlBdsPf7utvduqfGTS_Czm6j7zH-tAN6-_dN8Hd2MzxYBXOtQOQCbw8F4nC_ozTa3idHXYeBhl2yQlVK17UWJqOv_-x1bPJrhBl4cwAwOezaiMH59JurK4DaqMzxPefikFKk9ogIbic3bXbTTm7ag5tZYv6ROD_i6IfpV777n_DVXujzDI99jAYtQalHzRms5w
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_jvcir_2019_01_020
crossref_primary_10_1109_ACCESS_2019_2919242
crossref_primary_10_1016_j_jvcir_2019_01_021
crossref_primary_10_1016_j_future_2021_05_014
crossref_primary_10_1016_j_neucom_2016_05_017
crossref_primary_10_1016_j_jvcir_2019_102716
crossref_primary_10_1016_j_neucom_2019_06_066
crossref_primary_10_1007_s10729_019_09489_x
crossref_primary_10_1109_TNNLS_2015_2461554
crossref_primary_10_3389_fnbot_2019_00073
crossref_primary_10_1109_TMM_2022_3167805
crossref_primary_10_1016_j_image_2019_115768
crossref_primary_10_1016_j_future_2020_07_019
crossref_primary_10_1063_1_4982952
crossref_primary_10_1109_TIP_2015_2446191
crossref_primary_10_1016_j_jvcir_2019_102680
crossref_primary_10_1109_ACCESS_2019_2903332
crossref_primary_10_1109_TVT_2019_2899972
crossref_primary_10_1016_j_jvcir_2019_01_035
crossref_primary_10_1016_j_jvcir_2019_01_037
crossref_primary_10_1109_ACCESS_2019_2902658
crossref_primary_10_1109_TCYB_2014_2358647
crossref_primary_10_1016_j_jvcir_2019_01_038
crossref_primary_10_1016_j_neunet_2020_04_012
crossref_primary_10_1016_j_jvcir_2019_102704
crossref_primary_10_1109_TCYB_2019_2894498
crossref_primary_10_1016_j_jvcir_2019_102709
crossref_primary_10_1109_ACCESS_2019_2932204
crossref_primary_10_1186_s12938_019_0681_y
crossref_primary_10_1007_s11042_020_09421_4
crossref_primary_10_1109_TCYB_2015_2402751
crossref_primary_10_1109_TCYB_2015_2418092
crossref_primary_10_1109_TGRS_2023_3266838
crossref_primary_10_1016_j_future_2020_04_047
crossref_primary_10_1109_TCYB_2019_2910151
crossref_primary_10_1109_TNNLS_2014_2369426
crossref_primary_10_1109_TCYB_2019_2959261
crossref_primary_10_1109_THMS_2013_2296871
crossref_primary_10_1016_j_jvcir_2019_102613
crossref_primary_10_1016_j_jvcir_2019_102612
crossref_primary_10_3390_rs15051259
crossref_primary_10_1016_j_jvcir_2019_02_001
crossref_primary_10_1007_s40747_020_00188_7
crossref_primary_10_1109_ACCESS_2020_2968460
crossref_primary_10_1109_TGRS_2023_3256373
crossref_primary_10_1109_TAMD_2015_2429580
crossref_primary_10_3390_math11122766
crossref_primary_10_1109_LGRS_2017_2776899
crossref_primary_10_1016_j_jvcir_2019_01_040
crossref_primary_10_1109_THMS_2020_3027534
crossref_primary_10_1016_j_neucom_2013_11_052
crossref_primary_10_1145_3342219
crossref_primary_10_1109_JSTARS_2020_3019582
crossref_primary_10_1016_j_neucom_2019_09_085
crossref_primary_10_1016_j_jvcir_2019_102724
crossref_primary_10_1109_ACCESS_2020_2980290
crossref_primary_10_1109_TCYB_2020_2989158
crossref_primary_10_1016_j_jvcir_2019_102600
crossref_primary_10_3390_rs11060694
crossref_primary_10_1109_TVT_2019_2907269
crossref_primary_10_3390_rs12010143
crossref_primary_10_1016_j_jvcir_2019_02_011
crossref_primary_10_1166_jmihi_2021_3341
crossref_primary_10_1016_j_jvcir_2019_02_012
crossref_primary_10_1016_j_jvcir_2019_02_010
crossref_primary_10_1097_MD_0000000000016105
crossref_primary_10_1016_j_ins_2014_12_055
crossref_primary_10_1109_ACCESS_2019_2918728
crossref_primary_10_1007_s11042_020_09303_9
crossref_primary_10_1016_j_ins_2013_12_039
crossref_primary_10_1109_ACCESS_2019_2903121
crossref_primary_10_1016_j_cmpb_2020_105809
crossref_primary_10_1016_j_ins_2014_11_020
crossref_primary_10_1016_j_jvcir_2019_102632
crossref_primary_10_1016_j_jvcir_2019_102631
crossref_primary_10_1109_ACCESS_2019_2904749
crossref_primary_10_1016_j_jvcir_2019_102630
crossref_primary_10_1109_JSTARS_2022_3150843
crossref_primary_10_1007_s11045_015_0370_3
crossref_primary_10_1016_j_jvcir_2019_02_029
crossref_primary_10_1109_TCYB_2021_3061147
crossref_primary_10_1016_j_jvcir_2019_102634
crossref_primary_10_1016_j_jvcir_2019_102633
crossref_primary_10_1097_MD_0000000000016406
crossref_primary_10_1109_TVT_2019_2905598
crossref_primary_10_1016_j_jvcir_2019_02_022
crossref_primary_10_1016_j_future_2021_02_007
crossref_primary_10_1016_j_jvcir_2019_102637
crossref_primary_10_1002_acs_2991
crossref_primary_10_1109_ACCESS_2019_2897692
crossref_primary_10_1109_TCYB_2019_2931735
crossref_primary_10_1109_ACCESS_2020_2974158
crossref_primary_10_1186_s13640_019_0470_3
crossref_primary_10_1016_j_patcog_2020_107448
crossref_primary_10_1016_j_future_2020_12_010
crossref_primary_10_1097_MD_0000000000016532
crossref_primary_10_1016_j_future_2019_06_008
crossref_primary_10_3389_fninf_2020_581897
crossref_primary_10_1016_j_patrec_2019_02_012
crossref_primary_10_1109_ACCESS_2019_2900662
crossref_primary_10_1007_s13246_019_00778_x
crossref_primary_10_1109_TCYB_2015_2399172
crossref_primary_10_1016_j_jvcir_2019_102629
crossref_primary_10_1016_j_jvcir_2019_02_033
crossref_primary_10_1016_j_jvcir_2019_02_034
crossref_primary_10_1016_j_jvcir_2019_02_032
crossref_primary_10_1108_SR_05_2019_0124
crossref_primary_10_1016_j_ins_2014_10_040
crossref_primary_10_1109_TMM_2019_2944260
crossref_primary_10_1016_j_image_2019_08_002
crossref_primary_10_1016_j_neucom_2019_07_074
crossref_primary_10_1007_s11042_019_08004_2
crossref_primary_10_1016_j_media_2021_102063
crossref_primary_10_1109_ACCESS_2019_2900672
crossref_primary_10_1109_ACCESS_2019_2924933
crossref_primary_10_3389_fncom_2017_00106
crossref_primary_10_1007_s11682_014_9293_0
crossref_primary_10_1016_j_comnet_2019_04_016
crossref_primary_10_1109_TCDS_2020_2976610
crossref_primary_10_1007_s00138_020_01059_4
crossref_primary_10_1016_j_jvcir_2017_04_010
crossref_primary_10_1177_00368504211005480
crossref_primary_10_1007_s11571_014_9291_3
crossref_primary_10_1016_j_jvcir_2019_03_014
crossref_primary_10_1109_ACCESS_2019_2898644
crossref_primary_10_1016_j_jvcir_2019_03_012
crossref_primary_10_1016_j_inffus_2024_102526
crossref_primary_10_1016_j_jvcir_2019_03_013
crossref_primary_10_1109_ACCESS_2019_2901943
crossref_primary_10_1007_s11042_020_08690_3
crossref_primary_10_1109_TIP_2015_2390975
crossref_primary_10_1016_j_cmpb_2020_105610
crossref_primary_10_1016_j_jvcir_2019_102647
crossref_primary_10_1016_j_jvcir_2019_01_013
crossref_primary_10_1016_j_jvcir_2019_01_014
crossref_primary_10_1016_j_jvcir_2019_102645
crossref_primary_10_1016_j_jvcir_2019_01_015
crossref_primary_10_1016_j_jvcir_2019_01_016
crossref_primary_10_1016_j_jvcir_2019_01_017
crossref_primary_10_1016_j_jvcir_2019_01_018
crossref_primary_10_1016_j_jvcir_2019_01_019
crossref_primary_10_1016_j_comnet_2019_04_021
crossref_primary_10_1016_j_compbiomed_2020_103659
crossref_primary_10_1109_TAFFC_2015_2411280
crossref_primary_10_1016_j_jocn_2019_04_033
crossref_primary_10_1109_TIP_2021_3078319
crossref_primary_10_1016_j_jvcir_2019_03_005
crossref_primary_10_1016_j_neucom_2019_05_069
crossref_primary_10_1109_TAMD_2015_2446499
crossref_primary_10_1109_TIP_2019_2922072
Cites_doi 10.1523/JNEUROSCI.3278-09.2009
10.1007/s11263-005-1838-7
10.1109/ICIP.2011.6116505
10.1523/JNEUROSCI.0559-09.2009
10.1145/1631272.1631463
10.1016/j.eswa.2010.09.133
10.1016/S1053-8119(03)00112-5
10.2307/2684655
10.1007/3-540-57868-4_57
10.1214/aos/1016218223
10.1016/j.cogbrainres.2003.09.009
10.1109/MMUL.2002.1022858
10.1016/j.jneumeth.2010.01.014
10.1016/S0896-6273(04)00070-4
10.1038/nrn893
10.1523/JNEUROSCI.0333-10.2010
10.1023/B:VISI.0000029664.99615.94
10.1109/TSMCC.2011.2109710
10.1038/nature06713
10.1109/TPAMI.2007.56
10.1109/CVPR.2008.4587618
10.1016/j.neuron.2009.11.008
10.1126/science.1089506
10.1109/76.718510
10.1038/nrn1201
10.1016/j.patrec.2008.02.009
10.1109/JPROC.2009.2038406
10.1016/j.neuroimage.2011.08.037
10.1109/TIP.2009.2032939
10.1126/science.1174521
10.1109/TIP.2006.877491
10.1007/s11042-006-0085-4
10.1007/s11263-008-0204-y
10.1152/jn.90531.2008
10.1109/TMM.2011.2172201
10.1145/1873951.1874016
10.1145/1027527.1027532
10.1111/j.1469-8986.2009.00834.x
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1109/TIP.2013.2256919
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2736
ExternalDocumentID PMC3984391
23568507
27599763
10_1109_TIP_2013_2256919
6494293
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL087923
– fundername: NIBIB NIH HHS
  grantid: K01 EB006878
– fundername: NHLBI NIH HHS
  grantid: R01 HL087923-03S2
– fundername: NIDA NIH HHS
  grantid: R01 DA033393
– fundername: NIBIB NIH HHS
  grantid: EB 006878
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c446t-2af0269baecea63d2363d0937f9034958bc7ae32eee99cb5d9c58bed8effe69a3
IEDL.DBID RIE
ISICitedReferencesCount 160
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321924600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Tue Sep 30 16:32:20 EDT 2025
Sun Sep 28 06:17:52 EDT 2025
Thu Apr 03 06:56:54 EDT 2025
Mon Jul 21 09:13:54 EDT 2025
Sat Nov 29 03:20:51 EST 2025
Tue Nov 18 22:30:38 EST 2025
Wed Aug 27 06:27:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Similarity
Image processing
Wireless telecommunication
General packet radio service
Mapping
Texture
Video signal processing
Accuracy
Semantics
Image sequence
Imaging
Database
Connectedness
Mobile radiocommunication
Computer vision
Redundancy
Algorithm
Nuclear magnetic resonance imaging
video shot retrieval
Interest region
Gaussian process
Frame based representation
Brain imaging space
Signal processing
Gaussian process regression
Feature extraction
Medical imagery
functional magnetic resonance imaging
Functional imaging
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-2af0269baecea63d2363d0937f9034958bc7ae32eee99cb5d9c58bed8effe69a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3984391
PMID 23568507
PQID 1353477416
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1353477416
pascalfrancis_primary_27599763
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3984391
crossref_citationtrail_10_1109_TIP_2013_2256919
crossref_primary_10_1109_TIP_2013_2256919
pubmed_primary_23568507
ieee_primary_6494293
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref59
ref15
ref55
ref11
laird (ref37) 2009; 3
ref54
cao (ref58) 2011
(ref48) 2005
ref17
ref16
ref18
zhang (ref22) 2011
friston (ref27) 2009; 326
ref51
cheng (ref56) 2011
scott (ref57) 2011
li (ref19) 2010
ref41
ref44
rasmussen (ref23) 2006
ref8
bay (ref5) 2006
ref7
ref4
ref3
petersohn (ref50) 2004
ref35
zhu (ref21) 2012
ref34
naphade (ref49) 2005
ref36
ref31
ref30
ref33
ref32
zhao (ref53) 2010
lomax (ref43) 2007
ref2
ref1
hall (ref45) 1999
ref39
ref38
schneider (ref40) 2002
duda (ref52) 2001
zhou (ref26) 2003
ref24
zhou (ref47) 2003
abramowitz (ref42) 1964
ref25
ref20
hasson (ref14) 2004; 303
ref28
hu (ref10) 2011; 41
ref29
he (ref46) 2004
rui (ref9) 1998; 8
li (ref6) 2005; 2
15016991 - Science. 2004 Mar 12;303(5664):1634-40
12814595 - Neuroimage. 2003 Jun;19(2 Pt 1):466-70
20631176 - J Neurosci. 2010 Jul 14;30(28):9477-87
19710310 - J Neurosci. 2009 Aug 26;29(34):10573-81
15003179 - Neuron. 2004 Mar 4;41(5):809-23
19783505 - IEEE Trans Image Process. 2010 Jan;19(1):174-84
19945387 - Neuron. 2009 Nov 25;64(4):446-7
21875672 - Neuroimage. 2012 Jan 16;59(2):1382-93
19636392 - Front Neuroinform. 2009 Jul 09;3:23
22490548 - Cereb Cortex. 2013 Apr;23(4):786-800
19497008 - Psychophysiology. 2009 Sep;46(5):1100-7
18684903 - J Neurophysiol. 2008 Oct;100(4):1800-12
14659500 - Brain Res Cogn Brain Res. 2003 Dec;18(1):89-96
20096730 - J Neurosci Methods. 2010 Dec 15;194(1):34-45
21705394 - Cereb Cortex. 2012 Apr;22(4):854-64
17224612 - IEEE Trans Pattern Anal Mach Intell. 2007 Mar;29(3):411-26
19940182 - J Neurosci. 2009 Nov 25;29(47):14864-8
14523382 - Nat Rev Neurosci. 2003 Oct;4(10):829-39
18322462 - Nature. 2008 Mar 20;452(7185):352-5
12154362 - Nat Rev Neurosci. 2002 Aug;3(8):606-16
17022278 - IEEE Trans Image Process. 2006 Oct;15(10):3170-7
19833961 - Science. 2009 Oct 16;326(5951):399-403
References_xml – ident: ref33
  doi: 10.1523/JNEUROSCI.3278-09.2009
– ident: ref59
  doi: 10.1007/s11263-005-1838-7
– start-page: 346
  year: 2006
  ident: ref5
  article-title: SURF:Speeded up robust features
  publication-title: Proc Eur Conf Comput Vis
– start-page: 321
  year: 2003
  ident: ref47
  article-title: Learning with local and global consistency
  publication-title: Proc Neural Inf Process Syst
– start-page: 169
  year: 2003
  ident: ref26
  article-title: Ranking on data manifolds
  publication-title: Proc 18th Ann Conf Neural Inf Process Syst
– year: 2002
  ident: ref40
  publication-title: E-Prime Reference Guide
– ident: ref20
  doi: 10.1109/ICIP.2011.6116505
– year: 2001
  ident: ref52
  publication-title: Pattern Classication
– ident: ref15
  doi: 10.1523/JNEUROSCI.0559-09.2009
– ident: ref11
  doi: 10.1145/1631272.1631463
– ident: ref55
  doi: 10.1016/j.eswa.2010.09.133
– ident: ref41
  doi: 10.1016/S1053-8119(03)00112-5
– ident: ref44
  doi: 10.2307/2684655
– start-page: 184
  year: 2004
  ident: ref50
  article-title: Fraunhofer HHI at TRECVID 2004:Shot boundary detection system
  publication-title: Proc Text REtrieval Conf
– year: 1964
  ident: ref42
  publication-title: Handbook of Mathematical Functions
– ident: ref54
  doi: 10.1007/3-540-57868-4_57
– ident: ref51
  doi: 10.1214/aos/1016218223
– start-page: 171
  year: 2010
  ident: ref19
  article-title: Human-friendly attention models for video summarization
  publication-title: Proc 12th ACM Conf Multimodal Inter
– ident: ref34
  doi: 10.1016/j.cogbrainres.2003.09.009
– ident: ref1
  doi: 10.1109/MMUL.2002.1022858
– ident: ref29
  doi: 10.1016/j.jneumeth.2010.01.014
– volume: 3
  start-page: 1
  year: 2009
  ident: ref37
  article-title: ALE meta-analysis workflows via the BrainMap database:Progress towards a probabilistic functional brain atlas
  publication-title: Neuroinformatics
– ident: ref32
  doi: 10.1016/S0896-6273(04)00070-4
– start-page: 1
  year: 2011
  ident: ref56
  article-title: Team SRI-Sarnoff's AURORA system @ TRECVID 2011
  publication-title: Proc NIST TRECVID Workshop
– year: 2005
  ident: ref48
  publication-title: TRECVID Database
– ident: ref39
  doi: 10.1038/nrn893
– start-page: 1
  year: 2011
  ident: ref58
  article-title: IBM research and Columbia University TRECVID-2011 multimedia event detection (MED) system
  publication-title: Proc NIST TRECVID Workshop
– ident: ref28
  doi: 10.1523/JNEUROSCI.0333-10.2010
– ident: ref4
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 41
  start-page: 797
  year: 2011
  ident: ref10
  article-title: A survey on visual content-based video indexing and retrieval
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/TSMCC.2011.2109710
– start-page: 1
  year: 2011
  ident: ref57
  article-title: TRECVid 2011 experiments at Dublin City University
  publication-title: Proc NIST TRECVID Workshop
– ident: ref16
  doi: 10.1038/nature06713
– ident: ref7
  doi: 10.1109/TPAMI.2007.56
– ident: ref13
  doi: 10.1109/CVPR.2008.4587618
– ident: ref31
  doi: 10.1016/j.neuron.2009.11.008
– volume: 303
  start-page: 1634
  year: 2004
  ident: ref14
  article-title: Intersubject synchronization of cortical activity during natural vision
  publication-title: Science
  doi: 10.1126/science.1089506
– volume: 8
  start-page: 644
  year: 1998
  ident: ref9
  article-title: Relevance feedback:A power tool for interactive content-based image retrieval
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/76.718510
– ident: ref30
  doi: 10.1038/nrn1201
– start-page: 235
  year: 1999
  ident: ref45
  article-title: Feature selection for machine learning:Comparing a correlation-based filter approach to the wrapper
  publication-title: Proc FLAIRS Conf
– volume: 2
  start-page: 524
  year: 2005
  ident: ref6
  article-title: A bayesian hierarchical model for learning natural scene categories
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref2
  doi: 10.1016/j.patrec.2008.02.009
– year: 2010
  ident: ref53
  article-title: Advancing feature selection research-ASU feature selection repository
– ident: ref12
  doi: 10.1109/JPROC.2009.2038406
– ident: ref38
  doi: 10.1016/j.neuroimage.2011.08.037
– year: 2006
  ident: ref23
  publication-title: Gaussian Processes for Machine Learning
– ident: ref8
  doi: 10.1109/TIP.2009.2032939
– volume: 326
  start-page: 399
  year: 2009
  ident: ref27
  article-title: Modalities, modes, and models in functional neuroimaging
  publication-title: Science
  doi: 10.1126/science.1174521
– ident: ref25
  doi: 10.1109/TIP.2006.877491
– ident: ref3
  doi: 10.1007/s11042-006-0085-4
– year: 2005
  ident: ref49
  article-title: A light scale concept ontology for multimedia understanding for TRECVID 2005
– ident: ref24
  doi: 10.1007/s11263-008-0204-y
– ident: ref36
  doi: 10.1152/jn.90531.2008
– year: 2011
  ident: ref22
  publication-title: Predicting Functional Cortical ROIs Via DTI-Derived Fiber Shape Models
– ident: ref18
  doi: 10.1109/TMM.2011.2172201
– year: 2012
  ident: ref21
  publication-title: DICCCOL Dense Individualized and Common Connectivity-Based Cortical Landmarks
– ident: ref17
  doi: 10.1145/1873951.1874016
– start-page: 17
  year: 2004
  ident: ref46
  article-title: Learning an image manifold for retrieval
  publication-title: Proc 12th ACM Int Conf Multimedia
  doi: 10.1145/1027527.1027532
– year: 2007
  ident: ref43
  publication-title: Statistical Concepts A Second Course
– ident: ref35
  doi: 10.1111/j.1469-8986.2009.00834.x
– reference: 19940182 - J Neurosci. 2009 Nov 25;29(47):14864-8
– reference: 19636392 - Front Neuroinform. 2009 Jul 09;3:23
– reference: 12154362 - Nat Rev Neurosci. 2002 Aug;3(8):606-16
– reference: 20631176 - J Neurosci. 2010 Jul 14;30(28):9477-87
– reference: 19710310 - J Neurosci. 2009 Aug 26;29(34):10573-81
– reference: 18322462 - Nature. 2008 Mar 20;452(7185):352-5
– reference: 18684903 - J Neurophysiol. 2008 Oct;100(4):1800-12
– reference: 22490548 - Cereb Cortex. 2013 Apr;23(4):786-800
– reference: 14659500 - Brain Res Cogn Brain Res. 2003 Dec;18(1):89-96
– reference: 21875672 - Neuroimage. 2012 Jan 16;59(2):1382-93
– reference: 14523382 - Nat Rev Neurosci. 2003 Oct;4(10):829-39
– reference: 15016991 - Science. 2004 Mar 12;303(5664):1634-40
– reference: 19497008 - Psychophysiology. 2009 Sep;46(5):1100-7
– reference: 21705394 - Cereb Cortex. 2012 Apr;22(4):854-64
– reference: 15003179 - Neuron. 2004 Mar 4;41(5):809-23
– reference: 19945387 - Neuron. 2009 Nov 25;64(4):446-7
– reference: 20096730 - J Neurosci Methods. 2010 Dec 15;194(1):34-45
– reference: 19833961 - Science. 2009 Oct 16;326(5951):399-403
– reference: 17224612 - IEEE Trans Pattern Anal Mach Intell. 2007 Mar;29(3):411-26
– reference: 19783505 - IEEE Trans Image Process. 2010 Jan;19(1):174-84
– reference: 17022278 - IEEE Trans Image Process. 2006 Oct;15(10):3170-7
– reference: 12814595 - Neuroimage. 2003 Jun;19(2 Pt 1):466-70
SSID ssj0014516
Score 2.50158
Snippet Meaningful representation and effective retrieval of video shots in a large-scale database has been a profound challenge for the image/video processing and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2723
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Biological and medical sciences
Brain
Brain imaging space
Brain Mapping - methods
Computer science; control theory; systems
Computerized, statistical medical data processing and models in biomedicine
Exact sciences and technology
Feature extraction
Functional magnetic resonance imaging
Gaussian process regression
Humans
Image processing
Image Processing, Computer-Assisted - methods
Information theory
Information, signal and communications theory
Magnetic Resonance Imaging
Medical management aid. Diagnosis aid
Medical sciences
Pattern recognition. Digital image processing. Computational geometry
Regression Analysis
Semantics
Signal processing
Streaming media
Telecommunications and information theory
Video Recording - methods
video shot retrieval
Visualization
Young Adult
Title Representing and Retrieving Video Shots in Human-Centric Brain Imaging Space
URI https://ieeexplore.ieee.org/document/6494293
https://www.ncbi.nlm.nih.gov/pubmed/23568507
https://www.proquest.com/docview/1353477416
https://pubmed.ncbi.nlm.nih.gov/PMC3984391
Volume 22
WOSCitedRecordID wos000321924600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdt6cP20G7tPrKthwd7Gcy9XBzb8eM2WlYopbTduLcQOwoNdMlo7vr3z3Jy2d0og72EEMsQW5ItWbJ-AB9cbKxNRcq1dBVPnXDczrTgspyVs0zFqK0NYBP64iKbz83lFnwa78IgYkg-w2N6DbH8snVLOiqbqtT45VNsw7bWqr-rNUYMCHA2RDal5tqb_auQZGymN2eXlMMljr3sKjOjQqGJkCqThCG7thsFeBVKjiw6Pz9VD2zxmOX5dwLl2o50uv9_Y3kGe4PlyT73ovIctrA5gP3BCmWDjncH8HStROEhnF-FVFkMgBKsaEp2FTC46ByC_ahLbNn1bbvoWN2wEBDg4by4duwLgU-ws58BBolde98cX8D305Obr9_4gMDAnXcTFzwpKu-jGVugw0KJMhH-EXuLpjJU10Zm1ukCReJHZ4yzsjTOf8Myo2QUZQrxEnaatsHXwCq_7CK6RDkUKZWVS6mvsjquZBlXGMF0xYncDeXJCSXjLg9uSmxyz8ac2JgPbIzg49jjV1-a4x-0h8SCkW6Y_QgmG8we2xMtjTfUPMH7Ffdzr3cUTCkabJddTnghqSZ7NoJXvTT86T1IVwR6Q05GAqrpvdnS1LehtrcwGd2FfvP4_76FJ0mA46B04Xews7hf4hHsuodF3d1PvFrMs0lQi98e4gm8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NgQQ8MNgGhMEwEi9IZE3jOI4fN8S0ilJNW0F7i2L7okWCBC0tvx-fk4YWTZN4iaLYlmLf2b7znb8P4L2JlNYJT0IpTBkmhptQjyUPhR3bcZZGKLX2ZBNyNsuurtT5Fnwc7sIgok8-wyN69bF825glHZWN0kS55ZPfg_siSeKou601xAyIctbHNoUMpTP8V0HJSI3mk3PK4uJHTntTNSao0JiLNBPEIru2H3mCFUqPLFo3QmVHbXGb7flvCuXannS683-9eQpPetuTHXfK8gy2sN6Fnd4OZf0sb3fh8RpI4R5ML3yyLHpKCVbUll14Fi46iWDfK4sNu7xuFi2rauZDAqE_Ma4MOyH6CTb56YmQ2KXzznEfvp1-nn86C3sOhtA4R3ERxkXpvDSlCzRYpNzG3D0iZ9OUipBtRKaNLJDHrndKGS2sMu4b2ozSUVJV8OewXTc1vgRWuoUX0cSpQZ4QsFxCbVMto1LYqMQARitJ5KYHKCeejB-5d1QilTsx5iTGvBdjAB-GFr86cI476u6RCIZ6_egHcLgh7KE8lkI5U81VeLeSfu5mHoVTihqbZZsTY0giyaIN4EWnDX9b99oVgNzQk6ECoXpvltTVtUf35iqj29Cvbv_ft_DwbP51mk8nsy8H8Cj25ByUPPwathc3S3wDD8zvRdXeHPrJ8QfJ6Qwb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representing+and+Retrieving+Video+Shots+in+Human-Centric+Brain+Imaging+Space&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=JUNWEI+HAN&rft.au=XIANG+JI&rft.au=XINTAO+HU&rft.au=DAJIANG+ZHU&rft.date=2013-07-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=22&rft.issue=7-8&rft.spage=2723&rft.epage=2736&rft_id=info:doi/10.1109%2FTIP.2013.2256919&rft.externalDBID=n%2Fa&rft.externalDocID=27599763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon