Kernel Risk-Sensitive Mean p-Power Error Algorithms for Robust Learning
As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a conv...
Saved in:
| Published in: | Entropy (Basel, Switzerland) Vol. 21; no. 6; p. 588 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
13.06.2019
MDPI |
| Subjects: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a convex kernel risk-sensitive loss (KRL) is proposed to measure the similarity in RKHS, which is the risk-sensitive loss defined as the expectation of an exponential function of the squared estimation error. In this paper, a novel nonlinear similarity measure, namely kernel risk-sensitive mean p-power error (KRP), is proposed by combining the mean p-power error into the KRL, which is a generalization of the KRL measure. The KRP with p = 2 reduces to the KRL, and can outperform the KRL when an appropriate p is configured in robust learning. Some properties of KRP are presented for discussion. To improve the robustness of the kernel recursive least squares algorithm (KRLS) and reduce its network size, two robust recursive kernel adaptive filters, namely recursive minimum kernel risk-sensitive mean p-power error algorithm (RMKRP) and its quantized RMKRP (QRMKRP), are proposed in the RKHS under the minimum kernel risk-sensitive mean p-power error (MKRP) criterion, respectively. Monte Carlo simulations are conducted to confirm the superiorities of the proposed RMKRP and its quantized version. |
|---|---|
| AbstractList | As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a convex kernel risk-sensitive loss (KRL) is proposed to measure the similarity in RKHS, which is the risk-sensitive loss defined as the expectation of an exponential function of the squared estimation error. In this paper, a novel nonlinear similarity measure, namely kernel risk-sensitive mean p-power error (KRP), is proposed by combining the mean p-power error into the KRL, which is a generalization of the KRL measure. The KRP with p = 2 reduces to the KRL, and can outperform the KRL when an appropriate p is configured in robust learning. Some properties of KRP are presented for discussion. To improve the robustness of the kernel recursive least squares algorithm (KRLS) and reduce its network size, two robust recursive kernel adaptive filters, namely recursive minimum kernel risk-sensitive mean p-power error algorithm (RMKRP) and its quantized RMKRP (QRMKRP), are proposed in the RKHS under the minimum kernel risk-sensitive mean p-power error (MKRP) criterion, respectively. Monte Carlo simulations are conducted to confirm the superiorities of the proposed RMKRP and its quantized version. As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a convex kernel risk-sensitive loss (KRL) is proposed to measure the similarity in RKHS, which is the risk-sensitive loss defined as the expectation of an exponential function of the squared estimation error. In this paper, a novel nonlinear similarity measure, namely kernel risk-sensitive mean p-power error (KRP), is proposed by combining the mean p-power error into the KRL, which is a generalization of the KRL measure. The KRP with p = 2 reduces to the KRL, and can outperform the KRL when an appropriate p is configured in robust learning. Some properties of KRP are presented for discussion. To improve the robustness of the kernel recursive least squares algorithm (KRLS) and reduce its network size, two robust recursive kernel adaptive filters, namely recursive minimum kernel risk-sensitive mean p-power error algorithm (RMKRP) and its quantized RMKRP (QRMKRP), are proposed in the RKHS under the minimum kernel risk-sensitive mean p-power error (MKRP) criterion, respectively. Monte Carlo simulations are conducted to confirm the superiorities of the proposed RMKRP and its quantized version.As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a convex kernel risk-sensitive loss (KRL) is proposed to measure the similarity in RKHS, which is the risk-sensitive loss defined as the expectation of an exponential function of the squared estimation error. In this paper, a novel nonlinear similarity measure, namely kernel risk-sensitive mean p-power error (KRP), is proposed by combining the mean p-power error into the KRL, which is a generalization of the KRL measure. The KRP with p = 2 reduces to the KRL, and can outperform the KRL when an appropriate p is configured in robust learning. Some properties of KRP are presented for discussion. To improve the robustness of the kernel recursive least squares algorithm (KRLS) and reduce its network size, two robust recursive kernel adaptive filters, namely recursive minimum kernel risk-sensitive mean p-power error algorithm (RMKRP) and its quantized RMKRP (QRMKRP), are proposed in the RKHS under the minimum kernel risk-sensitive mean p-power error (MKRP) criterion, respectively. Monte Carlo simulations are conducted to confirm the superiorities of the proposed RMKRP and its quantized version. |
| Author | Wang, Shiyuan Zhang, Haonan Wang, Lin Xiong, Kui Zhang, Tao |
| AuthorAffiliation | 2 Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Chongqing 400715, China 1 College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China |
| AuthorAffiliation_xml | – name: 1 College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China – name: 2 Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Chongqing 400715, China |
| Author_xml | – sequence: 1 givenname: Tao surname: Zhang fullname: Zhang, Tao – sequence: 2 givenname: Shiyuan orcidid: 0000-0002-5028-5839 surname: Wang fullname: Wang, Shiyuan – sequence: 3 givenname: Haonan surname: Zhang fullname: Zhang, Haonan – sequence: 4 givenname: Kui surname: Xiong fullname: Xiong, Kui – sequence: 5 givenname: Lin surname: Wang fullname: Wang, Lin |
| BookMark | eNplkU9v1DAQxS1URNuFA98gEhc4hI7_xIkvSFVVSsUiUIGz5TjjrZesvdhOUb99s2xBtJxsj9_83mjeMTkIMSAhLym85VzBCTIKEpque0KOKChVCw5w8M_9kBznvAZgnFH5jBxyzmTLgR2Ri4-YAo7Vlc8_6q8Ysi_-BqtPaEK1rb_EX5iq85Riqk7HVUy-XG9y5ebnVeynXKolmhR8WD0nT50ZM764Pxfk-_vzb2cf6uXni8uz02VthZClZkZh69AC6wfXW8qb3nV9L5RTfFCUDtZ2hkonJAhhcQDBDUUYBLQwGEH5glzuuUM0a71NfmPSrY7G69-FmFbapOLtiFpYpnrqLJ25wrheCQuWDc1shZzzdma927O2U7_BwWIoyYwPoA9_gr_Wq3ij24Y20O4Ar-8BKf6cMBe98dniOJqAccqaCSlbqejstiCvHknXcUphXpVmjeh413QNm1Une5VNMeeETltfTPFx5-9HTUHvAtd_A5873jzq-DP-_9o7DCOqmA |
| CitedBy_id | crossref_primary_10_1007_s10489_021_02852_y crossref_primary_10_1109_TSP_2021_3065173 crossref_primary_10_1007_s13042_021_01391_9 crossref_primary_10_1016_j_dsp_2021_103087 crossref_primary_10_1109_LSP_2024_3434384 crossref_primary_10_1093_bib_bbae534 crossref_primary_10_1016_j_sigpro_2022_108773 crossref_primary_10_1109_JIOT_2025_3545741 crossref_primary_10_1016_j_dsp_2020_102797 |
| Cites_doi | 10.1109/SPAWC.2012.6292933 10.1109/TSP.2007.896065 10.1109/49.339922 10.1007/978-1-4419-1570-2 10.1109/TPAMI.2010.220 10.1002/9780470608593 10.1109/TSP.2005.849213 10.1109/TSP.2004.830991 10.1109/TNNLS.2011.2178446 10.1016/j.sigpro.2015.04.024 10.1016/j.engappai.2016.11.010 10.1109/TSP.2017.2669903 10.1109/TSP.2015.2453133 10.1109/TSP.2007.907881 10.3390/e19070365 10.1109/TCYB.2017.2727278 10.1162/neco.1991.3.2.213 10.1016/j.neunet.2013.11.011 10.1109/9.989082 10.1109/TSP.2008.2009895 10.1109/LSP.2014.2319308 10.1109/TSP.2004.830985 10.1109/TNET.2012.2187923 10.1109/TNNLS.2013.2258936 10.1007/978-3-642-30574-0_41 10.1109/TIP.2010.2103949 10.1016/j.dsp.2015.09.015 10.1016/j.dsp.2017.01.010 10.1109/TSP.2006.872524 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/e21060588 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_4c29b1fc19114afb94c0c2d5f93e3337 PMC7515077 10_3390_e21060588 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-2a9e7fec02bdfbc135bf8bb49f93d911dcc8a16f46044ced043a1e0d4070da413 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475304200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:36:57 EDT 2025 Tue Nov 04 01:56:52 EST 2025 Fri Sep 05 10:00:52 EDT 2025 Fri Jul 25 12:02:21 EDT 2025 Sat Nov 29 07:11:28 EST 2025 Tue Nov 18 21:02:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-2a9e7fec02bdfbc135bf8bb49f93d911dcc8a16f46044ced043a1e0d4070da413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5028-5839 |
| OpenAccessLink | https://www.proquest.com/docview/2548385852?pq-origsite=%requestingapplication% |
| PMID | 33267302 |
| PQID | 2548385852 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4c29b1fc19114afb94c0c2d5f93e3337 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7515077 proquest_miscellaneous_2466769133 proquest_journals_2548385852 crossref_citationtrail_10_3390_e21060588 crossref_primary_10_3390_e21060588 |
| PublicationCentury | 2000 |
| PublicationDate | 20190613 |
| PublicationDateYYYYMMDD | 2019-06-13 |
| PublicationDate_xml | – month: 6 year: 2019 text: 20190613 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Chen (ref_20) 2014; 21 Fan (ref_31) 2014; 50 Boel (ref_16) 2002; 47 ref_14 Liu (ref_6) 2008; 56 Jiang (ref_4) 2015; 63 Wu (ref_21) 2015; 117 Chen (ref_13) 2013; 24 Chen (ref_17) 2017; 65 Richard (ref_11) 2009; 57 Pei (ref_15) 1994; 12 Engel (ref_8) 2004; 52 He (ref_23) 2011; 20 Chen (ref_27) 2017; 48 Chen (ref_12) 2012; 23 Kivinen (ref_1) 2004; 52 ref_22 Liu (ref_9) 2009; 20 Weng (ref_29) 2005; 53 ref_3 ref_2 Zheng (ref_5) 2016; 48 Liu (ref_19) 2007; 55 Wang (ref_30) 2017; 63 ref_28 Liu (ref_7) 2004; 52 Ma (ref_18) 2017; 58 ref_26 Platt (ref_10) 1991; 3 He (ref_24) 2011; 33 Pokharel (ref_25) 2006; 54 |
| References_xml | – ident: ref_3 doi: 10.1109/SPAWC.2012.6292933 – volume: 55 start-page: 5286 year: 2007 ident: ref_19 article-title: Correntropy: Properties and applications in non-gaussian signal processing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.896065 – volume: 12 start-page: 1540 year: 1994 ident: ref_15 article-title: Least mean p-power error criterion for adaptive FIR filter publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/49.339922 – ident: ref_14 doi: 10.1007/978-1-4419-1570-2 – volume: 33 start-page: 1561 year: 2011 ident: ref_24 article-title: Maximum correntropy criterion for robust face recognition publication-title: IEEE Trans. Patt. Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.220 – ident: ref_28 doi: 10.1002/9780470608593 – volume: 53 start-page: 2588 year: 2005 ident: ref_29 article-title: Nonlinear system identification in impulsive environments publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.849213 – volume: 52 start-page: 1540 year: 2004 ident: ref_1 article-title: Online learning with kernels publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.830991 – volume: 23 start-page: 22 year: 2012 ident: ref_12 article-title: Quantized kernel least mean square algorithm publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2011.2178446 – volume: 117 start-page: 11 year: 2015 ident: ref_21 article-title: Kernel recursive maximum correntropy publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.04.024 – volume: 58 start-page: 101 year: 2017 ident: ref_18 article-title: Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.11.010 – volume: 65 start-page: 2888 year: 2017 ident: ref_17 article-title: Kernel risk-sensitive loss: Definition, properties and application to robust adaptive filtering publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2669903 – volume: 63 start-page: 5318 year: 2015 ident: ref_4 article-title: Block-sparsity-induced adaptive filter for multi-clustering system identification publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2453133 – volume: 56 start-page: 543 year: 2008 ident: ref_6 article-title: The kernel least mean square algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.907881 – volume: 52 start-page: 2275 year: 2004 ident: ref_7 article-title: Kernel affine projection algorithms publication-title: IEEE Trans. Signal Process. – ident: ref_26 doi: 10.3390/e19070365 – volume: 48 start-page: 2101 year: 2017 ident: ref_27 article-title: Robust learning with kernel mean p-power error loss publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2727278 – volume: 3 start-page: 213 year: 1991 ident: ref_10 article-title: A resource-allocating network for function interpolation publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.213 – volume: 50 start-page: 142 year: 2014 ident: ref_31 article-title: A linear recurrent kernel online learning algorithm with sparse updates publication-title: Neural Netw. doi: 10.1016/j.neunet.2013.11.011 – volume: 47 start-page: 451 year: 2002 ident: ref_16 article-title: Robustness and risk sensitive filtering publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.989082 – volume: 57 start-page: 1058 year: 2009 ident: ref_11 article-title: Online prediction of time series data with kernels publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2009895 – volume: 21 start-page: 880 year: 2014 ident: ref_20 article-title: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2319308 – volume: 52 start-page: 2275 year: 2004 ident: ref_8 article-title: The kernel recursive least-squares algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.830985 – volume: 20 start-page: 1950 year: 2009 ident: ref_9 article-title: An information theoretic approach of designing sparse kernel adaptive filters publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNET.2012.2187923 – volume: 24 start-page: 1484 year: 2013 ident: ref_13 article-title: Quantized kernel recursive least squares algorithm publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2258936 – ident: ref_2 doi: 10.1007/978-3-642-30574-0_41 – volume: 20 start-page: 1485 year: 2011 ident: ref_23 article-title: Robust principal component analysis based on maximum correntropy criterion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2103949 – ident: ref_22 – volume: 48 start-page: 130 year: 2016 ident: ref_5 article-title: A modified quantized kernel least mean square algorithm for prediction of chaotic time series publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2015.09.015 – volume: 63 start-page: 164 year: 2017 ident: ref_30 article-title: Quantized kernel maximum correntropy and its mean square convergence analysis publication-title: Dig. Signal Process. doi: 10.1016/j.dsp.2017.01.010 – volume: 54 start-page: 2187 year: 2006 ident: ref_25 article-title: Generalized correlation function: Definition, properties, and application to blind equalization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.872524 |
| SSID | ssj0023216 |
| Score | 2.2143948 |
| Snippet | As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 588 |
| SubjectTerms | Accuracy Adaptive filters Algorithms Approximation correntropic Exponential functions Hilbert space kernel adaptive filters kernel risk-sensitive mean p-power error Kernels Machine learning Performance degradation quantized Random variables recursive Risk Robustness Signal processing Similarity Similarity measures |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NBLSWlK3GyDEnLoRUSy5IeOm7DbQB6EtIHcjPXaXbqxF3s3v78j2bvEUMglV2sw0jeWZz40-gahMwkxQiZOk1ILQURKNVE8M6GZGZfMJUyFi8I32d1d_vQk71-1-vI1YZ08cAfcudCxVMxp4BVMlE5JoamOTeIkt5zzcI-cZnJLpnqqxWOWdjpCHEj9uQVi48__8kH0CSL9g8xyWBf5KtBM99HnPkPE425mX9AHW31Fv65tU9klfli0f8lvX3Tuf1P41pYVXpF73-oMT5qmbvB4OauB8M-fWwz5KH6o1aZd415GdXaAHqeTP5dXpO-BQAC7dE3iUtrMWU1jZZzSjCfK5UoJCes3AInROi9Z6gBlIbQ1VPCSWWqAp1FTQoT6hvaqurKHCPsil5SrmJscwjajihkKL7JU5TkHVCP0c4tNoXuBcN-nYlkAUfAwFjsYI3S6M111qhj_M7rwAO8MvJB1eADuLXr3Fm-5N0KjrXuKfne1BZDaPBxoxhE62Q3DvvCHHWVl6w3YiFC9CxQ8QtnArYMJDUeqxTwobGeJz5Oz7--xgiP0CZIsL_VAGB-hvXWzsT_QR_2yXrTNcfhs_wFTnPM9 priority: 102 providerName: Directory of Open Access Journals |
| Title | Kernel Risk-Sensitive Mean p-Power Error Algorithms for Robust Learning |
| URI | https://www.proquest.com/docview/2548385852 https://www.proquest.com/docview/2466769133 https://pubmed.ncbi.nlm.nih.gov/PMC7515077 https://doaj.org/article/4c29b1fc19114afb94c0c2d5f93e3337 |
| Volume | 21 |
| WOSCitedRecordID | wos000475304200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgOXAgJEoKwM4sDFahw7rxNq0RYQdBVtQVpOUfzIdtUl2SZZjvx2xt5sIBLiwiWHeOQ4Gdszn2fyDcDrFG1EGpaKFkoIKiJfUclj7YqZ8ZSVIZPuR-HP8WyWLBZp1h-4tX1a5X5PdBu1rpU9Iz9FIJO4IFbwdnNLbdUoG13tS2gcwJFlSWAude9qAFw8YNGOTYgjtD81CG9sFDAZ2SBH1T_yL8fZkX-Ym4v7_zvQB3DcO5rkbDczHsIdUz2C959MU5k1ma_aG3plc9ftbkcuTVGRDc1sxTQybZq6IWfrJXbaXX9vCbq1ZF7LbduRno11-Ri-Xky_vPtA-1IKFFUQdTQoUhOXRvmB1KVUjIeyTKQUaZlyjfudViopWFSisoRQRvuCF8z4GuGerws0dE_gsKor8xSIzZWJuAy4TtD6M18y7WNHxpdJwoXyPXiz_7i56nnGbbmLdY54w-ohH_TgwatBdLMj1_ib0LnV0CBg-bDdjbpZ5v3yyoUKUslKheiTiaKUKQ5EBTrE1zOc89iDk72y8n6RtvlvTXnwcmjG5WVjJkVl6i3KCJcEjEjeg3g0L0YDGrdUq2tH1B2H1t2On_374c_hHnphlguCMn4Ch12zNS_grvrRrdpmAgfxIpnA0fl0ls0n7shg4ma5vf6cYkv28TL79gtNYgfH |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILDwEipYBBIHGJ6lcePiBUoKXVbldVW6TeQvzIdsU2WZIsiD_Fb2TszQYiIW49cI1HzjgzHs-XGc8g9FLCGSGjQoe5FiIUMdGh4onxzcy4pEVElb8oPE4mk_T8XB5voJ_ruzAurXJtE72hNpV2_8h3AMikPojF3i6-hq5rlIuurltorNRiZH98B8jWvDn8APJ9xdj-3tn7g7DrKhACN3EbslzapLCaMGUKpSmPVJEqJWQhuYGtb7ROcxoXwLcQ2hoieE4tMYB8iMnB5sO819B1cCOY9KmCpz3A44zGq-pFnEuyYwFOuahjOjjzfGuAgT87zMb843jbv_O_fZi76HbnSOPdlebfQxu2vI8-jmxd2jk-mTVfwlOXm--sOT6yeYkX4bHrCIf36rqq8e58CotoLy4bDG47PqnUsmlxV212-gB9uhLeH6LNsirtI4RdLlDMFeMmBe-GEkUNgYksUWnKhSYBer0WZqa7Ouquncc8Azzl5J71cg_Qi550sSoe8jeid04jegJX79s_qOpp1pmPTGgmFS00oGsq8kJJYEQzE8HyLOc8CdD2Wjmyzgg12W_NCNDzfhjMh4sJ5aWtlkAjfJIz5TxAyUAPBwwNR8rZhS9EnkQOTiRb_375M3Tz4OxonI0PJ6PH6BZ4nK7uRUj5Ntps66V9gm7ob-2sqZ_63YTR56vW0l-ITmCS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceAgQKQUMAolLtHHsvA4IFdqF1barqIBUTiF-ZLtimyxJFsRf49cxziaBSIhbD1xjyxnHn8fzZcYzAM8iPCMiL5N2Kjm3ue9IW7BANcXMWEQzj4rmovBxMJ-HZ2dRvAM_u7swJqyy04mNolaFNP_Ix0hkwsaJ5Y6zNiwiPpy8Wn-1TQUp42ntymlsITLTP74jfateTg9xrZ-77uTow5t3dlthwEbJ_Np200gHmZaOK1QmJGWeyEIheJRFTKEaUFKGKfUznAPnUiuHs5RqRyELclSK-h_HvQK7aJJzdwS78fQk_tTTPeZSf5vLiLHIGWskV8YHGQ5OwKZQwMC6HcZm_nHYTW7-z5_pFtxoTWxysN0Tt2FH53fg7UyXuV6R02X1xX5vovaNnicnOs3J2o5NrThyVJZFSQ5WC5xEfX5RETToyWkhNlVN2jy0i7vw8VJkvwejvMj1fSAmSshnwmUqRLuHOoIqBwfSjghDxqVjwYtuYRPZZlg3hT5WCTItg4Gkx4AFT_uu621akb91em3Q0XcwmcCbB0W5SFrFknDpRoJmEnk35WkmIhREusrD6WnGWGDBfgeUpFVPVfIbJRY86ZtRsRhvUZrrYoN9eBP-TBmzIBhgciDQsCVfnjcpygPPEI1g798vfwzXEJzJ8XQ-ewDX0RQ1CTFsyvZhVJcb_RCuym_1sioftVuLwOfLhukv1ZNqyA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Risk-Sensitive+Mean+p-Power+Error+Algorithms+for+Robust+Learning&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Tao&rft.au=Wang%2C+Shiyuan&rft.au=Zhang%2C+Haonan&rft.au=Xiong%2C+Kui&rft.date=2019-06-13&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=21&rft.issue=6&rft_id=info:doi/10.3390%2Fe21060588&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |