Kernel Risk-Sensitive Mean p-Power Error Algorithms for Robust Learning

As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a conv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 21; číslo 6; s. 588
Hlavní autoři: Zhang, Tao, Wang, Shiyuan, Zhang, Haonan, Xiong, Kui, Wang, Lin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 13.06.2019
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a convex kernel risk-sensitive loss (KRL) is proposed to measure the similarity in RKHS, which is the risk-sensitive loss defined as the expectation of an exponential function of the squared estimation error. In this paper, a novel nonlinear similarity measure, namely kernel risk-sensitive mean p-power error (KRP), is proposed by combining the mean p-power error into the KRL, which is a generalization of the KRL measure. The KRP with p = 2 reduces to the KRL, and can outperform the KRL when an appropriate p is configured in robust learning. Some properties of KRP are presented for discussion. To improve the robustness of the kernel recursive least squares algorithm (KRLS) and reduce its network size, two robust recursive kernel adaptive filters, namely recursive minimum kernel risk-sensitive mean p-power error algorithm (RMKRP) and its quantized RMKRP (QRMKRP), are proposed in the RKHS under the minimum kernel risk-sensitive mean p-power error (MKRP) criterion, respectively. Monte Carlo simulations are conducted to confirm the superiorities of the proposed RMKRP and its quantized version.
AbstractList As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a convex kernel risk-sensitive loss (KRL) is proposed to measure the similarity in RKHS, which is the risk-sensitive loss defined as the expectation of an exponential function of the squared estimation error. In this paper, a novel nonlinear similarity measure, namely kernel risk-sensitive mean p-power error (KRP), is proposed by combining the mean p-power error into the KRL, which is a generalization of the KRL measure. The KRP with p = 2 reduces to the KRL, and can outperform the KRL when an appropriate p is configured in robust learning. Some properties of KRP are presented for discussion. To improve the robustness of the kernel recursive least squares algorithm (KRLS) and reduce its network size, two robust recursive kernel adaptive filters, namely recursive minimum kernel risk-sensitive mean p-power error algorithm (RMKRP) and its quantized RMKRP (QRMKRP), are proposed in the RKHS under the minimum kernel risk-sensitive mean p-power error (MKRP) criterion, respectively. Monte Carlo simulations are conducted to confirm the superiorities of the proposed RMKRP and its quantized version.
As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a convex kernel risk-sensitive loss (KRL) is proposed to measure the similarity in RKHS, which is the risk-sensitive loss defined as the expectation of an exponential function of the squared estimation error. In this paper, a novel nonlinear similarity measure, namely kernel risk-sensitive mean p-power error (KRP), is proposed by combining the mean p-power error into the KRL, which is a generalization of the KRL measure. The KRP with p = 2 reduces to the KRL, and can outperform the KRL when an appropriate p is configured in robust learning. Some properties of KRP are presented for discussion. To improve the robustness of the kernel recursive least squares algorithm (KRLS) and reduce its network size, two robust recursive kernel adaptive filters, namely recursive minimum kernel risk-sensitive mean p-power error algorithm (RMKRP) and its quantized RMKRP (QRMKRP), are proposed in the RKHS under the minimum kernel risk-sensitive mean p-power error (MKRP) criterion, respectively. Monte Carlo simulations are conducted to confirm the superiorities of the proposed RMKRP and its quantized version.As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust learning and signal processing. However, the highly non-convex nature of C-Loss results in performance degradation. To address this issue, a convex kernel risk-sensitive loss (KRL) is proposed to measure the similarity in RKHS, which is the risk-sensitive loss defined as the expectation of an exponential function of the squared estimation error. In this paper, a novel nonlinear similarity measure, namely kernel risk-sensitive mean p-power error (KRP), is proposed by combining the mean p-power error into the KRL, which is a generalization of the KRL measure. The KRP with p = 2 reduces to the KRL, and can outperform the KRL when an appropriate p is configured in robust learning. Some properties of KRP are presented for discussion. To improve the robustness of the kernel recursive least squares algorithm (KRLS) and reduce its network size, two robust recursive kernel adaptive filters, namely recursive minimum kernel risk-sensitive mean p-power error algorithm (RMKRP) and its quantized RMKRP (QRMKRP), are proposed in the RKHS under the minimum kernel risk-sensitive mean p-power error (MKRP) criterion, respectively. Monte Carlo simulations are conducted to confirm the superiorities of the proposed RMKRP and its quantized version.
Author Wang, Shiyuan
Zhang, Haonan
Wang, Lin
Xiong, Kui
Zhang, Tao
AuthorAffiliation 2 Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Chongqing 400715, China
1 College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
AuthorAffiliation_xml – name: 1 College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
– name: 2 Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Chongqing 400715, China
Author_xml – sequence: 1
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
– sequence: 2
  givenname: Shiyuan
  orcidid: 0000-0002-5028-5839
  surname: Wang
  fullname: Wang, Shiyuan
– sequence: 3
  givenname: Haonan
  surname: Zhang
  fullname: Zhang, Haonan
– sequence: 4
  givenname: Kui
  surname: Xiong
  fullname: Xiong, Kui
– sequence: 5
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
BookMark eNplkU9v1DAQxS1URNuFA98gEhc4hI7_xIkvSFVVSsUiUIGz5TjjrZesvdhOUb99s2xBtJxsj9_83mjeMTkIMSAhLym85VzBCTIKEpque0KOKChVCw5w8M_9kBznvAZgnFH5jBxyzmTLgR2Ri4-YAo7Vlc8_6q8Ysi_-BqtPaEK1rb_EX5iq85Riqk7HVUy-XG9y5ebnVeynXKolmhR8WD0nT50ZM764Pxfk-_vzb2cf6uXni8uz02VthZClZkZh69AC6wfXW8qb3nV9L5RTfFCUDtZ2hkonJAhhcQDBDUUYBLQwGEH5glzuuUM0a71NfmPSrY7G69-FmFbapOLtiFpYpnrqLJ25wrheCQuWDc1shZzzdma927O2U7_BwWIoyYwPoA9_gr_Wq3ij24Y20O4Ar-8BKf6cMBe98dniOJqAccqaCSlbqejstiCvHknXcUphXpVmjeh413QNm1Une5VNMeeETltfTPFx5-9HTUHvAtd_A5873jzq-DP-_9o7DCOqmA
CitedBy_id crossref_primary_10_1007_s10489_021_02852_y
crossref_primary_10_1109_TSP_2021_3065173
crossref_primary_10_1007_s13042_021_01391_9
crossref_primary_10_1016_j_dsp_2021_103087
crossref_primary_10_1109_LSP_2024_3434384
crossref_primary_10_1093_bib_bbae534
crossref_primary_10_1016_j_sigpro_2022_108773
crossref_primary_10_1109_JIOT_2025_3545741
crossref_primary_10_1016_j_dsp_2020_102797
Cites_doi 10.1109/SPAWC.2012.6292933
10.1109/TSP.2007.896065
10.1109/49.339922
10.1007/978-1-4419-1570-2
10.1109/TPAMI.2010.220
10.1002/9780470608593
10.1109/TSP.2005.849213
10.1109/TSP.2004.830991
10.1109/TNNLS.2011.2178446
10.1016/j.sigpro.2015.04.024
10.1016/j.engappai.2016.11.010
10.1109/TSP.2017.2669903
10.1109/TSP.2015.2453133
10.1109/TSP.2007.907881
10.3390/e19070365
10.1109/TCYB.2017.2727278
10.1162/neco.1991.3.2.213
10.1016/j.neunet.2013.11.011
10.1109/9.989082
10.1109/TSP.2008.2009895
10.1109/LSP.2014.2319308
10.1109/TSP.2004.830985
10.1109/TNET.2012.2187923
10.1109/TNNLS.2013.2258936
10.1007/978-3-642-30574-0_41
10.1109/TIP.2010.2103949
10.1016/j.dsp.2015.09.015
10.1016/j.dsp.2017.01.010
10.1109/TSP.2006.872524
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e21060588
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (subscription)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_4c29b1fc19114afb94c0c2d5f93e3337
PMC7515077
10_3390_e21060588
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-2a9e7fec02bdfbc135bf8bb49f93d911dcc8a16f46044ced043a1e0d4070da413
IEDL.DBID M7S
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475304200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:36:57 EDT 2025
Tue Nov 04 01:56:52 EST 2025
Fri Sep 05 10:00:52 EDT 2025
Fri Jul 25 12:02:21 EDT 2025
Sat Nov 29 07:11:28 EST 2025
Tue Nov 18 21:02:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-2a9e7fec02bdfbc135bf8bb49f93d911dcc8a16f46044ced043a1e0d4070da413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5028-5839
OpenAccessLink https://www.proquest.com/docview/2548385852?pq-origsite=%requestingapplication%
PMID 33267302
PQID 2548385852
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_4c29b1fc19114afb94c0c2d5f93e3337
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7515077
proquest_miscellaneous_2466769133
proquest_journals_2548385852
crossref_citationtrail_10_3390_e21060588
crossref_primary_10_3390_e21060588
PublicationCentury 2000
PublicationDate 20190613
PublicationDateYYYYMMDD 2019-06-13
PublicationDate_xml – month: 6
  year: 2019
  text: 20190613
  day: 13
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_20) 2014; 21
Fan (ref_31) 2014; 50
Boel (ref_16) 2002; 47
ref_14
Liu (ref_6) 2008; 56
Jiang (ref_4) 2015; 63
Wu (ref_21) 2015; 117
Chen (ref_13) 2013; 24
Chen (ref_17) 2017; 65
Richard (ref_11) 2009; 57
Pei (ref_15) 1994; 12
Engel (ref_8) 2004; 52
He (ref_23) 2011; 20
Chen (ref_27) 2017; 48
Chen (ref_12) 2012; 23
Kivinen (ref_1) 2004; 52
ref_22
Liu (ref_9) 2009; 20
Weng (ref_29) 2005; 53
ref_3
ref_2
Zheng (ref_5) 2016; 48
Liu (ref_19) 2007; 55
Wang (ref_30) 2017; 63
ref_28
Liu (ref_7) 2004; 52
Ma (ref_18) 2017; 58
ref_26
Platt (ref_10) 1991; 3
He (ref_24) 2011; 33
Pokharel (ref_25) 2006; 54
References_xml – ident: ref_3
  doi: 10.1109/SPAWC.2012.6292933
– volume: 55
  start-page: 5286
  year: 2007
  ident: ref_19
  article-title: Correntropy: Properties and applications in non-gaussian signal processing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.896065
– volume: 12
  start-page: 1540
  year: 1994
  ident: ref_15
  article-title: Least mean p-power error criterion for adaptive FIR filter
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/49.339922
– ident: ref_14
  doi: 10.1007/978-1-4419-1570-2
– volume: 33
  start-page: 1561
  year: 2011
  ident: ref_24
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans. Patt. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.220
– ident: ref_28
  doi: 10.1002/9780470608593
– volume: 53
  start-page: 2588
  year: 2005
  ident: ref_29
  article-title: Nonlinear system identification in impulsive environments
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.849213
– volume: 52
  start-page: 1540
  year: 2004
  ident: ref_1
  article-title: Online learning with kernels
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.830991
– volume: 23
  start-page: 22
  year: 2012
  ident: ref_12
  article-title: Quantized kernel least mean square algorithm
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2178446
– volume: 117
  start-page: 11
  year: 2015
  ident: ref_21
  article-title: Kernel recursive maximum correntropy
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.04.024
– volume: 58
  start-page: 101
  year: 2017
  ident: ref_18
  article-title: Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.11.010
– volume: 65
  start-page: 2888
  year: 2017
  ident: ref_17
  article-title: Kernel risk-sensitive loss: Definition, properties and application to robust adaptive filtering
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2669903
– volume: 63
  start-page: 5318
  year: 2015
  ident: ref_4
  article-title: Block-sparsity-induced adaptive filter for multi-clustering system identification
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2453133
– volume: 56
  start-page: 543
  year: 2008
  ident: ref_6
  article-title: The kernel least mean square algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.907881
– volume: 52
  start-page: 2275
  year: 2004
  ident: ref_7
  article-title: Kernel affine projection algorithms
  publication-title: IEEE Trans. Signal Process.
– ident: ref_26
  doi: 10.3390/e19070365
– volume: 48
  start-page: 2101
  year: 2017
  ident: ref_27
  article-title: Robust learning with kernel mean p-power error loss
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2727278
– volume: 3
  start-page: 213
  year: 1991
  ident: ref_10
  article-title: A resource-allocating network for function interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.213
– volume: 50
  start-page: 142
  year: 2014
  ident: ref_31
  article-title: A linear recurrent kernel online learning algorithm with sparse updates
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2013.11.011
– volume: 47
  start-page: 451
  year: 2002
  ident: ref_16
  article-title: Robustness and risk sensitive filtering
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.989082
– volume: 57
  start-page: 1058
  year: 2009
  ident: ref_11
  article-title: Online prediction of time series data with kernels
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2009895
– volume: 21
  start-page: 880
  year: 2014
  ident: ref_20
  article-title: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2319308
– volume: 52
  start-page: 2275
  year: 2004
  ident: ref_8
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.830985
– volume: 20
  start-page: 1950
  year: 2009
  ident: ref_9
  article-title: An information theoretic approach of designing sparse kernel adaptive filters
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNET.2012.2187923
– volume: 24
  start-page: 1484
  year: 2013
  ident: ref_13
  article-title: Quantized kernel recursive least squares algorithm
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2258936
– ident: ref_2
  doi: 10.1007/978-3-642-30574-0_41
– volume: 20
  start-page: 1485
  year: 2011
  ident: ref_23
  article-title: Robust principal component analysis based on maximum correntropy criterion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2103949
– ident: ref_22
– volume: 48
  start-page: 130
  year: 2016
  ident: ref_5
  article-title: A modified quantized kernel least mean square algorithm for prediction of chaotic time series
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2015.09.015
– volume: 63
  start-page: 164
  year: 2017
  ident: ref_30
  article-title: Quantized kernel maximum correntropy and its mean square convergence analysis
  publication-title: Dig. Signal Process.
  doi: 10.1016/j.dsp.2017.01.010
– volume: 54
  start-page: 2187
  year: 2006
  ident: ref_25
  article-title: Generalized correlation function: Definition, properties, and application to blind equalization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.872524
SSID ssj0023216
Score 2.2142932
Snippet As a nonlinear similarity measure defined in the reproducing kernel Hilbert space (RKHS), the correntropic loss (C-Loss) has been widely applied in robust...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 588
SubjectTerms Accuracy
Adaptive filters
Algorithms
Approximation
correntropic
Exponential functions
Hilbert space
kernel adaptive filters
kernel risk-sensitive mean p-power error
Kernels
Machine learning
Performance degradation
quantized
Random variables
recursive
Risk
Robustness
Signal processing
Similarity
Similarity measures
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUq1EMvVVFBTUuRi3rgYmHH3sQ-AoIioSIEVOIW2WMbVt0mKNnl-xkn2RWRKvXSazwH-42dmSeP3xDyPQIokXtgjhvPVGE5M4UDlvaO8R6C0NA3myivrvT9vbl-1eor1YQN8sADcEcKcuNEBOQVQtnojAIOuZ9FI4OUsn9HzkuzJlMj1ZK5KAYdIYmk_iggsUn3f3oSfXqR_klmOa2LfBVozj-Q92OGSI-HmW2TN6H-SH5chrYOC3oz736z21R0nn5T9GewNX1i16nVGT1r26alx4uHBgn_45-OYj5Kbxq36pZ0lFF92CG_zs_uTi_Y2AOBARK1JcutCWUMwHPnowMhZy5q55TB9XuExANoK4qoCq4UBM-VtCJwjzyNe4sRapds1U0dPhEqnXMhSgXGFcpgkHLRC6u1Ka11pZ5l5HCNTQWjQHjqU7GokCgkGKsNjBk52Jg-DaoYfzM6SQBvDJKQdf8B3VuN7q3-5d6M7K3dU42nq6uQ1Or-QjPPyLfNMJ6LdNlh69Cs0Eb11btIwTNSTtw6mdB0pJ4_9grb5SzlyeXn_7GCL-QdJllJ6oEJuUe2lu0qfCVv4Xk579r9ftu-AA-l9WQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Kernel Risk-Sensitive Mean p-Power Error Algorithms for Robust Learning
URI https://www.proquest.com/docview/2548385852
https://www.proquest.com/docview/2466769133
https://pubmed.ncbi.nlm.nih.gov/PMC7515077
https://doaj.org/article/4c29b1fc19114afb94c0c2d5f93e3337
Volume 21
WOSCitedRecordID wos000475304200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (subscription)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELXYXQ5c-BAgAksVEAcu1saxm9gntIu6gNBWURekcorssd2tKElJUo78dmw3DURCXLjkEI8SJzMez_OM3iD0ygIwkmrAKhEas0wmWGQKsLcdoTUYwiE0m8jnc75ciqI_cGv7ssqDTwyOWtfgz8jPHJDhIYmVvtl-x75rlM-u9i00jtCJZ0kgoXTvegBcNCXZnk2IOmh_Zhy88VlAPtqDAlX_KL4cV0f-sd1c3vvfid5Hd_tAMz7fW8YDdMtUD9G7j6apzCZerNuv-NrXrntvF18ZWcVbXPiOafGsaeomPt-s3EO7m29t7MLaeFGrXdvFPRvr6hH6fDn79PY97lspYHB4r8OpFCa3BpJUaauA0KmyXCkmrKDa-TsNwCXJLMsSxsDohFFJTKId3Eu0dBvdY3Rc1ZV5gmKqlDKWMhAqY8LtdcpqIjkXuZQq59MIvT783BJ6nnHf7mJTOrzh9VAOeojQy0F0uyfX-JvQhdfQIOD5sMONulmV_fIqGaRCEQsOfRImrRIMEkj11H2eoZTmETo9KKvsF2lb_tZUhF4Mw255-ZyJrEy9czIsFAE7JB-hfGQXowmNR6r1TSDqzqc-3M6f_vvlz9AdF4V5LghM6Ck67pqdeY5uw49u3TYTdJQv-QSdXMzmxWISjgwmwcr99efMjRQfroovvwA-Ggnu
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXHgJEoIBBIHGxGj82iQ8IFWhpte2qaovUW_Bzu2JJliQL4k_xG7Gz2UAkxK0HrvEosTOfx_NlJjMAL5zWnFCjsYqFwTyRMRaJ0jhgRxijLcl022winUyy83NxvAE_1__ChLTKtU1sDbUpdfhGvu2JTNYGseibxVccukaF6Oq6hcYKFmP747unbPXrg_devy8p3ds9e7ePu64CWHvq02AqhU2d1TFVxilN2Ei5TCkunGDGb32jdSZJ4ngSc66tiTmTxMbGM5_YSG_z_X2vwFXvRlDRpgqe9gSPUZKsqhcxJuJt6-lUiDpmgzOvbQ0w8GeH2Zh_HG97t_63F3MbbnaONNpZIf8ObNjiLnwY26qwc3Qyqz_j05CbH6w5OrKyQAt8HDrCod2qKiu0M5_6RTQXX2rk3XZ0Uqpl3aCu2uz0Hny8lLnfh82iLOwDQEwpZR3jWqiEC3-WK2eIzDKRSqnSbBTBq7Uyc93VUQ_tPOa551NB73mv9wie96KLVfGQvwm9DYjoBUK97_ZCWU3zznzkXFOhiNOeXRMunRJcx5qakV-eZYylEWytwZF3RqjOfyMjgmf9sDcfISYkC1suvQxvk5wJYxGkAxwOJjQcKWYXbSHydBToRPrw3w9_Ctf3z44O88ODyfgR3KAhKSg0f2JbsNlUS_sYrulvzayunrS7CcGny0bpL9yxYrI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHUK88CFAhA0wCCRerMaxm8QPCA22QlVWVQOk8ZT5s6vokpKkIP4avw47TQuREG974DW2Ejs-Pr4n9-ZegGdWKUYirbAMucYsFiHmsVTYY4drrQxJVVNsIplM0tNTPt2Bn5t_YXxY5YYTG6LWhfLfyPtOyKSNEyvq2zYsYno4fLX8in0FKe9p3ZTTWENkbH58d_Ktejk6dGv9PIqGRx_fvMNthQGsnAyqcSS4SaxRYSS1lYrQgbSplIxbTrWjAa1UKkhsWRwypowOGRXEhNqpoFALx__uvldg15nkLOrB7nR0PP28lXs0IvE6lxGlPOwbJ668DzLtnIBNoYCOdduNzfzjsBve_J9f0y240ZrY6GC9J27DjsnvwNuxKXOzQCfz6gv-4KP2Pc-jYyNytMRTXysOHZVlUaKDxcxNoj6_qJAz6NFJIVdVjdo8tLO78OlSxn4PenmRm_uAqJTSWMoUlzHj7pSXVhORpjwRQibpIIAXm4XNVJth3Rf6WGROaXkMZFsMBPB023W5Tivyt06vPTq2HXwm8OZCUc6yllgypiIuiVVOdxMmrORMhSrSAzc9QylNAtjfACVr6anKfqMkgCfbZkcs3lskclOsXB_WhD8TSgNIOpjsDKjbks_PmxTlycALjeTBvx_-GK45cGbvR5PxHlx3pqhPiIEJ3YdeXa7MQ7iqvtXzqnzUbi0EZ5cN019GHWzv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Risk-Sensitive+Mean+p-Power+Error+Algorithms+for+Robust+Learning&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Tao&rft.au=Wang%2C+Shiyuan&rft.au=Zhang%2C+Haonan&rft.au=Xiong%2C+Kui&rft.date=2019-06-13&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=21&rft.issue=6&rft_id=info:doi/10.3390%2Fe21060588&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon