High-Precision Temperature Inversion Algorithm for Correlative Microwave Radiometer
In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive t...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 21; no. 16; p. 5336 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
07.08.2021
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive than a full power radiometer, but its accuracy is challenging to improve due to relatively large phase error. In this study, an error correction algorithm is designed, which reduces the phase error from 69.08° to 4.02°. Based on integral calibration on the microwave temperature measuring system with a known radiation source, the linear relationship between the output voltage and the brightness temperature of the object is obtained. Since the metal aluminum plate, antenna, and transmission line will have a non-linear influence on the receiver system, their temperature characteristics and the brightness temperature of the object are used as the inputs of the neural network to obtain a higher accuracy of inversion temperature. The temperature prediction mean square error of a back propagation (BP) neural network is 0.629 °C, and its maximum error is 3.351 °C. This paper innovatively proposed the high-precision PSO-LM-BP temperature inversion algorithm. According to the global search ability of the particle swarm optimization (PSO) algorithm, the initial weight of the network can be determined effectively, and the Levenberg–Marquardt (LM) algorithm makes use of the second derivative information, which has higher convergence accuracy and iteration efficiency. The mean square error of the PSO-LM-BP temperature inversion algorithm is 0.002 °C, and its maximum error is 0.209 °C. |
|---|---|
| AbstractList | In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive than a full power radiometer, but its accuracy is challenging to improve due to relatively large phase error. In this study, an error correction algorithm is designed, which reduces the phase error from 69.08° to 4.02°. Based on integral calibration on the microwave temperature measuring system with a known radiation source, the linear relationship between the output voltage and the brightness temperature of the object is obtained. Since the metal aluminum plate, antenna, and transmission line will have a non-linear influence on the receiver system, their temperature characteristics and the brightness temperature of the object are used as the inputs of the neural network to obtain a higher accuracy of inversion temperature. The temperature prediction mean square error of a back propagation (BP) neural network is 0.629 °C, and its maximum error is 3.351 °C. This paper innovatively proposed the high-precision PSO-LM-BP temperature inversion algorithm. According to the global search ability of the particle swarm optimization (PSO) algorithm, the initial weight of the network can be determined effectively, and the Levenberg–Marquardt (LM) algorithm makes use of the second derivative information, which has higher convergence accuracy and iteration efficiency. The mean square error of the PSO-LM-BP temperature inversion algorithm is 0.002 °C, and its maximum error is 0.209 °C. In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive than a full power radiometer, but its accuracy is challenging to improve due to relatively large phase error. In this study, an error correction algorithm is designed, which reduces the phase error from 69.08° to 4.02°. Based on integral calibration on the microwave temperature measuring system with a known radiation source, the linear relationship between the output voltage and the brightness temperature of the object is obtained. Since the metal aluminum plate, antenna, and transmission line will have a non-linear influence on the receiver system, their temperature characteristics and the brightness temperature of the object are used as the inputs of the neural network to obtain a higher accuracy of inversion temperature. The temperature prediction mean square error of a back propagation (BP) neural network is 0.629 °C, and its maximum error is 3.351 °C. This paper innovatively proposed the high-precision PSO-LM-BP temperature inversion algorithm. According to the global search ability of the particle swarm optimization (PSO) algorithm, the initial weight of the network can be determined effectively, and the Levenberg-Marquardt (LM) algorithm makes use of the second derivative information, which has higher convergence accuracy and iteration efficiency. The mean square error of the PSO-LM-BP temperature inversion algorithm is 0.002 °C, and its maximum error is 0.209 °C.In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive than a full power radiometer, but its accuracy is challenging to improve due to relatively large phase error. In this study, an error correction algorithm is designed, which reduces the phase error from 69.08° to 4.02°. Based on integral calibration on the microwave temperature measuring system with a known radiation source, the linear relationship between the output voltage and the brightness temperature of the object is obtained. Since the metal aluminum plate, antenna, and transmission line will have a non-linear influence on the receiver system, their temperature characteristics and the brightness temperature of the object are used as the inputs of the neural network to obtain a higher accuracy of inversion temperature. The temperature prediction mean square error of a back propagation (BP) neural network is 0.629 °C, and its maximum error is 3.351 °C. This paper innovatively proposed the high-precision PSO-LM-BP temperature inversion algorithm. According to the global search ability of the particle swarm optimization (PSO) algorithm, the initial weight of the network can be determined effectively, and the Levenberg-Marquardt (LM) algorithm makes use of the second derivative information, which has higher convergence accuracy and iteration efficiency. The mean square error of the PSO-LM-BP temperature inversion algorithm is 0.002 °C, and its maximum error is 0.209 °C. |
| Author | Liu, Jie Zhang, Youquan Ma, Jingyan Sun, Zhenlin Zhang, Kai Wu, Qiang Wang, Hao |
| AuthorAffiliation | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; KaiZhang@emails.bjut.edu.cn (K.Z.); majy0405@emails.bjut.edu.cn (J.M.); qiangwu@bjut.edu.cn (Q.W.); dmahz13@163.com (Z.S.); haowang@bjut.edu.cn (H.W.); S201961721@emails.bjut.edu.cn (Y.Z.) |
| AuthorAffiliation_xml | – name: Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; KaiZhang@emails.bjut.edu.cn (K.Z.); majy0405@emails.bjut.edu.cn (J.M.); qiangwu@bjut.edu.cn (Q.W.); dmahz13@163.com (Z.S.); haowang@bjut.edu.cn (H.W.); S201961721@emails.bjut.edu.cn (Y.Z.) |
| Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-1155-4450 surname: Liu fullname: Liu, Jie – sequence: 2 givenname: Kai surname: Zhang fullname: Zhang, Kai – sequence: 3 givenname: Jingyan surname: Ma fullname: Ma, Jingyan – sequence: 4 givenname: Qiang surname: Wu fullname: Wu, Qiang – sequence: 5 givenname: Zhenlin surname: Sun fullname: Sun, Zhenlin – sequence: 6 givenname: Hao surname: Wang fullname: Wang, Hao – sequence: 7 givenname: Youquan surname: Zhang fullname: Zhang, Youquan |
| BookMark | eNplkUtv1DAQgC1URB9w4B9E4gKH0PE7uSBVK6ArFYGgnC2vM9n1KokX21nEv8fbLYiWk0fjb74ZzZyTkylMSMhLCm85b-EyMUqV5Fw9IWdUMFE3jMHJP_EpOU9pC8A4580zcsqFkKB1c0a-Xfv1pv4S0fnkw1Td4rjDaPMcsVpOe4x32athHaLPm7HqQ6wWIUYcbPZ7rD55F8NPW6KvtvNhxIzxOXna2yHhi_v3gnz_8P52cV3ffP64XFzd1E4IlWumRQuusUKqjqJ2onVSMEtX2uqWWorYgAB0TKi-0Y6BsqtGgUYLboWi5xdkefR2wW7NLvrRxl8mWG_uEiGujY3ZuwFNi45STbmTHQgsntK2Vdhx6C2ClMX17ujazasRO4dTjnZ4IH34M_mNWYe9aXhbxqRF8PpeEMOPGVM2o08Oh8FOGOZkmFQKuBRcFfTVI3Qb5jiVVR0oqUEzrQt1eaTKglOK2Bvnc1l6OPT3g6FgDsc3f49fKt48qvgz_v_sb11Er58 |
| CitedBy_id | crossref_primary_10_1007_s12239_024_00050_6 crossref_primary_10_3390_bios14050221 crossref_primary_10_3390_jmse12122344 crossref_primary_10_1111_jch_14597 |
| Cites_doi | 10.1088/1361-6501/aadebf 10.3390/s18020677 10.1109/GCAT47503.2019.8978348 10.1109/MCOM.2014.6917412 10.3390/s21051619 10.3390/s17092105 10.1023/A:1015284304784 10.1109/TIM.2017.2714501 10.3390/rs11232864 10.1109/TMTT.2017.2776952 10.1109/EuMC.2015.7345858 10.1109/CAC.2017.8244159 10.1109/JSSC.2011.2162792 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s21165336 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_9ec11713c5d04eab88a496ed30fae055 PMC8398041 10_3390_s21165336 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-27490c8a456d1e7c49c542a1b7a791a1ee8040ec246f87c206ab8607ea0cbe4f3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000689837800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 14:52:11 EDT 2025 Tue Nov 04 02:01:04 EST 2025 Thu Oct 02 10:18:22 EDT 2025 Tue Oct 07 07:34:33 EDT 2025 Tue Nov 18 22:11:24 EST 2025 Sat Nov 29 07:18:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-27490c8a456d1e7c49c542a1b7a791a1ee8040ec246f87c206ab8607ea0cbe4f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1155-4450 |
| OpenAccessLink | https://www.proquest.com/docview/2565707277?pq-origsite=%requestingapplication% |
| PMID | 34450778 |
| PQID | 2565707277 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ec11713c5d04eab88a496ed30fae055 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8398041 proquest_miscellaneous_2566035436 proquest_journals_2565707277 crossref_citationtrail_10_3390_s21165336 crossref_primary_10_3390_s21165336 |
| PublicationCentury | 2000 |
| PublicationDate | 20210807 |
| PublicationDateYYYYMMDD | 2021-08-07 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210807 day: 7 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zhu (ref_32) 2018; 29 Wu (ref_29) 2018; 7 Li (ref_33) 2018; 46 Ling (ref_11) 2019; 569 Zhang (ref_5) 2013; 11 Zhou (ref_20) 2013; 15 ref_13 ref_35 ref_12 ref_34 ref_10 ref_30 Wang (ref_8) 2017; 66 ref_18 Popovic (ref_17) 2014; 52 ref_15 He (ref_28) 2018; 24 Su (ref_1) 2016; 37 ref_25 ref_24 Ouyang (ref_31) 2020; 72 ref_23 ref_22 Lin (ref_37) 2008; 2 Dong (ref_21) 2018; 46 Momenroodaki (ref_14) 2018; 66 Gong (ref_36) 2012; 33 ref_3 ref_2 Yang (ref_19) 2001; 03 ref_27 ref_26 ref_9 Gilreath (ref_4) 2011; 46 Vaks (ref_16) 2002; 45 Gu (ref_38) 2020; 47 ref_7 ref_6 |
| References_xml | – ident: ref_7 – volume: 29 start-page: 115602 year: 2018 ident: ref_32 article-title: Prediction of the tensile force applied on surface-hardened steel rods based on a CDIF and PSO-optimized neural network publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aadebf – ident: ref_9 doi: 10.3390/s18020677 – ident: ref_34 doi: 10.1109/GCAT47503.2019.8978348 – ident: ref_3 – volume: 52 start-page: 118 year: 2014 ident: ref_17 article-title: Toward wearable wireless thermometers for internal body temperature measurements publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2014.6917412 – volume: 46 start-page: 185 year: 2018 ident: ref_21 article-title: A Variable Temperature Calibration Source for Microwave Radiometer Based on Polarized Line Gate publication-title: Acta Electron. Sin. – ident: ref_26 – ident: ref_24 doi: 10.3390/s21051619 – volume: 2 start-page: 68 year: 2008 ident: ref_37 article-title: Application of Infrared Thermometer to Observation of Blood Circulation of Head and Neck Tumor Postoperative Flap publication-title: Mod. Med. Instrum. Appl. – ident: ref_13 doi: 10.3390/s17092105 – volume: 45 start-page: 7 year: 2002 ident: ref_16 article-title: Thermal Near Field and the Possibilities of Its Use for In-Depth Temperature Diagnostics of Media publication-title: Radiophys. Quantum Electron. doi: 10.1023/A:1015284304784 – volume: 66 start-page: 2997 year: 2017 ident: ref_8 article-title: A Compact Analog Complex Cross-Correlator for Passive Millimeter-Wave Imager publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2714501 – ident: ref_18 – ident: ref_23 – volume: 7 start-page: 69 year: 2018 ident: ref_29 article-title: Nonlinear Function Fitting Based on BP Neural Network publication-title: Electron. World – ident: ref_30 doi: 10.3390/rs11232864 – volume: 66 start-page: 2535 year: 2018 ident: ref_14 article-title: Noninvasive Internal Body Temperature Tracking with Near-Field Microwave Radiometry publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2017.2776952 – volume: 33 start-page: 1469 year: 2012 ident: ref_36 article-title: Application and research of infrared body temperature monitoring in psychiatric inpatients publication-title: J. Jilin Med. Sci. – volume: 46 start-page: 105 year: 2018 ident: ref_33 article-title: Fast inversion algorithm of magnetic nanometer temperature based on Gaussian Newton method publication-title: J. Huazhong Univ. Sci. Technol. Nat. Sci. Ed. – ident: ref_15 doi: 10.1109/EuMC.2015.7345858 – ident: ref_6 – volume: 569 start-page: 7 year: 2019 ident: ref_11 article-title: Magnetic Nanometer Temperature Retrieval Algorithm Based on PSO publication-title: Electron. World – volume: 15 start-page: 75 year: 2013 ident: ref_20 article-title: Research on Cold Space Calibration and Geophysical Parameters Inversion of Haiyang-2 Scanning Microwave Radiometer publication-title: Eng. Sci. – ident: ref_25 – ident: ref_27 – ident: ref_2 – ident: ref_12 – volume: 72 start-page: 37 year: 2020 ident: ref_31 article-title: Prediction model of slope displacement of open-pit mine based on PSO optimized BP neural network publication-title: Nonferrous Met. – ident: ref_10 – ident: ref_35 doi: 10.1109/CAC.2017.8244159 – volume: 46 start-page: 2240 year: 2011 ident: ref_4 article-title: Design and Analysis of a W-Band SiGe Direct-Detection-Based Passive Imaging Receiver publication-title: IEEE J. Solid State Circ. doi: 10.1109/JSSC.2011.2162792 – ident: ref_22 – volume: 37 start-page: 110 year: 2016 ident: ref_1 article-title: Current situation and development of medical infrared body temperature measuring instrument publication-title: Med. Health Equip. – volume: 11 start-page: 747 year: 2013 ident: ref_5 article-title: Design of Microwave Radiometer with K-band Spectrum Analysis Technology publication-title: J. Terahertz Sci. Electron. Inf. – volume: 24 start-page: 151 year: 2018 ident: ref_28 article-title: A Comparison of the Retrieval of Atmospheric Temperature Profiles Using Observations of the 60 Ghz and 118.75 Ghz Absorption Lines publication-title: J. Trop. Meteorol. – volume: 03 start-page: 21 year: 2001 ident: ref_19 article-title: Study on the calibration equation of microwave radiometer publication-title: J. Chang. Inst. Opt. Fine Mech. – volume: 47 start-page: 10 year: 2020 ident: ref_38 article-title: Application and measurement points of infrared thermometer for human body temperature screening publication-title: Shanghai Metrol. Test. |
| SSID | ssj0023338 |
| Score | 2.356226 |
| Snippet | In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer,... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5336 |
| SubjectTerms | Accuracy Algorithms Aluminum Antennas Bandwidths Calibration Circuits Coronaviruses correction algorithm correlative radiometer COVID-19 Design integral calibration Neural networks Noise PSO-LM-BP inversion algorithm R&D Radiation Radiometers Receivers & amplifiers Research & development |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9UcWDl2KaJk171EXxoIv4AG8lTScqrF3Zh_59Z9LuugXBi7fSpJB-0zTf10y_YexEJVCUhbShAqNCaV2K78FEhkppAVGZIinwJq43utdLn5-zu7lSX5QTVtsD18CdZWCjCJWUVSWXYIo0NTJLoIy5M8CVdy9F1jMVU43UilF51T5CMYr6s5Egl5nY-zD_rD7epL_FLNt5kXMLzdUaW20YYnBej2ydLUC1wVbmfAM32QNlZ4R3w6Y-TvAISH5rc-SAjDP8J7DgvP8yQOn_-h4gMQ26VIaj722-g1vKwvsyeHRvSvr_HsHdYk9Xl4_d67CpjhBalHDjEOVkxi2ioZIyAm1lZpUUJiq00VlkIoAUJyhYIROXait4guAlXIPhtgDp4m22WA0q2GGBc5lUHAzEEgWMFXi5k05lyBYcyjnRYadT1HLbWIdTBYt-jhKCAM5nAHfY8azrR-2X8VunC4J-1oEsrv0JDHzeBD7_K_Adtj8NXN7Mu1EuaBeXIyfTHXY0a8YZQ9sgpoLBxPdJeKwkjUO3At4aULulenv13tvIJ8mxafc_7mCPLQvKkKEEFL3PFsfDCRywJfs5fhsND_0D_Q1gH_3W priority: 102 providerName: Directory of Open Access Journals |
| Title | High-Precision Temperature Inversion Algorithm for Correlative Microwave Radiometer |
| URI | https://www.proquest.com/docview/2565707277 https://www.proquest.com/docview/2566035436 https://pubmed.ncbi.nlm.nih.gov/PMC8398041 https://doaj.org/article/9ec11713c5d04eab88a496ed30fae055 |
| Volume | 21 |
| WOSCitedRecordID | wos000689837800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjgd44DeiMKqAeOAlmpPYcfKEtqkTSLSKxpDKU-Q4l21SSbe2G2_87dy5brZIiBderCh2kkvOZ99nX74D-KBSrOpK2lChUaG0TUbjYCpDpXSMUZ2RU-BIXL_q6TSbzfLCL7itfFjldkx0A3W9sLxGvh_z_pyg2VZ_urwKOWsU7676FBo7sMtMZXIAu4fjaXHSQa6EENiGTyghcL-_ipltJnF8zLezkCPr73mY_fjIOxPO8eP_FfUJPPKuZnCw6RtP4R62z-DhHQLC5_CNwzzCYukT7QSnSF70hmU5YAYOt5YWHMzP6Pbr858BebjBEefzmDu-8GDC4Xy_DB2dmJp_5CctvYDvx-PTo8-hT7MQWsKC65BwaS5sZsiVqiPUVuZWydhElTY6j0yEmJGlo41l2mTaxiI1VZYKjUbYCmWTvIRBu2jxFQRNk0sl0GAiCQnZmC5vZKNycjsawoXxED5uP3tpPQc5p8KYl4RFWENlp6EhvO-aXm6IN_7W6JB11zVgrmx3YrE8K73plTnaKCIsblUtJJLs9Kp5inUiGoNCqSHsbdVYegNelbc6HMK7rppMj_dTTIuLa9cmFYmSLIfu9ZieQP2a9uLckXiTY8rUT6___fA38CDmIBqOUdF7MFgvr_Et3Lc364vVcgQ7eqZdmY18zx-5RQUqJ7_HdK74Mil-_AHISBKa |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl44DdaYUBAIPESzXHsOHlAaAymVWurCoq0PQXHuWyTunS0HRP_FH8jd2mSrRLibQ-8RbGT2PGX83325TuANzrCLM-U8zVa7StXxGQHI-VrbSQGeUxOQSXi2jfDYXxwkIzW4HfzLwyHVTY2sTLU-dTxGvmW5P05QbOt-XD2w-esUby72qTQWMJiH39dEGWbv-99ovF9K-Xu5_HOnl9nFfAdUZ-FTzQsES625DnkARqnEqeVtEFmrEkCGyDGBGx0UkVFbJwUkc3iSBi0wmWoipDuewPWFYE97sD6qDcYHbYULyTGt9QvCsNEbM0lq9uElf7z5axXJQdY8WhX4zGvTHC79_63V3Mf7tautLe9xP4DWMPyIdy5IrD4CL5yGIs_mtWJhLwxEktYqkh7rDBSrRV625Mj6s7i-NQjD97b4Xwlk0oP3RtwuOKFpaMvNmehAkLhY_h2Lb16Ap1yWuIGeEWRKC3QYqiI6TlJlxeq0Am5VQXxXtmFd80wp67WWOdUH5OUuBYjIm0R0YXXbdWzpbDI3yp9ZKy0FVgLvDoxnR2ltWlJE3RBYILQ6VwopLZTV5MI81AUFoXWXdhsYJPWBmqeXmKmC6_aYjItvF9kS5yeV3UiEWrF7TArCF1p0GpJeXJciZST483SVk___fCXcGtvPOin_d5w_xnclhwwxPE4ZhM6i9k5Poeb7ufiZD57UX9pHny_bgT_AU4Caao |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKixAc-EZdKBAQSFyidRw7Tg4IlZYVq7arCIrUnoLjjNtK22zZ3VLx1_h1zOSrjYS49cAtSpzEjp_H8-zJG8beqAjyIpfWV2CUL62L0Q5G0ldKCwiKGJ2CSsR1V08m8cFBkq6w3-2_MBRW2drEylAXM0tr5ENB-3McZ1s9dE1YRLo9-nD2w6cMUrTT2qbTqCGyA78ukL4t3o-3sa_fCjH6tL_12W8yDPgWadDSR0qWcBsb9CKKALSViVVSmCDXRieBCQBiBDlYISMXayt4ZPI44hoMtzlIF-Jzb7A1dMkljrG1dLyXHnZ0L0T2V2sZhWHChwtBSjdhpQV9OQNWiQJ63m0_NvPKZDe69z9_pvvsbuNie5v1mHjAVqB8yO5cEV58xL5SeIufzpsEQ94-IHuo1aU9Uh6p1hC9zekRNmd5fOqhZ-9tUR6TaaWT7u1RGOOFwaMvpiABA0TnY_btWlr1hK2WsxLWmedcIhUHA6FEBmgF3u6kUwm6Ww75sBiwd22XZ7bRXqcUINMMORihI-vQMWCvu6JnteDI3wp9JNx0BUgjvDoxmx9ljcnJErBBoIPQqoJLwLpjU5MIipA7A1ypAdtoIZQ1hmuRXeJnwF51l9Hk0D6SKWF2XpWJeKgk1UP30NqrUP9KeXJciZejQ06SV0___fKX7BbCNtsdT3aesduC4ogoTEdvsNXl_Byes5v25_JkMX_RDDqPfb9uAP8BYP1yag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Precision+Temperature+Inversion+Algorithm+for+Correlative+Microwave+Radiometer&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Kai&rft.au=Ma%2C+Jingyan&rft.au=Wu%2C+Qiang&rft.au=Sun%2C+Zhenlin&rft.date=2021-08-07&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=16&rft.spage=5336&rft_id=info:doi/10.3390%2Fs21165336&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |