High-Precision Temperature Inversion Algorithm for Correlative Microwave Radiometer

In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 21; číslo 16; s. 5336
Hlavní autoři: Liu, Jie, Zhang, Kai, Ma, Jingyan, Wu, Qiang, Sun, Zhenlin, Wang, Hao, Zhang, Youquan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 07.08.2021
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive than a full power radiometer, but its accuracy is challenging to improve due to relatively large phase error. In this study, an error correction algorithm is designed, which reduces the phase error from 69.08° to 4.02°. Based on integral calibration on the microwave temperature measuring system with a known radiation source, the linear relationship between the output voltage and the brightness temperature of the object is obtained. Since the metal aluminum plate, antenna, and transmission line will have a non-linear influence on the receiver system, their temperature characteristics and the brightness temperature of the object are used as the inputs of the neural network to obtain a higher accuracy of inversion temperature. The temperature prediction mean square error of a back propagation (BP) neural network is 0.629 °C, and its maximum error is 3.351 °C. This paper innovatively proposed the high-precision PSO-LM-BP temperature inversion algorithm. According to the global search ability of the particle swarm optimization (PSO) algorithm, the initial weight of the network can be determined effectively, and the Levenberg–Marquardt (LM) algorithm makes use of the second derivative information, which has higher convergence accuracy and iteration efficiency. The mean square error of the PSO-LM-BP temperature inversion algorithm is 0.002 °C, and its maximum error is 0.209 °C.
AbstractList In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive than a full power radiometer, but its accuracy is challenging to improve due to relatively large phase error. In this study, an error correction algorithm is designed, which reduces the phase error from 69.08° to 4.02°. Based on integral calibration on the microwave temperature measuring system with a known radiation source, the linear relationship between the output voltage and the brightness temperature of the object is obtained. Since the metal aluminum plate, antenna, and transmission line will have a non-linear influence on the receiver system, their temperature characteristics and the brightness temperature of the object are used as the inputs of the neural network to obtain a higher accuracy of inversion temperature. The temperature prediction mean square error of a back propagation (BP) neural network is 0.629 °C, and its maximum error is 3.351 °C. This paper innovatively proposed the high-precision PSO-LM-BP temperature inversion algorithm. According to the global search ability of the particle swarm optimization (PSO) algorithm, the initial weight of the network can be determined effectively, and the Levenberg-Marquardt (LM) algorithm makes use of the second derivative information, which has higher convergence accuracy and iteration efficiency. The mean square error of the PSO-LM-BP temperature inversion algorithm is 0.002 °C, and its maximum error is 0.209 °C.In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive than a full power radiometer, but its accuracy is challenging to improve due to relatively large phase error. In this study, an error correction algorithm is designed, which reduces the phase error from 69.08° to 4.02°. Based on integral calibration on the microwave temperature measuring system with a known radiation source, the linear relationship between the output voltage and the brightness temperature of the object is obtained. Since the metal aluminum plate, antenna, and transmission line will have a non-linear influence on the receiver system, their temperature characteristics and the brightness temperature of the object are used as the inputs of the neural network to obtain a higher accuracy of inversion temperature. The temperature prediction mean square error of a back propagation (BP) neural network is 0.629 °C, and its maximum error is 3.351 °C. This paper innovatively proposed the high-precision PSO-LM-BP temperature inversion algorithm. According to the global search ability of the particle swarm optimization (PSO) algorithm, the initial weight of the network can be determined effectively, and the Levenberg-Marquardt (LM) algorithm makes use of the second derivative information, which has higher convergence accuracy and iteration efficiency. The mean square error of the PSO-LM-BP temperature inversion algorithm is 0.002 °C, and its maximum error is 0.209 °C.
In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer, calibration algorithm, and temperature inversion algorithm are innovatively designed in this paper. The correlative radiometer is much more sensitive than a full power radiometer, but its accuracy is challenging to improve due to relatively large phase error. In this study, an error correction algorithm is designed, which reduces the phase error from 69.08° to 4.02°. Based on integral calibration on the microwave temperature measuring system with a known radiation source, the linear relationship between the output voltage and the brightness temperature of the object is obtained. Since the metal aluminum plate, antenna, and transmission line will have a non-linear influence on the receiver system, their temperature characteristics and the brightness temperature of the object are used as the inputs of the neural network to obtain a higher accuracy of inversion temperature. The temperature prediction mean square error of a back propagation (BP) neural network is 0.629 °C, and its maximum error is 3.351 °C. This paper innovatively proposed the high-precision PSO-LM-BP temperature inversion algorithm. According to the global search ability of the particle swarm optimization (PSO) algorithm, the initial weight of the network can be determined effectively, and the Levenberg–Marquardt (LM) algorithm makes use of the second derivative information, which has higher convergence accuracy and iteration efficiency. The mean square error of the PSO-LM-BP temperature inversion algorithm is 0.002 °C, and its maximum error is 0.209 °C.
Author Liu, Jie
Zhang, Youquan
Ma, Jingyan
Sun, Zhenlin
Zhang, Kai
Wu, Qiang
Wang, Hao
AuthorAffiliation Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; KaiZhang@emails.bjut.edu.cn (K.Z.); majy0405@emails.bjut.edu.cn (J.M.); qiangwu@bjut.edu.cn (Q.W.); dmahz13@163.com (Z.S.); haowang@bjut.edu.cn (H.W.); S201961721@emails.bjut.edu.cn (Y.Z.)
AuthorAffiliation_xml – name: Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; KaiZhang@emails.bjut.edu.cn (K.Z.); majy0405@emails.bjut.edu.cn (J.M.); qiangwu@bjut.edu.cn (Q.W.); dmahz13@163.com (Z.S.); haowang@bjut.edu.cn (H.W.); S201961721@emails.bjut.edu.cn (Y.Z.)
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-1155-4450
  surname: Liu
  fullname: Liu, Jie
– sequence: 2
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
– sequence: 3
  givenname: Jingyan
  surname: Ma
  fullname: Ma, Jingyan
– sequence: 4
  givenname: Qiang
  surname: Wu
  fullname: Wu, Qiang
– sequence: 5
  givenname: Zhenlin
  surname: Sun
  fullname: Sun, Zhenlin
– sequence: 6
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 7
  givenname: Youquan
  surname: Zhang
  fullname: Zhang, Youquan
BookMark eNplkUtv1DAQgC1URB9w4B9E4gKH0PE7uSBVK6ArFYGgnC2vM9n1KokX21nEv8fbLYiWk0fjb74ZzZyTkylMSMhLCm85b-EyMUqV5Fw9IWdUMFE3jMHJP_EpOU9pC8A4580zcsqFkKB1c0a-Xfv1pv4S0fnkw1Td4rjDaPMcsVpOe4x32athHaLPm7HqQ6wWIUYcbPZ7rD55F8NPW6KvtvNhxIzxOXna2yHhi_v3gnz_8P52cV3ffP64XFzd1E4IlWumRQuusUKqjqJ2onVSMEtX2uqWWorYgAB0TKi-0Y6BsqtGgUYLboWi5xdkefR2wW7NLvrRxl8mWG_uEiGujY3ZuwFNi45STbmTHQgsntK2Vdhx6C2ClMX17ujazasRO4dTjnZ4IH34M_mNWYe9aXhbxqRF8PpeEMOPGVM2o08Oh8FOGOZkmFQKuBRcFfTVI3Qb5jiVVR0oqUEzrQt1eaTKglOK2Bvnc1l6OPT3g6FgDsc3f49fKt48qvgz_v_sb11Er58
CitedBy_id crossref_primary_10_1007_s12239_024_00050_6
crossref_primary_10_3390_bios14050221
crossref_primary_10_3390_jmse12122344
crossref_primary_10_1111_jch_14597
Cites_doi 10.1088/1361-6501/aadebf
10.3390/s18020677
10.1109/GCAT47503.2019.8978348
10.1109/MCOM.2014.6917412
10.3390/s21051619
10.3390/s17092105
10.1023/A:1015284304784
10.1109/TIM.2017.2714501
10.3390/rs11232864
10.1109/TMTT.2017.2776952
10.1109/EuMC.2015.7345858
10.1109/CAC.2017.8244159
10.1109/JSSC.2011.2162792
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21165336
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9ec11713c5d04eab88a496ed30fae055
PMC8398041
10_3390_s21165336
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-27490c8a456d1e7c49c542a1b7a791a1ee8040ec246f87c206ab8607ea0cbe4f3
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000689837800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 14:52:11 EDT 2025
Tue Nov 04 02:01:04 EST 2025
Thu Oct 02 10:18:22 EDT 2025
Tue Oct 07 07:34:33 EDT 2025
Tue Nov 18 22:11:24 EST 2025
Sat Nov 29 07:18:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-27490c8a456d1e7c49c542a1b7a791a1ee8040ec246f87c206ab8607ea0cbe4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1155-4450
OpenAccessLink https://www.proquest.com/docview/2565707277?pq-origsite=%requestingapplication%
PMID 34450778
PQID 2565707277
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9ec11713c5d04eab88a496ed30fae055
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8398041
proquest_miscellaneous_2566035436
proquest_journals_2565707277
crossref_citationtrail_10_3390_s21165336
crossref_primary_10_3390_s21165336
PublicationCentury 2000
PublicationDate 20210807
PublicationDateYYYYMMDD 2021-08-07
PublicationDate_xml – month: 8
  year: 2021
  text: 20210807
  day: 7
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhu (ref_32) 2018; 29
Wu (ref_29) 2018; 7
Li (ref_33) 2018; 46
Ling (ref_11) 2019; 569
Zhang (ref_5) 2013; 11
Zhou (ref_20) 2013; 15
ref_13
ref_35
ref_12
ref_34
ref_10
ref_30
Wang (ref_8) 2017; 66
ref_18
Popovic (ref_17) 2014; 52
ref_15
He (ref_28) 2018; 24
Su (ref_1) 2016; 37
ref_25
ref_24
Ouyang (ref_31) 2020; 72
ref_23
ref_22
Lin (ref_37) 2008; 2
Dong (ref_21) 2018; 46
Momenroodaki (ref_14) 2018; 66
Gong (ref_36) 2012; 33
ref_3
ref_2
Yang (ref_19) 2001; 03
ref_27
ref_26
ref_9
Gilreath (ref_4) 2011; 46
Vaks (ref_16) 2002; 45
Gu (ref_38) 2020; 47
ref_7
ref_6
References_xml – ident: ref_7
– volume: 29
  start-page: 115602
  year: 2018
  ident: ref_32
  article-title: Prediction of the tensile force applied on surface-hardened steel rods based on a CDIF and PSO-optimized neural network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aadebf
– ident: ref_9
  doi: 10.3390/s18020677
– ident: ref_34
  doi: 10.1109/GCAT47503.2019.8978348
– ident: ref_3
– volume: 52
  start-page: 118
  year: 2014
  ident: ref_17
  article-title: Toward wearable wireless thermometers for internal body temperature measurements
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6917412
– volume: 46
  start-page: 185
  year: 2018
  ident: ref_21
  article-title: A Variable Temperature Calibration Source for Microwave Radiometer Based on Polarized Line Gate
  publication-title: Acta Electron. Sin.
– ident: ref_26
– ident: ref_24
  doi: 10.3390/s21051619
– volume: 2
  start-page: 68
  year: 2008
  ident: ref_37
  article-title: Application of Infrared Thermometer to Observation of Blood Circulation of Head and Neck Tumor Postoperative Flap
  publication-title: Mod. Med. Instrum. Appl.
– ident: ref_13
  doi: 10.3390/s17092105
– volume: 45
  start-page: 7
  year: 2002
  ident: ref_16
  article-title: Thermal Near Field and the Possibilities of Its Use for In-Depth Temperature Diagnostics of Media
  publication-title: Radiophys. Quantum Electron.
  doi: 10.1023/A:1015284304784
– volume: 66
  start-page: 2997
  year: 2017
  ident: ref_8
  article-title: A Compact Analog Complex Cross-Correlator for Passive Millimeter-Wave Imager
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2714501
– ident: ref_18
– ident: ref_23
– volume: 7
  start-page: 69
  year: 2018
  ident: ref_29
  article-title: Nonlinear Function Fitting Based on BP Neural Network
  publication-title: Electron. World
– ident: ref_30
  doi: 10.3390/rs11232864
– volume: 66
  start-page: 2535
  year: 2018
  ident: ref_14
  article-title: Noninvasive Internal Body Temperature Tracking with Near-Field Microwave Radiometry
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2017.2776952
– volume: 33
  start-page: 1469
  year: 2012
  ident: ref_36
  article-title: Application and research of infrared body temperature monitoring in psychiatric inpatients
  publication-title: J. Jilin Med. Sci.
– volume: 46
  start-page: 105
  year: 2018
  ident: ref_33
  article-title: Fast inversion algorithm of magnetic nanometer temperature based on Gaussian Newton method
  publication-title: J. Huazhong Univ. Sci. Technol. Nat. Sci. Ed.
– ident: ref_15
  doi: 10.1109/EuMC.2015.7345858
– ident: ref_6
– volume: 569
  start-page: 7
  year: 2019
  ident: ref_11
  article-title: Magnetic Nanometer Temperature Retrieval Algorithm Based on PSO
  publication-title: Electron. World
– volume: 15
  start-page: 75
  year: 2013
  ident: ref_20
  article-title: Research on Cold Space Calibration and Geophysical Parameters Inversion of Haiyang-2 Scanning Microwave Radiometer
  publication-title: Eng. Sci.
– ident: ref_25
– ident: ref_27
– ident: ref_2
– ident: ref_12
– volume: 72
  start-page: 37
  year: 2020
  ident: ref_31
  article-title: Prediction model of slope displacement of open-pit mine based on PSO optimized BP neural network
  publication-title: Nonferrous Met.
– ident: ref_10
– ident: ref_35
  doi: 10.1109/CAC.2017.8244159
– volume: 46
  start-page: 2240
  year: 2011
  ident: ref_4
  article-title: Design and Analysis of a W-Band SiGe Direct-Detection-Based Passive Imaging Receiver
  publication-title: IEEE J. Solid State Circ.
  doi: 10.1109/JSSC.2011.2162792
– ident: ref_22
– volume: 37
  start-page: 110
  year: 2016
  ident: ref_1
  article-title: Current situation and development of medical infrared body temperature measuring instrument
  publication-title: Med. Health Equip.
– volume: 11
  start-page: 747
  year: 2013
  ident: ref_5
  article-title: Design of Microwave Radiometer with K-band Spectrum Analysis Technology
  publication-title: J. Terahertz Sci. Electron. Inf.
– volume: 24
  start-page: 151
  year: 2018
  ident: ref_28
  article-title: A Comparison of the Retrieval of Atmospheric Temperature Profiles Using Observations of the 60 Ghz and 118.75 Ghz Absorption Lines
  publication-title: J. Trop. Meteorol.
– volume: 03
  start-page: 21
  year: 2001
  ident: ref_19
  article-title: Study on the calibration equation of microwave radiometer
  publication-title: J. Chang. Inst. Opt. Fine Mech.
– volume: 47
  start-page: 10
  year: 2020
  ident: ref_38
  article-title: Application and measurement points of infrared thermometer for human body temperature screening
  publication-title: Shanghai Metrol. Test.
SSID ssj0023338
Score 2.3561358
Snippet In order to achieve high precision from non-contact temperature measurement, the hardware structure of a broadband correlative microwave radiometer,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5336
SubjectTerms Accuracy
Algorithms
Aluminum
Antennas
Bandwidths
Calibration
Circuits
Coronaviruses
correction algorithm
correlative radiometer
COVID-19
Design
integral calibration
Neural networks
Noise
PSO-LM-BP inversion algorithm
R&D
Radiation
Radiometers
Receivers & amplifiers
Research & development
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EPOhB_MRqlSgevAQ32U02OVaxeLEUreAtbHYnVqip9EP_vjObtDYgePEWkiFs3mTZ97KTN4xd5lLrMAJqmiGVL5FQ-7mNI1_IPMUF2yZGV80mVK-XvLyk_ZVWX1QTVtkDV8Bdp2CCAJWUiSyXoPMk0XhHsIIXGnjk3EuR9SzEVC21BCqvykdIoKi_nobkMiOcD_PP6uNM-hvMslkXubLQdHfYds0QvU41sl22BuUe21rxDdxnT1Sd4fcndX8cbwBIfitzZI-MM9wnMK8zeh2j9B--e0hMvVtqwzFyNt_eA1XhfWk8etSW_r9HcA_Yc_ducHvv190RfIMSbuajnEy5QTSi2AagjExNJEMd5EqrNNABQIITFEwo4yJRJuQxghdzBZqbHGQhDtl6OS7hiHk6EDq1Bc-FASmKQKvEIvXLbUKQ27TFrhaoZaa2DqcOFqMMJQQBnC0BbrGLZehH5ZfxW9ANQb8MIItrdwITn9WJz_5KfIu1F4nL6nk3zULaxeXIyVSLnS8v44yhbRBdwnjuYmIuIknjUI2ENwbUvFK-DZ33NvJJcmw6_o8nOGGbIVXIUAGKarP12WQOp2zDfM7eppMz90J_A9K__mo
  priority: 102
  providerName: Directory of Open Access Journals
Title High-Precision Temperature Inversion Algorithm for Correlative Microwave Radiometer
URI https://www.proquest.com/docview/2565707277
https://www.proquest.com/docview/2566035436
https://pubmed.ncbi.nlm.nih.gov/PMC8398041
https://doaj.org/article/9ec11713c5d04eab88a496ed30fae055
Volume 21
WOSCitedRecordID wos000689837800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbWdIf10D2LpesCb9hhF6O2JVvyaWiLFNshgdF1QHYyZEluC2ROm6Tbbb99pKy4NTD00othSIQsm6RISvRHgE8VVypJLRXN4CLk6FCHlcnSkPEqR4NtpFZtsQkxncrZLC_8htvKp1Vu1kS3UJuFpj3yw4TO5yK0tuLL9U1IVaPodNWX0NiCbUIq4wPYPh5Pi7Mu5GIYgbV4QgyD-8NVQmgzzOEx31khB9bf8zD7-ZH3DM7p88dO9QXselczOGpl4yU8sc0r2LkHQPgavlOaR1gsfaGd4NyiF92iLAeEwOH20oKj-QUOv778FaCHG5xQPY-5wwsPJpTO90fh3Zky9CM_cukN_Dgdn598DX2ZhVBjLLgOMS7NIy0VulImtkLzXKc8UXEllMhjFVsrUdOtTnhWS6GTKFOVzCJhVaQry2u2B4Nm0di3EKiYqdzUUcW05ayOlZAGfcjK4AgosvkQPm8-e6k9BjmVwpiXGIsQh8qOQ0P42JFet8Ab_yM6Jt51BISV7RoWy4vSq16ZWx3HGIvr1NAsKomvmmfWsKhWNkrTIRxs2Fh6BV6VdzwcwoeuG1WPzlNUYxe3jiaLWMppHqInMb0J9Xuaq0sH4o2OKUE_7T_88HfwLKEkGspREQcwWC9v7Xt4qn-vr1bLEWyJmXBXOfKSP3KbCnid_B1jW_FtUvz8ByhmEy4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJw4BuxUCAgkLhEdWInjg8VKoWqq3ZXK1ik9hQc22krLdmyu6Xqn-pv7Ey-2kiIWw_cosRy7Ph5PGNP3gN4nwmtw8iRaIaQvkCH2s9sHPlcZAoXbJsYXYlNyNEo2d9X4xW4aP6FobTKxiaWhtrODO2Rr4d0PsdwtZWfTn77pBpFp6uNhEYFi113foYh22Jj8AXH90MYbn-dbO34taqAbzD0WfoYhilmEo2egw2cNEKZSIQ6yKSWKtCBcwkC25lQxHkiTchinSUxk04zkzmRc6z3FqwKBHvSg9XxYDg-aEM8jhFfxV_EuWLri5DYbXjJ_3y16pXiAB2PtpuPeW2B237wv32ah3C_dqW9zQr7j2DFFY_h3jWCxSfwndJY_PG8FhLyJg6jhIpF2iOGkXKv0NucHmJ3lke_PPTgvS3SK5mWfOjekNIVzzRefdOWiAoQhU_hx4306hn0ilnhnoOnA66VzVnGjRM8D7RMLPrImcUacEqqPnxshjk1Ncc6SX1MU4y1CBFpi4g-vGuLnlTEIn8r9Jmw0hYgLvDyxmx-mNamJVXOBIEMuIkstSJLsKsqdpazXDsWRX1Ya2CT1gZqkV5hpg9v28doWui8SBdudlqWiRmPBLVDdhDaaVD3SXF8VJKUo-NN1FYv_v3yN3BnZzLcS_cGo92XcDekhCHKx5Fr0FvOT90ruG3-LI8X89f1TPPg500j-BKp3Wo-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFiE4lG-xUCAgkLhE68ROHB8qVFpWrEpXERSpnIJjO22lJVt2t1T9a_11zOSrjYS49cAtSizHjp_HM_bkPYA3udA6jByJZgjpC3So_dzGkc9FrnDBtonRtdiEnEySgwOVrsBF-y8MpVW2NrEy1HZmaI98GNL5HMPVVg6LJi0i3Rm9P_nlk4IUnbS2cho1RHbd-RmGb4vN8Q6O9dswHH3c3_7kNwoDvsEwaOljSKaYSTR6ETZw0ghlIhHqIJdaqkAHziUIcmdCEReJNCGLdZ7ETDrNTO5EwbHeG7CGLrnAObaWjvfS7124xzH6q7mMOFdsuAiJ6YZXXNCXK2AlFNDzbvu5mVcWu9Hd__kz3YP1xsX2tuo5cR9WXPkA7lwhXnwIXym9xU_njcCQt-8weqjZpT1iHqn2EL2t6SF2Z3n000PP3tsmHZNpxZPu7VEa45nGqy_aEoEBovMRfLuWXj2G1XJWuifg6YBrZQuWc-MELwItE4u-c26xBpyqagDv2iHPTMO9ThIg0wxjMEJH1qFjAK-7oic14cjfCn0g3HQFiCO8ujGbH2aNycmUM0EgA24iS63IE-yqip3lrNCORdEANloIZY3hWmSX-BnAq-4xmhw6R9Klm51WZWLGI0HtkD209hrUf1IeH1Xk5eiQE-XV03-__CXcQthmn8eT3WdwO6Q8IkrTkRuwupyfuudw0_xeHi_mL5pJ58GP6wbwH7bscv4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Precision+Temperature+Inversion+Algorithm+for+Correlative+Microwave+Radiometer&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Jie&rft.au=Zhang%2C+Kai&rft.au=Ma%2C+Jingyan&rft.au=Wu%2C+Qiang&rft.date=2021-08-07&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=16&rft_id=info:doi/10.3390%2Fs21165336&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon