How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends

Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of animal ecology Jg. 89; H. 11; S. 2440 - 2450
Hauptverfasser: Bladon, Andrew J., Lewis, Matthew, Bladon, Eleanor K., Buckton, Sam J., Corbett, Stuart, Ewing, Steven R., Hayes, Matthew P., Hitchcock, Gwen E., Knock, Richard, Lucas, Colin, McVeigh, Adam, Menéndez, Rosa, Walker, Jonah M., Fayle, Tom M., Turner, Edgar C., Zipkin, Elise
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Blackwell Publishing Ltd 01.11.2020
Schlagworte:
ISSN:0021-8790, 1365-2656, 1365-2656
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine‐scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK‐wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine‐scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature‐sensitive species. The ability of individual animals to respond to local temperature changes will determine how species respond to climate change. The authors found marked differences in the ability of 29 butterfly species to ‘buffer’ their body temperature against changes in air temperature, and show that species' buffering mechanisms predict their population trend.
AbstractList Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine-scale changes in air temperature, and whether species-specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine-scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK-wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine-scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature-sensitive species.
Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine‐scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK‐wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine‐scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature‐sensitive species. The ability of individual animals to respond to local temperature changes will determine how species respond to climate change. The authors found marked differences in the ability of 29 butterfly species to ‘buffer’ their body temperature against changes in air temperature, and show that species' buffering mechanisms predict their population trend.
Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine-scale changes in air temperature, and whether species-specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine-scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK-wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine-scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature-sensitive species.Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine-scale changes in air temperature, and whether species-specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine-scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK-wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine-scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature-sensitive species.
Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine‐scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK‐wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine‐scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature‐sensitive species.
Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change.We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses were predicted by ecological or morphological traits.Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine‐scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK‐wide dataset.We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally.Our results highlight the importance of understanding how different species respond to fine‐scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature‐sensitive species.
Author Corbett, Stuart
Hayes, Matthew P.
Lewis, Matthew
Knock, Richard
Menéndez, Rosa
Ewing, Steven R.
Bladon, Andrew J.
Bladon, Eleanor K.
Fayle, Tom M.
Turner, Edgar C.
Buckton, Sam J.
Lucas, Colin
Walker, Jonah M.
Hitchcock, Gwen E.
McVeigh, Adam
Zipkin, Elise
Author_xml – sequence: 1
  givenname: Andrew J.
  orcidid: 0000-0002-2677-1247
  surname: Bladon
  fullname: Bladon, Andrew J.
  email: andrew.j.bladon@gmail.com
  organization: University of Cambridge
– sequence: 2
  givenname: Matthew
  orcidid: 0000-0003-2244-4078
  surname: Lewis
  fullname: Lewis, Matthew
  organization: University of Cambridge
– sequence: 3
  givenname: Eleanor K.
  orcidid: 0000-0002-0466-0335
  surname: Bladon
  fullname: Bladon, Eleanor K.
  organization: University of Cambridge
– sequence: 4
  givenname: Sam J.
  surname: Buckton
  fullname: Buckton, Sam J.
  organization: Yorkshire Wildlife Trust
– sequence: 5
  givenname: Stuart
  surname: Corbett
  fullname: Corbett, Stuart
  organization: RSPB Manor Farm
– sequence: 6
  givenname: Steven R.
  orcidid: 0000-0002-4599-100X
  surname: Ewing
  fullname: Ewing, Steven R.
  organization: RSPB Scotland
– sequence: 7
  givenname: Matthew P.
  orcidid: 0000-0001-5200-9259
  surname: Hayes
  fullname: Hayes, Matthew P.
  organization: University of Cambridge
– sequence: 8
  givenname: Gwen E.
  surname: Hitchcock
  fullname: Hitchcock, Gwen E.
  organization: The Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire
– sequence: 9
  givenname: Richard
  surname: Knock
  fullname: Knock, Richard
  organization: The Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire
– sequence: 10
  givenname: Colin
  surname: Lucas
  fullname: Lucas, Colin
– sequence: 11
  givenname: Adam
  surname: McVeigh
  fullname: McVeigh, Adam
  organization: Lancaster University
– sequence: 12
  givenname: Rosa
  orcidid: 0000-0001-9997-5809
  surname: Menéndez
  fullname: Menéndez, Rosa
  organization: Lancaster University
– sequence: 13
  givenname: Jonah M.
  orcidid: 0000-0001-7355-3130
  surname: Walker
  fullname: Walker, Jonah M.
  organization: University of Cambridge
– sequence: 14
  givenname: Tom M.
  orcidid: 0000-0002-1667-1189
  surname: Fayle
  fullname: Fayle, Tom M.
  organization: Institute of Entomology
– sequence: 15
  givenname: Edgar C.
  orcidid: 0000-0003-2715-2234
  surname: Turner
  fullname: Turner, Edgar C.
  organization: University of Cambridge
– sequence: 16
  givenname: Elise
  surname: Zipkin
  fullname: Zipkin, Elise
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32969021$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1v1TAUhi1URG8LMxuyxNIlrT9iJ2arqkJBFTDAbDn2SeviGwc7Ucm_x7m3dOhAvVg-fp5j-bxH6GCIAyD0lpJTWtYZ5VJUTAp5Sjmn6gXaPFYO0IYQRqu2UeQQHeV8RwhpGOGv0CFnSqpyuUF_ruI97uZpgtQHDxn_AhjxdAs-YRtj-IC_3y7ZWxOwGRwGG0O82R2nZPyUsR_6MMNgYZXSNia4mYOZYlqw6Xzw07ITxziuZR-HIsLg8mv0sjchw5uH_Rj9_Hj54-Kquv726fPF-XVl61qqqu9aLntFO1ErINbxBqxrwUlnKXGmB9EKC041qqHcMeZMwxhrmCR11xrj-DE62fcdU_w9Q5701mcLIZgB4pw1E4IqKVXDnkfrWijZ1pwU9P0T9C7OaSgfKZRoGKUtEYV690DN3RacHpPfmrTof-MvwNkesCnmnKB_RCjRa8B6jVOvcepdwMUQTwzrp91c1zzCfzy59-59gOW5Z_SX86-Xe_EvJSy5MQ
CitedBy_id crossref_primary_10_1080_24758779_2022_12318661
crossref_primary_10_1111_1365_2656_70053
crossref_primary_10_7717_peerj_13911
crossref_primary_10_1002_ece3_10623
crossref_primary_10_1111_1365_2656_13363
crossref_primary_10_1007_s10841_024_00556_5
crossref_primary_10_1111_ecog_05558
crossref_primary_10_1038_s41559_022_01825_9
crossref_primary_10_1007_s10531_024_02854_5
crossref_primary_10_1016_j_oneear_2024_03_008
crossref_primary_10_1016_j_jtherbio_2023_103502
crossref_primary_10_1016_j_scitotenv_2025_179214
crossref_primary_10_1111_1744_7917_13046
crossref_primary_10_1111_ecog_06123
crossref_primary_10_1002_ecy_4036
crossref_primary_10_1002_smll_202508472
crossref_primary_10_1242_jeb_245296
crossref_primary_10_1111_ele_13821
crossref_primary_10_1093_jeb_voae092
crossref_primary_10_1038_s41598_022_10676_0
crossref_primary_10_1111_een_13281
crossref_primary_10_3389_fevo_2022_873366
crossref_primary_10_1038_s41598_023_47789_z
crossref_primary_10_1111_1365_2656_13970
crossref_primary_10_1007_s10841_024_00645_5
crossref_primary_10_1007_s10841_021_00327_6
crossref_primary_10_1111_ddi_13460
crossref_primary_10_1016_j_cub_2021_08_035
Cites_doi 10.1111/geb.12659
10.1016/j.jtherbio.2011.02.001
10.1016/0022‐1910(75)90224‐3
10.2307/1936433
10.1007/s10841‐019‐00166‐6
10.1111/j.1461‐0248.2009.01367.x
10.1046/j.1420‐9101.2002.00470.x
10.2307/1937683
10.1111/eea.12693
10.1111/j.1365‐2486.2006.01180.x
10.1111/j.1365‐2486.2012.02737.x
10.1111/gcb.12200
10.1111/gcb.13343
10.1111/j.1365‐2486.2010.02165.x
10.1098/rspb.2006.3484
10.1111/ele.13348
10.1016/j.jtherbio.2014.02.002
10.1038/21181
10.1007/s10841‐008‐9194‐x
10.1098/rsbl.2012.0112
10.1098/rspb.1999.0763
10.1007/BF00317280
10.1007/s10841‐010‐9342‐y
10.1007/s10841‐014‐9738‐1
10.1111/geb.12974
10.1038/s41558‐018‐0231‐9
10.1007/PL00008825
10.1007/s10164‐002‐0056‐9
10.1016/0006‐3207(91)90002‐Q
10.1126/science.1135471
10.2307/2389315
10.1111/een.12714
10.1371/journal.pone.0150393
10.1111/1365‐2664.12602
10.1111/j.1600‐0706.2010.18270.x
10.5061/dryad.z08kprr9n
10.2307/1939825
10.1006/anbe.1994.1307
10.1080/09397140.2004.10638039
10.1111/ibi.12284
10.1111/j.1365‐2486.2008.01592.x
10.14411/eje.2010.046
10.1111/j.1600‐0587.2012.07348.x
10.1007/s10841‐018‐0065‐9
10.1111/j.1600‐0587.1997.tb00381.x
10.1111/brv.12312
10.1007/s10841‐014‐9749‐y
10.1098/rsbl.2007.0408
10.1111/ibi.12660
10.1111/bij.12574
10.1038/srep12267
10.1073/pnas.0808913106
10.1098/rspb.2008.0878
10.1093/icb/icx008
10.1038/35102054
10.1890/06‐0539
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society
2020 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Copyright Blackwell Publishing Ltd. Nov 2020
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society
– notice: 2020 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
– notice: Copyright Blackwell Publishing Ltd. Nov 2020
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
DOI 10.1111/1365-2656.13319
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Entomology Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1365-2656
EndPage 2450
ExternalDocumentID 32969021
10_1111_1365_2656_13319
JANE13319
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: J Arthur Ramsay Trust Fund
– fundername: European Research Council Advanced Grant
  funderid: 669609
– fundername: The Wildlife Trust for Bedfordshire, Cambridgeshire and Northamptonshire
– fundername: Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grant
  funderid: RG89529
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29J
2AX
2WC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABPFR
ABPLY
ABPQH
ABPVW
ABTAH
ABTLG
ABXSQ
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACKIV
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFXHP
AFZJQ
AHBTC
AHXOZ
AI.
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
EYRJQ
F00
F01
F04
F5P
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UPT
VH1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YQT
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABAWQ
ABSQW
ABUFD
ACHJO
AEFGJ
AEYWJ
AGHNM
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4469-fb836f91b549e0cd37ecd8ed6dc10dafe585ced979713d22da722272604b8aad3
IEDL.DBID 24P
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572070400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-8790
1365-2656
IngestDate Fri Jul 11 18:32:56 EDT 2025
Thu Oct 02 12:03:00 EDT 2025
Fri Jul 25 10:21:56 EDT 2025
Thu Apr 03 06:53:55 EDT 2025
Tue Nov 18 21:49:52 EST 2025
Sat Nov 29 04:51:37 EST 2025
Wed Jan 22 16:33:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords microclimate
butterflies
specialist
behavioural thermoregulation
population trends
generalist
temperature
climate change
Language English
License Attribution
2020 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4469-fb836f91b549e0cd37ecd8ed6dc10dafe585ced979713d22da722272604b8aad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0466-0335
0000-0001-7355-3130
0000-0001-9997-5809
0000-0002-2677-1247
0000-0003-2715-2234
0000-0002-4599-100X
0000-0001-5200-9259
0000-0002-1667-1189
0000-0003-2244-4078
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2656.13319
PMID 32969021
PQID 2457211805
PQPubID 37522
PageCount 11
ParticipantIDs proquest_miscellaneous_2551966972
proquest_miscellaneous_2445968430
proquest_journals_2457211805
pubmed_primary_32969021
crossref_primary_10_1111_1365_2656_13319
crossref_citationtrail_10_1111_1365_2656_13319
wiley_primary_10_1111_1365_2656_13319_JANE13319
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of animal ecology
PublicationTitleAlternate J Anim Ecol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 166
2002; 15
2010; 16
2010; 107
1991; 55
2012; 18
2011; 15
2008; 4
2019; 161
2004; 32
2013; 19
2009; 12
2018; 8
2009; 13
2001
2019; 22
2019; 23
2019; 28
2000; 122
2008; 275
2001; 414
2011; 120
2015; 5
2015; 19
2006; 12
2017; 26
1997; 20
2017; 23
2008; 14
2006; 273
2016; 53
2005
1994; 48
1999; 266
2011; 36
2014; 41
2018; 22
2016; 11
1976; 57
2013; 36
2017; 92
2007; 315
2015; 115
2002; 20
2019; 44
2015; 157
2020
1986; 67
2017; 57
2019
2018
1999; 399
2016
2015
1995; 101
1975; 21
2007; 88
2012; 8
1990; 4
2009; 106
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Thomas J. A. (e_1_2_8_60_1) 2005
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
Asher J. (e_1_2_8_4_1) 2001
Brereton T. M. (e_1_2_8_8_1) 2018
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
R Core Team (e_1_2_8_48_1) 2019
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Bramer I. (e_1_2_8_7_1) 2018
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Thomas J. A. (e_1_2_8_59_1) 2016
Fox R. (e_1_2_8_20_1) 2015
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
Eeles P. (e_1_2_8_19_1) 2020
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 41
  start-page: 50
  year: 2014
  end-page: 58
  article-title: Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine‐scale habitat heterogeneity
  publication-title: Journal of Thermal Biology
– volume: 15
  start-page: 259
  issue: 1
  year: 2011
  end-page: 268
  article-title: Recent evidence for the climate change threat to Lepidoptera and other insects
  publication-title: Journal of Insect Conservation
– volume: 12
  start-page: 1091
  issue: 10
  year: 2009
  end-page: 1102
  article-title: Changes in habitat specificity of species at their climatic range boundaries
  publication-title: Ecology Letters
– volume: 36
  start-page: 27
  issue: 1
  year: 2013
  end-page: 46
  article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
– year: 2001
– volume: 4
  start-page: 475
  issue: 4
  year: 1990
  end-page: 487
  article-title: The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation
  publication-title: Functional Ecology
– volume: 101
  start-page: 169
  issue: 2
  year: 1995
  end-page: 176
  article-title: Thermoregulation and flight activity in territorial male graylings, (Satyridae), and large skippers, (Hesperiidae)
  publication-title: Oecologia
– volume: 414
  start-page: 65
  issue: 6859
  year: 2001
  end-page: 69
  article-title: Rapid responses of British butterflies to opposing forces of climate and habitat change
  publication-title: Nature
– volume: 22
  start-page: 329
  issue: 2
  year: 2018
  end-page: 343
  article-title: Determining the long‐term habitat preferences of the Duke of Burgundy butterfly, , on a chalk grassland reserve in the UK
  publication-title: Journal of Insect Conservation
– volume: 120
  start-page: 1
  issue: 1
  year: 2011
  end-page: 8
  article-title: Habitat microclimates drive fine‐scale variation in extreme temperatures
  publication-title: Oikos
– volume: 57
  start-page: 112
  issue: 1
  year: 2017
  end-page: 120
  article-title: Heat tolerance predicts the importance of species interaction effects as the climate changes
  publication-title: Integrative and Comparative Biology
– volume: 23
  start-page: 739
  issue: 4
  year: 2019
  end-page: 750
  article-title: Temperature and territoriality in the Duke of Burgundy butterfly,
  publication-title: Journal of Insect Conservation
– volume: 107
  start-page: 369
  year: 2010
  end-page: 376
  article-title: Weather factors affecting the male mate‐locating tactics of the small copper butterfly (Lepidoptera: Lycaenidae)
  publication-title: European Journal of Entomology
– volume: 399
  start-page: 579
  issue: 6736
  year: 1999
  article-title: Poleward shifts in geographical ranges of butterfly species associated with regional warming
  publication-title: Nature
– volume: 67
  start-page: 1024
  issue: 4
  year: 1986
  end-page: 1035
  article-title: Sexual differences in the thermoregulation of adults (Lepidoptera: Hesperiidae)
  publication-title: Ecology
– start-page: 240
  year: 2005
  end-page: 244
– volume: 19
  start-page: 217
  issue: 2
  year: 2015
  end-page: 225
  article-title: The effect of temperature and habitat quality on abundance of the Glanville fritillary on the Isle of Wight: Implications for conservation management in a warming climate
  publication-title: Journal of Insect Conservation
– volume: 266
  start-page: 1197
  issue: 1425
  year: 1999
  end-page: 1206
  article-title: Climate and habitat availability determine 20th century changes in a butterfly's range margin
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
– volume: 166
  start-page: 607
  issue: 8
  year: 2018
  end-page: 617
  article-title: Modeling temperature‐dependent development rate and phenology in insects: Review of major developments, challenges, and future directions
  publication-title: Entomologia Experimentalis et Applicata
– volume: 22
  start-page: 1940
  issue: 11
  year: 2019
  end-page: 1956
  article-title: Forecasting species range dynamics with process‐explicit models: Matching methods to applications
  publication-title: Ecology Letters
– volume: 4
  start-page: 99
  issue: 1
  year: 2008
  end-page: 102
  article-title: Thermal tolerance, acclimatory capacity and vulnerability to global climate change
  publication-title: Biology Letters
– volume: 14
  start-page: 1464
  issue: 7
  year: 2008
  end-page: 1474
  article-title: Changes in the composition of British butterfly assemblages over two decades
  publication-title: Global Change Biology
– volume: 20
  start-page: 71
  issue: 1
  year: 2002
  end-page: 78
  article-title: Seasonal changes in the territorial behaviour of the satyrine butterfly are mediated by temperature
  publication-title: Journal of Ethology
– volume: 26
  start-page: 1374
  issue: 12
  year: 2017
  end-page: 1385
  article-title: European butterfly populations vary in sensitivity to weather across their geographical ranges
  publication-title: Global Ecology and Biogeography
– volume: 44
  start-page: 389
  issue: 3
  year: 2019
  end-page: 396
  article-title: Takeoff temperatures in butterflies from latitudinal and elevational range limits: A potential adaptation to solar irradiance
  publication-title: Ecological Entomology
– volume: 53
  start-page: 885
  issue: 3
  year: 2016
  end-page: 894
  article-title: Using in situ management to conserve biodiversity under climate change
  publication-title: Journal of Applied Ecology
– volume: 15
  start-page: 922
  issue: 6
  year: 2002
  end-page: 929
  article-title: A novel method of behavioural thermoregulation in butterflies
  publication-title: Journal of Evolutionary Biology
– volume: 16
  start-page: 3304
  issue: 12
  year: 2010
  end-page: 3313
  article-title: Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments
  publication-title: Global Change Biology
– year: 2019
– volume: 20
  start-page: 368
  issue: 4
  year: 1997
  end-page: 374
  article-title: The effect of spring temperature on the appearance dates of British butterflies 1883–1993
  publication-title: Ecography
– year: 2015
– volume: 48
  start-page: 833
  issue: 4
  year: 1994
  end-page: 841
  article-title: Behavioural thermoregulation at mate encounter sites by male butterflies ( , Nymphalidae)
  publication-title: Animal Behaviour
– volume: 67
  start-page: 598
  issue: 3
  year: 1986
  end-page: 608
  article-title: Thermal ecology, behavior, and growth of gypsy moth and eastern tent caterpillars
  publication-title: Ecology
– volume: 5
  start-page: 12267
  issue: 1
  year: 2015
  article-title: White butterflies as solar photovoltaic concentrators
  publication-title: Scientific Reports
– volume: 157
  start-page: 774
  issue: 4
  year: 2015
  end-page: 786
  article-title: Water and energy fluxes during summer in an arid‐zone passerine bird
  publication-title: Ibis
– volume: 8
  start-page: 713
  issue: 8
  year: 2018
  end-page: 717
  article-title: Extinction risk from climate change is reduced by microclimatic buffering
  publication-title: Nature Climate Change
– start-page: 101
  year: 2018
  end-page: 161
– volume: 55
  start-page: 1
  issue: 1
  year: 1991
  end-page: 16
  article-title: Climatic change and the British butterfly fauna: Opportunities and constraints
  publication-title: Biological Conservation
– volume: 12
  start-page: 1545
  issue: 8
  year: 2006
  end-page: 1553
  article-title: Impacts of climate warming and habitat loss on extinctions at species’ low‐latitude range boundaries
  publication-title: Global Change Biology
– volume: 88
  start-page: 605
  issue: 3
  year: 2007
  end-page: 611
  article-title: Direct and indirect effects of climate and habitat factors on butterfly diversity
  publication-title: Ecology
– volume: 28
  start-page: 1578
  issue: 11
  year: 2019
  end-page: 1596
  article-title: Comparing temperature data sources for use in species distribution models: From in‐situ logging to remote sensing
  publication-title: Global Ecology and Biogeography
– volume: 115
  start-page: 586
  issue: 3
  year: 2015
  end-page: 597
  article-title: Geographical range margins of many taxonomic groups continue to shift polewards
  publication-title: Biological Journal of the Linnean Society
– volume: 13
  start-page: 475
  issue: 5
  year: 2009
  end-page: 486
  article-title: Habitat preference and dispersal of the Duke of Burgundy butterfly ( ) on an abandoned chalk quarry in Bedfordshire, UK
  publication-title: Journal of Insect Conservation
– volume: 92
  start-page: 1859
  issue: 4
  year: 2017
  end-page: 1876
  article-title: Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity
  publication-title: Biological Reviews
– volume: 19
  start-page: 2071
  issue: 7
  year: 2013
  end-page: 2081
  article-title: Rapid climate driven shifts in wintering distributions of three common waterbird species
  publication-title: Global Change Biology
– volume: 106
  start-page: 3835
  issue: 10
  year: 2009
  end-page: 3840
  article-title: The potential for behavioral thermoregulation to buffer ‘cold‐blooded’ animals against climate warming
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 11
  issue: 3
  year: 2016
  article-title: Facing the heat: Thermoregulation and behaviour of lowland species of a cold‐dwelling butterfly genus: Erebia
  publication-title: PLoS ONE
– volume: 315
  start-page: 95
  issue: 5808
  year: 2007
  end-page: 97
  article-title: Climate change affects marine fishes through the oxygen limitation of thermal tolerance
  publication-title: Science
– year: 2016
– volume: 122
  start-page: 1
  issue: 1
  year: 2000
  end-page: 10
  article-title: Thermal ecology of gregarious and solitary nettle‐feeding nymphalid butterfly larvae
  publication-title: Oecologia
– volume: 19
  start-page: 237
  issue: 2
  year: 2015
  end-page: 253
  article-title: Microclimate affects landscape level persistence in the British Lepidoptera
  publication-title: Journal of Insect Conservation
– volume: 18
  start-page: 2720
  issue: 9
  year: 2012
  end-page: 2729
  article-title: Habitat associations of thermophilous butterflies are reduced despite climatic warming
  publication-title: Global Change Biology
– volume: 21
  start-page: 1921
  issue: 12
  year: 1975
  end-page: 1930
  article-title: The role of butterfly wings in regulation of body temperature
  publication-title: Journal of Insect Physiology
– volume: 273
  start-page: 1465
  issue: 1593
  year: 2006
  end-page: 1470
  article-title: Species richness changes lag behind climate change
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 275
  start-page: 2743
  issue: 1652
  year: 2008
  end-page: 2748
  article-title: Birds are tracking climate warming, but not fast enough
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 23
  start-page: 256
  issue: 1
  year: 2017
  end-page: 268
  article-title: Fine‐scale climate change: Modelling spatial variation in biologically meaningful rates of warming
  publication-title: Global Change Biology
– volume: 36
  start-page: 173
  issue: 3
  year: 2011
  end-page: 180
  article-title: On the significance of structural vegetation elements for caterpillar thermoregulation in two peat bog butterflies: and
  publication-title: Journal of Thermal Biology
– start-page: 24
  year: 2018
– year: 2020
– volume: 161
  start-page: 546
  year: 2019
  end-page: 558
  article-title: Behavioural thermoregulation and climatic range restriction in the globally threatened Ethiopian Bush‐crow
  publication-title: Ibis
– volume: 32
  start-page: 13
  issue: 1
  year: 2004
  end-page: 26
  article-title: Magpies, , at the southern limit of their range actively select their thermal environment at high ambient temperatures
  publication-title: Zoology in the Middle East
– volume: 57
  start-page: 485
  issue: 3
  year: 1976
  end-page: 497
  article-title: Activity patterns, body temperature and thermal ecology in two desert caterpillars (Lepidoptera: Sphingidae)
  publication-title: Ecology
– volume: 8
  start-page: 590
  issue: 4
  year: 2012
  end-page: 593
  article-title: Habitat associations of species show consistent but weak responses to climate
  publication-title: Biology Letters
– ident: e_1_2_8_42_1
  doi: 10.1111/geb.12659
– ident: e_1_2_8_61_1
  doi: 10.1016/j.jtherbio.2011.02.001
– ident: e_1_2_8_64_1
  doi: 10.1016/0022‐1910(75)90224‐3
– volume-title: UK butterflies
  year: 2020
  ident: e_1_2_8_19_1
– ident: e_1_2_8_12_1
  doi: 10.2307/1936433
– ident: e_1_2_8_25_1
  doi: 10.1007/s10841‐019‐00166‐6
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1461‐0248.2009.01367.x
– ident: e_1_2_8_32_1
  doi: 10.1046/j.1420‐9101.2002.00470.x
– ident: e_1_2_8_35_1
  doi: 10.2307/1937683
– ident: e_1_2_8_49_1
  doi: 10.1111/eea.12693
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1365‐2486.2006.01180.x
– start-page: 101
  volume-title: Advances in ecological research
  year: 2018
  ident: e_1_2_8_7_1
– ident: e_1_2_8_44_1
  doi: 10.1111/j.1365‐2486.2012.02737.x
– ident: e_1_2_8_36_1
  doi: 10.1111/gcb.12200
– ident: e_1_2_8_38_1
  doi: 10.1111/gcb.13343
– ident: e_1_2_8_58_1
  doi: 10.1111/j.1365‐2486.2010.02165.x
– ident: e_1_2_8_41_1
  doi: 10.1098/rspb.2006.3484
– ident: e_1_2_8_9_1
  doi: 10.1111/ele.13348
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jtherbio.2014.02.002
– ident: e_1_2_8_45_1
  doi: 10.1038/21181
– ident: e_1_2_8_62_1
  doi: 10.1007/s10841‐008‐9194‐x
– ident: e_1_2_8_55_1
  doi: 10.1098/rsbl.2012.0112
– ident: e_1_2_8_27_1
  doi: 10.1098/rspb.1999.0763
– ident: e_1_2_8_18_1
  doi: 10.1007/BF00317280
– ident: e_1_2_8_65_1
  doi: 10.1007/s10841‐010‐9342‐y
– ident: e_1_2_8_13_1
  doi: 10.1007/s10841‐014‐9738‐1
– ident: e_1_2_8_37_1
  doi: 10.1111/geb.12974
– ident: e_1_2_8_57_1
  doi: 10.1038/s41558‐018‐0231‐9
– ident: e_1_2_8_10_1
  doi: 10.1007/PL00008825
– ident: e_1_2_8_28_1
  doi: 10.1007/s10164‐002‐0056‐9
– ident: e_1_2_8_14_1
  doi: 10.1016/0006‐3207(91)90002‐Q
– volume-title: The state of the UK's butterflies
  year: 2015
  ident: e_1_2_8_20_1
– ident: e_1_2_8_47_1
  doi: 10.1126/science.1135471
– ident: e_1_2_8_22_1
  doi: 10.2307/2389315
– ident: e_1_2_8_3_1
  doi: 10.1111/een.12714
– volume-title: The millennium atlas of butterflies in Britain and Ireland
  year: 2001
  ident: e_1_2_8_4_1
– ident: e_1_2_8_33_1
  doi: 10.1371/journal.pone.0150393
– ident: e_1_2_8_24_1
  doi: 10.1111/1365‐2664.12602
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1600‐0706.2010.18270.x
– ident: e_1_2_8_6_1
  doi: 10.5061/dryad.z08kprr9n
– ident: e_1_2_8_46_1
  doi: 10.2307/1939825
– ident: e_1_2_8_50_1
  doi: 10.1006/anbe.1994.1307
– start-page: 240
  volume-title: Studies on the ecology and conservation of butterflies in Europe
  year: 2005
  ident: e_1_2_8_60_1
– ident: e_1_2_8_31_1
  doi: 10.1080/09397140.2004.10638039
– ident: e_1_2_8_52_1
  doi: 10.1111/ibi.12284
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1365‐2486.2008.01592.x
– ident: e_1_2_8_29_1
  doi: 10.14411/eje.2010.046
– ident: e_1_2_8_17_1
  doi: 10.1111/j.1600‐0587.2012.07348.x
– ident: e_1_2_8_26_1
  doi: 10.1007/s10841‐018‐0065‐9
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1600‐0587.1997.tb00381.x
– ident: e_1_2_8_2_1
  doi: 10.1111/brv.12312
– ident: e_1_2_8_56_1
  doi: 10.1007/s10841‐014‐9749‐y
– ident: e_1_2_8_11_1
  doi: 10.1098/rsbl.2007.0408
– ident: e_1_2_8_5_1
  doi: 10.1111/ibi.12660
– ident: e_1_2_8_39_1
  doi: 10.1111/bij.12574
– start-page: 24
  volume-title: United Kingdom Butterfly Monitoring Scheme report for 2017
  year: 2018
  ident: e_1_2_8_8_1
– ident: e_1_2_8_51_1
  doi: 10.1038/srep12267
– ident: e_1_2_8_30_1
  doi: 10.1073/pnas.0808913106
– volume-title: The butterflies of Britain and Ireland
  year: 2016
  ident: e_1_2_8_59_1
– ident: e_1_2_8_15_1
  doi: 10.1098/rspb.2008.0878
– ident: e_1_2_8_16_1
  doi: 10.1093/icb/icx008
– ident: e_1_2_8_63_1
  doi: 10.1038/35102054
– ident: e_1_2_8_40_1
  doi: 10.1890/06‐0539
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: e_1_2_8_48_1
SSID ssj0007203
Score 2.4983258
Snippet Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2440
SubjectTerms Air temperature
animal ecology
Animals
behavioural thermoregulation
Body Temperature Regulation
Buffers
Butterflies
Climate Change
Cold Temperature
Conservation
data collection
Ecological effects
Ecosystem
generalist
habitats
Interspecific
interspecific variation
Microclimate
Morphology
Population decline
population trends
specialist
Species
Temperature
Thermoregulation
Thorax
Trends
Wildlife conservation
Title How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2656.13319
https://www.ncbi.nlm.nih.gov/pubmed/32969021
https://www.proquest.com/docview/2457211805
https://www.proquest.com/docview/2445968430
https://www.proquest.com/docview/2551966972
Volume 89
WOSCitedRecordID wos000572070400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2656
  dateEnd: 20231206
  omitProxy: false
  ssIdentifier: ssj0007203
  issn: 0021-8790
  databaseCode: WIN
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2656
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007203
  issn: 0021-8790
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7SKvhivdbRWiL44MvUzGVz8a3YLlXKsojVxZchVyjKzLKzVfff95zMBVtREWRgyDA5QybJSc6XnJyPkBcMLDapTUi9sSYF-5-ngGxZCjMhTBYhMBdZIj6eitlMLhZq3nsT4lmYLj7EuOCGmhHHa1RwbdqflLz3z5rwA4BZGPhzO8sKiewNeTkfB2PcZey8PDJQfMX66D7ozHPtA1cnpl-szavGa5x9pjv_odx3yZ3e9KSHXV-5R274-j651ZFRbiD1uYmpB-THSfOdmo7BGkzUln7xfknjlgK1kOk1nfetS3XtqLfDAEqRcGLd0vOB-QSFVujKGwnvm9WGdmHBN1FwOZKHgSC65j4kZ9PjD29O0p6hIbUAI1UajCx4UJkBlOmZdYXw1knvuLMZczp4ACPWOyUUYGGX504LPHsLGKo0UmtXPCJbdVP7x4R6rkWpjFeCmdK5YHghmIOLh-C4kgk5GJqnsn34cvypr9UAY7BiK6zYKlZsQl6OAssucsfvs-4N7V31KtxWeTlBdCzZJCHPx9egfLijomvfXGCecqK4LAv2hzxgkwKmVCJPyG7Xl8byFLniCrpmQl7FLvO3glbvDmfHMfXknyWekts5rhXEc5R7ZGu9uvDPyE37bX3ervaj1sBdLOQ-2T56Pz07hadPb2eX4JMXqw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5V0KpcKH1BKLSu1EMvod4k68S9oQq0tNuoB1oQlyh-SahVstpdaPffM-M8BFSAkFAuljITObbHns8ezwfwgaPHlpXKhVZpFaL_L0JEtjzElRAXC-e48SwRv8ZpnmfHx_LyXZgmP0S_4UaW4edrMnDakL5k5W2A1lDsIM6izJ_LCbobRN9wdJD3szEdMzZhHgO0fMnb9D4UzXPtA1dXpv_czaveq19-9p89RMXXYLV1PtluM1qewyNbvYAnDR3lAksntS-9hH-j-i9TDYc1Oqkz9tvaCfOHCkyj0Gf2o-1fVlaGWd1NoYwoJ-Yzdtpxn5DSlIJ5PeV9PV2wJjH4witOevowVKTg3Ffwc3_v8MsobDkaQo1AUoZOZbFwcqAQZ1quTZxabTJrhNEDbkpnEY5oa2QqEQ2bKDJlSrdvEUUlKitLE7-Gpaqu7AYwK8o0kcrKlKvEGKdEnHKDj3DOCJkFsNP1T6HbBOb0U3-KDshQwxbUsIVv2AA-9gqTJnfHzaJbXYcXrRHPiigZEj7O-DCA9_1rND86UykrW5-RTDKUIktifosMeqWIKmUaBbDeDKa-PnEkhcSxGcAnP2buqmjxdTff86XNe2u8g6ejw-_jYnyQf3sDKxHtHPhblVuwNJ-e2W14rM_np7PpW29CF2A4GGw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GspW-7Ktd563bNOhDX9wptiNbewtrQ7eFUEpbSl-M9QVlww5Jui3__e7kD9qVdRSGXwTWGVm6k-4nne4HsMPRY8sK5UKrtArR_xchIlse4kqIi4Vz3HiWiLNJOp1m5-fy-l2YOj9Et-FGluHnazJwOzPumpU3AVpDsYc4izJ_9hOikulBf_94fDrp5mM6aKwDPQZo-5I3CX4onuePT9xcm245nDf9V78AjZ_8j6Y_hceN-8lGtb48gwe2fA6PakLKFZYuKl_agF-H1U-mahZrdFMX7Ju1M-aPFZjGSh_ZUTPCrCgNs7qdRBmRTiwX7LJlPyGhOYXzetL7ar5idWrwlRecdQRiKEjhuZtwOj44-XQYNiwNoUYoKUOnslg4OVCINC3XJk6tNpk1wugBN4WzCEi0NTKViIdNFJkipfu3iKMSlRWFiV9Ar6xK-xKYFUWaSGVlylVijFMiTrnBRzhnhMwC2GvHJ9dNCnP6qe95C2WoY3Pq2Nx3bAC7ncCszt7x96rb7YDnjRkv8igZEkLO-DCA991rNEA6VSlKW11RHVK7LIn5HXXQL0VcKdMogK1ambr2xJEUEnUzgA9eZ_7V0PzLaHrgS6_uLfEO1o72x_nk8_Tra1iPaOvAX6vcht5yfmXfwEP9Y3m5mL9tbOg3PQMZFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+butterflies+keep+their+cool%3A+Physical+and+ecological+traits+influence+thermoregulatory+ability+and+population+trends&rft.jtitle=The+Journal+of+animal+ecology&rft.au=Bladon%2C+Andrew+J&rft.au=Lewis%2C+Matthew&rft.au=Bladon%2C+Eleanor+K.&rft.au=Buckton%2C+Sam+J&rft.date=2020-11-01&rft.issn=0021-8790&rft.volume=89&rft.issue=11+p.2440-2450&rft.spage=2440&rft.epage=2450&rft_id=info:doi/10.1111%2F1365-2656.13319&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8790&client=summon