How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends
Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses...
Uložené v:
| Vydané v: | The Journal of animal ecology Ročník 89; číslo 11; s. 2440 - 2450 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Blackwell Publishing Ltd
01.11.2020
|
| Predmet: | |
| ISSN: | 0021-8790, 1365-2656, 1365-2656 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change.
We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses were predicted by ecological or morphological traits.
Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine‐scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK‐wide dataset.
We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally.
Our results highlight the importance of understanding how different species respond to fine‐scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature‐sensitive species.
The ability of individual animals to respond to local temperature changes will determine how species respond to climate change. The authors found marked differences in the ability of 29 butterfly species to ‘buffer’ their body temperature against changes in air temperature, and show that species' buffering mechanisms predict their population trend. |
|---|---|
| AbstractList | Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine-scale changes in air temperature, and whether species-specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine-scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK-wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine-scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature-sensitive species. Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine‐scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK‐wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine‐scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature‐sensitive species. The ability of individual animals to respond to local temperature changes will determine how species respond to climate change. The authors found marked differences in the ability of 29 butterfly species to ‘buffer’ their body temperature against changes in air temperature, and show that species' buffering mechanisms predict their population trend. Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine-scale changes in air temperature, and whether species-specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine-scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK-wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine-scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature-sensitive species.Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine-scale changes in air temperature, and whether species-specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine-scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK-wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine-scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature-sensitive species. Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine‐scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK‐wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine‐scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature‐sensitive species. Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change.We investigated how a community of butterflies responded to fine‐scale changes in air temperature, and whether species‐specific responses were predicted by ecological or morphological traits.Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine‐scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK‐wide dataset.We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally.Our results highlight the importance of understanding how different species respond to fine‐scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature‐sensitive species. |
| Author | Corbett, Stuart Hayes, Matthew P. Lewis, Matthew Knock, Richard Menéndez, Rosa Ewing, Steven R. Bladon, Andrew J. Bladon, Eleanor K. Fayle, Tom M. Turner, Edgar C. Buckton, Sam J. Lucas, Colin Walker, Jonah M. Hitchcock, Gwen E. McVeigh, Adam Zipkin, Elise |
| Author_xml | – sequence: 1 givenname: Andrew J. orcidid: 0000-0002-2677-1247 surname: Bladon fullname: Bladon, Andrew J. email: andrew.j.bladon@gmail.com organization: University of Cambridge – sequence: 2 givenname: Matthew orcidid: 0000-0003-2244-4078 surname: Lewis fullname: Lewis, Matthew organization: University of Cambridge – sequence: 3 givenname: Eleanor K. orcidid: 0000-0002-0466-0335 surname: Bladon fullname: Bladon, Eleanor K. organization: University of Cambridge – sequence: 4 givenname: Sam J. surname: Buckton fullname: Buckton, Sam J. organization: Yorkshire Wildlife Trust – sequence: 5 givenname: Stuart surname: Corbett fullname: Corbett, Stuart organization: RSPB Manor Farm – sequence: 6 givenname: Steven R. orcidid: 0000-0002-4599-100X surname: Ewing fullname: Ewing, Steven R. organization: RSPB Scotland – sequence: 7 givenname: Matthew P. orcidid: 0000-0001-5200-9259 surname: Hayes fullname: Hayes, Matthew P. organization: University of Cambridge – sequence: 8 givenname: Gwen E. surname: Hitchcock fullname: Hitchcock, Gwen E. organization: The Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire – sequence: 9 givenname: Richard surname: Knock fullname: Knock, Richard organization: The Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire – sequence: 10 givenname: Colin surname: Lucas fullname: Lucas, Colin – sequence: 11 givenname: Adam surname: McVeigh fullname: McVeigh, Adam organization: Lancaster University – sequence: 12 givenname: Rosa orcidid: 0000-0001-9997-5809 surname: Menéndez fullname: Menéndez, Rosa organization: Lancaster University – sequence: 13 givenname: Jonah M. orcidid: 0000-0001-7355-3130 surname: Walker fullname: Walker, Jonah M. organization: University of Cambridge – sequence: 14 givenname: Tom M. orcidid: 0000-0002-1667-1189 surname: Fayle fullname: Fayle, Tom M. organization: Institute of Entomology – sequence: 15 givenname: Edgar C. orcidid: 0000-0003-2715-2234 surname: Turner fullname: Turner, Edgar C. organization: University of Cambridge – sequence: 16 givenname: Elise surname: Zipkin fullname: Zipkin, Elise |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32969021$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkT1v1TAUhi1URG8LMxuyxNIlrT9iJ2arqkJBFTDAbDn2SeviGwc7Ucm_x7m3dOhAvVg-fp5j-bxH6GCIAyD0lpJTWtYZ5VJUTAp5Sjmn6gXaPFYO0IYQRqu2UeQQHeV8RwhpGOGv0CFnSqpyuUF_ruI97uZpgtQHDxn_AhjxdAs-YRtj-IC_3y7ZWxOwGRwGG0O82R2nZPyUsR_6MMNgYZXSNia4mYOZYlqw6Xzw07ITxziuZR-HIsLg8mv0sjchw5uH_Rj9_Hj54-Kquv726fPF-XVl61qqqu9aLntFO1ErINbxBqxrwUlnKXGmB9EKC041qqHcMeZMwxhrmCR11xrj-DE62fcdU_w9Q5701mcLIZgB4pw1E4IqKVXDnkfrWijZ1pwU9P0T9C7OaSgfKZRoGKUtEYV690DN3RacHpPfmrTof-MvwNkesCnmnKB_RCjRa8B6jVOvcepdwMUQTwzrp91c1zzCfzy59-59gOW5Z_SX86-Xe_EvJSy5MQ |
| CitedBy_id | crossref_primary_10_1080_24758779_2022_12318661 crossref_primary_10_1111_1365_2656_70053 crossref_primary_10_7717_peerj_13911 crossref_primary_10_1002_ece3_10623 crossref_primary_10_1111_1365_2656_13363 crossref_primary_10_1007_s10841_024_00556_5 crossref_primary_10_1111_ecog_05558 crossref_primary_10_1038_s41559_022_01825_9 crossref_primary_10_1007_s10531_024_02854_5 crossref_primary_10_1016_j_oneear_2024_03_008 crossref_primary_10_1016_j_jtherbio_2023_103502 crossref_primary_10_1016_j_scitotenv_2025_179214 crossref_primary_10_1111_1744_7917_13046 crossref_primary_10_1111_ecog_06123 crossref_primary_10_1002_ecy_4036 crossref_primary_10_1002_smll_202508472 crossref_primary_10_1242_jeb_245296 crossref_primary_10_1111_ele_13821 crossref_primary_10_1093_jeb_voae092 crossref_primary_10_1038_s41598_022_10676_0 crossref_primary_10_1111_een_13281 crossref_primary_10_3389_fevo_2022_873366 crossref_primary_10_1038_s41598_023_47789_z crossref_primary_10_1111_1365_2656_13970 crossref_primary_10_1007_s10841_024_00645_5 crossref_primary_10_1007_s10841_021_00327_6 crossref_primary_10_1111_ddi_13460 crossref_primary_10_1016_j_cub_2021_08_035 |
| Cites_doi | 10.1111/geb.12659 10.1016/j.jtherbio.2011.02.001 10.1016/0022‐1910(75)90224‐3 10.2307/1936433 10.1007/s10841‐019‐00166‐6 10.1111/j.1461‐0248.2009.01367.x 10.1046/j.1420‐9101.2002.00470.x 10.2307/1937683 10.1111/eea.12693 10.1111/j.1365‐2486.2006.01180.x 10.1111/j.1365‐2486.2012.02737.x 10.1111/gcb.12200 10.1111/gcb.13343 10.1111/j.1365‐2486.2010.02165.x 10.1098/rspb.2006.3484 10.1111/ele.13348 10.1016/j.jtherbio.2014.02.002 10.1038/21181 10.1007/s10841‐008‐9194‐x 10.1098/rsbl.2012.0112 10.1098/rspb.1999.0763 10.1007/BF00317280 10.1007/s10841‐010‐9342‐y 10.1007/s10841‐014‐9738‐1 10.1111/geb.12974 10.1038/s41558‐018‐0231‐9 10.1007/PL00008825 10.1007/s10164‐002‐0056‐9 10.1016/0006‐3207(91)90002‐Q 10.1126/science.1135471 10.2307/2389315 10.1111/een.12714 10.1371/journal.pone.0150393 10.1111/1365‐2664.12602 10.1111/j.1600‐0706.2010.18270.x 10.5061/dryad.z08kprr9n 10.2307/1939825 10.1006/anbe.1994.1307 10.1080/09397140.2004.10638039 10.1111/ibi.12284 10.1111/j.1365‐2486.2008.01592.x 10.14411/eje.2010.046 10.1111/j.1600‐0587.2012.07348.x 10.1007/s10841‐018‐0065‐9 10.1111/j.1600‐0587.1997.tb00381.x 10.1111/brv.12312 10.1007/s10841‐014‐9749‐y 10.1098/rsbl.2007.0408 10.1111/ibi.12660 10.1111/bij.12574 10.1038/srep12267 10.1073/pnas.0808913106 10.1098/rspb.2008.0878 10.1093/icb/icx008 10.1038/35102054 10.1890/06‐0539 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society 2020 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Copyright Blackwell Publishing Ltd. Nov 2020 |
| Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society – notice: 2020 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. – notice: Copyright Blackwell Publishing Ltd. Nov 2020 |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/1365-2656.13319 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Entomology Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Zoology Biology |
| EISSN | 1365-2656 |
| EndPage | 2450 |
| ExternalDocumentID | 32969021 10_1111_1365_2656_13319 JANE13319 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United Kingdom--UK |
| GeographicLocations_xml | – name: United Kingdom--UK |
| GrantInformation_xml | – fundername: J Arthur Ramsay Trust Fund – fundername: European Research Council Advanced Grant funderid: 669609 – fundername: The Wildlife Trust for Bedfordshire, Cambridgeshire and Northamptonshire – fundername: Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grant funderid: RG89529 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29J 2AX 2WC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABPFR ABPLY ABPQH ABPVW ABTAH ABTLG ABXSQ ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACKIV ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFXHP AFZJQ AHBTC AHXOZ AI. AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX EYRJQ F00 F01 F04 F5P FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TEORI TN5 UB1 UPT VH1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YQT ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABAWQ ABSQW ABUFD ACHJO AEFGJ AEYWJ AGHNM AGUYK AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4469-fb836f91b549e0cd37ecd8ed6dc10dafe585ced979713d22da722272604b8aad3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572070400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-8790 1365-2656 |
| IngestDate | Fri Jul 11 18:32:56 EDT 2025 Thu Oct 02 12:03:00 EDT 2025 Fri Jul 25 10:21:56 EDT 2025 Thu Apr 03 06:53:55 EDT 2025 Tue Nov 18 21:49:52 EST 2025 Sat Nov 29 04:51:37 EST 2025 Wed Jan 22 16:33:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | microclimate butterflies specialist behavioural thermoregulation population trends generalist temperature climate change |
| Language | English |
| License | Attribution 2020 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4469-fb836f91b549e0cd37ecd8ed6dc10dafe585ced979713d22da722272604b8aad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0466-0335 0000-0001-7355-3130 0000-0001-9997-5809 0000-0002-2677-1247 0000-0003-2715-2234 0000-0002-4599-100X 0000-0001-5200-9259 0000-0002-1667-1189 0000-0003-2244-4078 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2656.13319 |
| PMID | 32969021 |
| PQID | 2457211805 |
| PQPubID | 37522 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2551966972 proquest_miscellaneous_2445968430 proquest_journals_2457211805 pubmed_primary_32969021 crossref_primary_10_1111_1365_2656_13319 crossref_citationtrail_10_1111_1365_2656_13319 wiley_primary_10_1111_1365_2656_13319_JANE13319 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | The Journal of animal ecology |
| PublicationTitleAlternate | J Anim Ecol |
| PublicationYear | 2020 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2018; 166 2002; 15 2010; 16 2010; 107 1991; 55 2012; 18 2011; 15 2008; 4 2019; 161 2004; 32 2013; 19 2009; 12 2018; 8 2009; 13 2001 2019; 22 2019; 23 2019; 28 2000; 122 2008; 275 2001; 414 2011; 120 2015; 5 2015; 19 2006; 12 2017; 26 1997; 20 2017; 23 2008; 14 2006; 273 2016; 53 2005 1994; 48 1999; 266 2011; 36 2014; 41 2018; 22 2016; 11 1976; 57 2013; 36 2017; 92 2007; 315 2015; 115 2002; 20 2019; 44 2015; 157 2020 1986; 67 2017; 57 2019 2018 1999; 399 2016 2015 1995; 101 1975; 21 2007; 88 2012; 8 1990; 4 2009; 106 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Thomas J. A. (e_1_2_8_60_1) 2005 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 Asher J. (e_1_2_8_4_1) 2001 Brereton T. M. (e_1_2_8_8_1) 2018 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 R Core Team (e_1_2_8_48_1) 2019 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 Bramer I. (e_1_2_8_7_1) 2018 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Thomas J. A. (e_1_2_8_59_1) 2016 Fox R. (e_1_2_8_20_1) 2015 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 Eeles P. (e_1_2_8_19_1) 2020 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 41 start-page: 50 year: 2014 end-page: 58 article-title: Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine‐scale habitat heterogeneity publication-title: Journal of Thermal Biology – volume: 15 start-page: 259 issue: 1 year: 2011 end-page: 268 article-title: Recent evidence for the climate change threat to Lepidoptera and other insects publication-title: Journal of Insect Conservation – volume: 12 start-page: 1091 issue: 10 year: 2009 end-page: 1102 article-title: Changes in habitat specificity of species at their climatic range boundaries publication-title: Ecology Letters – volume: 36 start-page: 27 issue: 1 year: 2013 end-page: 46 article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance publication-title: Ecography – year: 2001 – volume: 4 start-page: 475 issue: 4 year: 1990 end-page: 487 article-title: The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation publication-title: Functional Ecology – volume: 101 start-page: 169 issue: 2 year: 1995 end-page: 176 article-title: Thermoregulation and flight activity in territorial male graylings, (Satyridae), and large skippers, (Hesperiidae) publication-title: Oecologia – volume: 414 start-page: 65 issue: 6859 year: 2001 end-page: 69 article-title: Rapid responses of British butterflies to opposing forces of climate and habitat change publication-title: Nature – volume: 22 start-page: 329 issue: 2 year: 2018 end-page: 343 article-title: Determining the long‐term habitat preferences of the Duke of Burgundy butterfly, , on a chalk grassland reserve in the UK publication-title: Journal of Insect Conservation – volume: 120 start-page: 1 issue: 1 year: 2011 end-page: 8 article-title: Habitat microclimates drive fine‐scale variation in extreme temperatures publication-title: Oikos – volume: 57 start-page: 112 issue: 1 year: 2017 end-page: 120 article-title: Heat tolerance predicts the importance of species interaction effects as the climate changes publication-title: Integrative and Comparative Biology – volume: 23 start-page: 739 issue: 4 year: 2019 end-page: 750 article-title: Temperature and territoriality in the Duke of Burgundy butterfly, publication-title: Journal of Insect Conservation – volume: 107 start-page: 369 year: 2010 end-page: 376 article-title: Weather factors affecting the male mate‐locating tactics of the small copper butterfly (Lepidoptera: Lycaenidae) publication-title: European Journal of Entomology – volume: 399 start-page: 579 issue: 6736 year: 1999 article-title: Poleward shifts in geographical ranges of butterfly species associated with regional warming publication-title: Nature – volume: 67 start-page: 1024 issue: 4 year: 1986 end-page: 1035 article-title: Sexual differences in the thermoregulation of adults (Lepidoptera: Hesperiidae) publication-title: Ecology – start-page: 240 year: 2005 end-page: 244 – volume: 19 start-page: 217 issue: 2 year: 2015 end-page: 225 article-title: The effect of temperature and habitat quality on abundance of the Glanville fritillary on the Isle of Wight: Implications for conservation management in a warming climate publication-title: Journal of Insect Conservation – volume: 266 start-page: 1197 issue: 1425 year: 1999 end-page: 1206 article-title: Climate and habitat availability determine 20th century changes in a butterfly's range margin publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences – volume: 166 start-page: 607 issue: 8 year: 2018 end-page: 617 article-title: Modeling temperature‐dependent development rate and phenology in insects: Review of major developments, challenges, and future directions publication-title: Entomologia Experimentalis et Applicata – volume: 22 start-page: 1940 issue: 11 year: 2019 end-page: 1956 article-title: Forecasting species range dynamics with process‐explicit models: Matching methods to applications publication-title: Ecology Letters – volume: 4 start-page: 99 issue: 1 year: 2008 end-page: 102 article-title: Thermal tolerance, acclimatory capacity and vulnerability to global climate change publication-title: Biology Letters – volume: 14 start-page: 1464 issue: 7 year: 2008 end-page: 1474 article-title: Changes in the composition of British butterfly assemblages over two decades publication-title: Global Change Biology – volume: 20 start-page: 71 issue: 1 year: 2002 end-page: 78 article-title: Seasonal changes in the territorial behaviour of the satyrine butterfly are mediated by temperature publication-title: Journal of Ethology – volume: 26 start-page: 1374 issue: 12 year: 2017 end-page: 1385 article-title: European butterfly populations vary in sensitivity to weather across their geographical ranges publication-title: Global Ecology and Biogeography – volume: 44 start-page: 389 issue: 3 year: 2019 end-page: 396 article-title: Takeoff temperatures in butterflies from latitudinal and elevational range limits: A potential adaptation to solar irradiance publication-title: Ecological Entomology – volume: 53 start-page: 885 issue: 3 year: 2016 end-page: 894 article-title: Using in situ management to conserve biodiversity under climate change publication-title: Journal of Applied Ecology – volume: 15 start-page: 922 issue: 6 year: 2002 end-page: 929 article-title: A novel method of behavioural thermoregulation in butterflies publication-title: Journal of Evolutionary Biology – volume: 16 start-page: 3304 issue: 12 year: 2010 end-page: 3313 article-title: Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments publication-title: Global Change Biology – year: 2019 – volume: 20 start-page: 368 issue: 4 year: 1997 end-page: 374 article-title: The effect of spring temperature on the appearance dates of British butterflies 1883–1993 publication-title: Ecography – year: 2015 – volume: 48 start-page: 833 issue: 4 year: 1994 end-page: 841 article-title: Behavioural thermoregulation at mate encounter sites by male butterflies ( , Nymphalidae) publication-title: Animal Behaviour – volume: 67 start-page: 598 issue: 3 year: 1986 end-page: 608 article-title: Thermal ecology, behavior, and growth of gypsy moth and eastern tent caterpillars publication-title: Ecology – volume: 5 start-page: 12267 issue: 1 year: 2015 article-title: White butterflies as solar photovoltaic concentrators publication-title: Scientific Reports – volume: 157 start-page: 774 issue: 4 year: 2015 end-page: 786 article-title: Water and energy fluxes during summer in an arid‐zone passerine bird publication-title: Ibis – volume: 8 start-page: 713 issue: 8 year: 2018 end-page: 717 article-title: Extinction risk from climate change is reduced by microclimatic buffering publication-title: Nature Climate Change – start-page: 101 year: 2018 end-page: 161 – volume: 55 start-page: 1 issue: 1 year: 1991 end-page: 16 article-title: Climatic change and the British butterfly fauna: Opportunities and constraints publication-title: Biological Conservation – volume: 12 start-page: 1545 issue: 8 year: 2006 end-page: 1553 article-title: Impacts of climate warming and habitat loss on extinctions at species’ low‐latitude range boundaries publication-title: Global Change Biology – volume: 88 start-page: 605 issue: 3 year: 2007 end-page: 611 article-title: Direct and indirect effects of climate and habitat factors on butterfly diversity publication-title: Ecology – volume: 28 start-page: 1578 issue: 11 year: 2019 end-page: 1596 article-title: Comparing temperature data sources for use in species distribution models: From in‐situ logging to remote sensing publication-title: Global Ecology and Biogeography – volume: 115 start-page: 586 issue: 3 year: 2015 end-page: 597 article-title: Geographical range margins of many taxonomic groups continue to shift polewards publication-title: Biological Journal of the Linnean Society – volume: 13 start-page: 475 issue: 5 year: 2009 end-page: 486 article-title: Habitat preference and dispersal of the Duke of Burgundy butterfly ( ) on an abandoned chalk quarry in Bedfordshire, UK publication-title: Journal of Insect Conservation – volume: 92 start-page: 1859 issue: 4 year: 2017 end-page: 1876 article-title: Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity publication-title: Biological Reviews – volume: 19 start-page: 2071 issue: 7 year: 2013 end-page: 2081 article-title: Rapid climate driven shifts in wintering distributions of three common waterbird species publication-title: Global Change Biology – volume: 106 start-page: 3835 issue: 10 year: 2009 end-page: 3840 article-title: The potential for behavioral thermoregulation to buffer ‘cold‐blooded’ animals against climate warming publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 11 issue: 3 year: 2016 article-title: Facing the heat: Thermoregulation and behaviour of lowland species of a cold‐dwelling butterfly genus: Erebia publication-title: PLoS ONE – volume: 315 start-page: 95 issue: 5808 year: 2007 end-page: 97 article-title: Climate change affects marine fishes through the oxygen limitation of thermal tolerance publication-title: Science – year: 2016 – volume: 122 start-page: 1 issue: 1 year: 2000 end-page: 10 article-title: Thermal ecology of gregarious and solitary nettle‐feeding nymphalid butterfly larvae publication-title: Oecologia – volume: 19 start-page: 237 issue: 2 year: 2015 end-page: 253 article-title: Microclimate affects landscape level persistence in the British Lepidoptera publication-title: Journal of Insect Conservation – volume: 18 start-page: 2720 issue: 9 year: 2012 end-page: 2729 article-title: Habitat associations of thermophilous butterflies are reduced despite climatic warming publication-title: Global Change Biology – volume: 21 start-page: 1921 issue: 12 year: 1975 end-page: 1930 article-title: The role of butterfly wings in regulation of body temperature publication-title: Journal of Insect Physiology – volume: 273 start-page: 1465 issue: 1593 year: 2006 end-page: 1470 article-title: Species richness changes lag behind climate change publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 275 start-page: 2743 issue: 1652 year: 2008 end-page: 2748 article-title: Birds are tracking climate warming, but not fast enough publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 23 start-page: 256 issue: 1 year: 2017 end-page: 268 article-title: Fine‐scale climate change: Modelling spatial variation in biologically meaningful rates of warming publication-title: Global Change Biology – volume: 36 start-page: 173 issue: 3 year: 2011 end-page: 180 article-title: On the significance of structural vegetation elements for caterpillar thermoregulation in two peat bog butterflies: and publication-title: Journal of Thermal Biology – start-page: 24 year: 2018 – year: 2020 – volume: 161 start-page: 546 year: 2019 end-page: 558 article-title: Behavioural thermoregulation and climatic range restriction in the globally threatened Ethiopian Bush‐crow publication-title: Ibis – volume: 32 start-page: 13 issue: 1 year: 2004 end-page: 26 article-title: Magpies, , at the southern limit of their range actively select their thermal environment at high ambient temperatures publication-title: Zoology in the Middle East – volume: 57 start-page: 485 issue: 3 year: 1976 end-page: 497 article-title: Activity patterns, body temperature and thermal ecology in two desert caterpillars (Lepidoptera: Sphingidae) publication-title: Ecology – volume: 8 start-page: 590 issue: 4 year: 2012 end-page: 593 article-title: Habitat associations of species show consistent but weak responses to climate publication-title: Biology Letters – ident: e_1_2_8_42_1 doi: 10.1111/geb.12659 – ident: e_1_2_8_61_1 doi: 10.1016/j.jtherbio.2011.02.001 – ident: e_1_2_8_64_1 doi: 10.1016/0022‐1910(75)90224‐3 – volume-title: UK butterflies year: 2020 ident: e_1_2_8_19_1 – ident: e_1_2_8_12_1 doi: 10.2307/1936433 – ident: e_1_2_8_25_1 doi: 10.1007/s10841‐019‐00166‐6 – ident: e_1_2_8_43_1 doi: 10.1111/j.1461‐0248.2009.01367.x – ident: e_1_2_8_32_1 doi: 10.1046/j.1420‐9101.2002.00470.x – ident: e_1_2_8_35_1 doi: 10.2307/1937683 – ident: e_1_2_8_49_1 doi: 10.1111/eea.12693 – ident: e_1_2_8_21_1 doi: 10.1111/j.1365‐2486.2006.01180.x – start-page: 101 volume-title: Advances in ecological research year: 2018 ident: e_1_2_8_7_1 – ident: e_1_2_8_44_1 doi: 10.1111/j.1365‐2486.2012.02737.x – ident: e_1_2_8_36_1 doi: 10.1111/gcb.12200 – ident: e_1_2_8_38_1 doi: 10.1111/gcb.13343 – ident: e_1_2_8_58_1 doi: 10.1111/j.1365‐2486.2010.02165.x – ident: e_1_2_8_41_1 doi: 10.1098/rspb.2006.3484 – ident: e_1_2_8_9_1 doi: 10.1111/ele.13348 – ident: e_1_2_8_34_1 doi: 10.1016/j.jtherbio.2014.02.002 – ident: e_1_2_8_45_1 doi: 10.1038/21181 – ident: e_1_2_8_62_1 doi: 10.1007/s10841‐008‐9194‐x – ident: e_1_2_8_55_1 doi: 10.1098/rsbl.2012.0112 – ident: e_1_2_8_27_1 doi: 10.1098/rspb.1999.0763 – ident: e_1_2_8_18_1 doi: 10.1007/BF00317280 – ident: e_1_2_8_65_1 doi: 10.1007/s10841‐010‐9342‐y – ident: e_1_2_8_13_1 doi: 10.1007/s10841‐014‐9738‐1 – ident: e_1_2_8_37_1 doi: 10.1111/geb.12974 – ident: e_1_2_8_57_1 doi: 10.1038/s41558‐018‐0231‐9 – ident: e_1_2_8_10_1 doi: 10.1007/PL00008825 – ident: e_1_2_8_28_1 doi: 10.1007/s10164‐002‐0056‐9 – ident: e_1_2_8_14_1 doi: 10.1016/0006‐3207(91)90002‐Q – volume-title: The state of the UK's butterflies year: 2015 ident: e_1_2_8_20_1 – ident: e_1_2_8_47_1 doi: 10.1126/science.1135471 – ident: e_1_2_8_22_1 doi: 10.2307/2389315 – ident: e_1_2_8_3_1 doi: 10.1111/een.12714 – volume-title: The millennium atlas of butterflies in Britain and Ireland year: 2001 ident: e_1_2_8_4_1 – ident: e_1_2_8_33_1 doi: 10.1371/journal.pone.0150393 – ident: e_1_2_8_24_1 doi: 10.1111/1365‐2664.12602 – ident: e_1_2_8_54_1 doi: 10.1111/j.1600‐0706.2010.18270.x – ident: e_1_2_8_6_1 doi: 10.5061/dryad.z08kprr9n – ident: e_1_2_8_46_1 doi: 10.2307/1939825 – ident: e_1_2_8_50_1 doi: 10.1006/anbe.1994.1307 – start-page: 240 volume-title: Studies on the ecology and conservation of butterflies in Europe year: 2005 ident: e_1_2_8_60_1 – ident: e_1_2_8_31_1 doi: 10.1080/09397140.2004.10638039 – ident: e_1_2_8_52_1 doi: 10.1111/ibi.12284 – ident: e_1_2_8_23_1 doi: 10.1111/j.1365‐2486.2008.01592.x – ident: e_1_2_8_29_1 doi: 10.14411/eje.2010.046 – ident: e_1_2_8_17_1 doi: 10.1111/j.1600‐0587.2012.07348.x – ident: e_1_2_8_26_1 doi: 10.1007/s10841‐018‐0065‐9 – ident: e_1_2_8_53_1 doi: 10.1111/j.1600‐0587.1997.tb00381.x – ident: e_1_2_8_2_1 doi: 10.1111/brv.12312 – ident: e_1_2_8_56_1 doi: 10.1007/s10841‐014‐9749‐y – ident: e_1_2_8_11_1 doi: 10.1098/rsbl.2007.0408 – ident: e_1_2_8_5_1 doi: 10.1111/ibi.12660 – ident: e_1_2_8_39_1 doi: 10.1111/bij.12574 – start-page: 24 volume-title: United Kingdom Butterfly Monitoring Scheme report for 2017 year: 2018 ident: e_1_2_8_8_1 – ident: e_1_2_8_51_1 doi: 10.1038/srep12267 – ident: e_1_2_8_30_1 doi: 10.1073/pnas.0808913106 – volume-title: The butterflies of Britain and Ireland year: 2016 ident: e_1_2_8_59_1 – ident: e_1_2_8_15_1 doi: 10.1098/rspb.2008.0878 – ident: e_1_2_8_16_1 doi: 10.1093/icb/icx008 – ident: e_1_2_8_63_1 doi: 10.1038/35102054 – ident: e_1_2_8_40_1 doi: 10.1890/06‐0539 – volume-title: R: A language and environment for statistical computing year: 2019 ident: e_1_2_8_48_1 |
| SSID | ssj0007203 |
| Score | 2.4983258 |
| Snippet | Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2440 |
| SubjectTerms | Air temperature animal ecology Animals behavioural thermoregulation Body Temperature Regulation Buffers Butterflies Climate Change Cold Temperature Conservation data collection Ecological effects Ecosystem generalist habitats Interspecific interspecific variation Microclimate Morphology Population decline population trends specialist Species Temperature Thermoregulation Thorax Trends Wildlife conservation |
| Title | How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2656.13319 https://www.ncbi.nlm.nih.gov/pubmed/32969021 https://www.proquest.com/docview/2457211805 https://www.proquest.com/docview/2445968430 https://www.proquest.com/docview/2551966972 |
| Volume | 89 |
| WOSCitedRecordID | wos000572070400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1365-2656 dateEnd: 20231206 omitProxy: false ssIdentifier: ssj0007203 issn: 0021-8790 databaseCode: WIN dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007203 issn: 0021-8790 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9Kq-CLH1VrtC0r-OBLarL52F3fivZoRY6jWDx8CdmPQGlJjsu19f57ZzYfWMWK4EvYkJ2w2Z3ZnV92dn4Ab6zKRGW0ClXGdZjGVoRK4MVKvxpX0sXGk02I6VTO52rWRxPSWZguP8T4w40sw8_XZOClbn8y8j4-K8sPEGZR4s-tOE4ksTfwdDZOxrTL2EV5xGj4Kuqz-1Awzy8vuL0w_eZt3nZe_eozefQf2v0YHvauJzvsdOUJbLh6G-53ZJRrLH1rfOkpfD9ubpjuGKzRRW3ZhXML5rcUmMFK79msH11W1pY5M0ygjAgnVi07H5hPSGhJobye8L5ZrlmXFnztBRcjeRgKUmjuMzibHH35cBz2DA2hQRipwkrLJK9UrBFlusjYRDhjpbO5NXFky8ohGDHOKqEQC1vObSno7C1iqFTLsrTJc9ism9q9AFblkZGoTyK1PDUSvRD0PHUiK4E-ZMR1AAfD8BSmT19OH3VZDDCGOragji18xwbwdhRYdJk7_lx1dxjvojfhtuBpRuhYRlkAr8fHaHy0o1LWrrmiOmmmcpkm0R110CdFTKkED2Cn06WxPQlXuULVDOCdV5m_NbT4dDg98qWX_yzxCh5w-lfgz1HuwuZqeeX24J65Xp23y31vNXgVc7kPWx9PJ2ef8e7ryfQHxswXJw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5K0tBe0iZ9uU0TBXLoxYktPyT1FkLC5mVySEnoxdiSDEuLvexu2u6_74z8IA_aUsjFCKwxsjQjzSeN5gPYMSoRlS6VrxJe-nFohK8EPox0q3Elbagd2YTIMnl9rW7fhWnzQwwbbmQZbr4mA6cN6VtW3gVoJeku4izK_Lkco7tB9A1Xx9kwG9MxYxvmEaLlq6BL70PRPPc-cHdleuBu3vVe3fJz9OIxGv4SVjvnk-232rIGT2y9DistHeUCS18bV3oFv0bNT1a2HNbopM7YN2snzB0qMI2VPrOLbnxZURtmdT-FMqKcmM_YuOc-IaEpBfM6yvtmumBtYvCFE5wM9GEoSMG5r-HL0eHlwcjvOBp8jUBS-VUpo7RSYYk40wbaRMJqI61JjQ4DU1QW4Yi2RgmFaNhwbgpBt28RRcWlLAoTvYGluqntO2BVGmiJGiViw2Mt0Q9B37OMZCVoWHnpwW4_PrnuEpjTT33PeyBDHZtTx-auYz34NAhM2twdf6660Q943hnxLOdxQvhYBokH28NrND86Uylq29xQnThRqYyj4C910CtFVKkE9-Btq0xDeyKuUoW66cGe05l_NTQ_2c8OXen9f0tswbPR5flZfnacnX6A55x2Dtytyg1Ymk9v7Ed4qn_Mx7PppjOh30svF-g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB_KWYsvtdoP19oawYe-rO5mP5L0TdTDqhwiCtKXZTfJgrTsHnen9v57Z7IfqMWWQl-WwGaWbDKTzC-ZzA9g26hElLpQvkp44cehEb4S-DDSrcaltKF2ZBNiNJJXV-rhXZgmP0S_4UaW4eZrMnA7NuUDK28DtJJ0B3EWZf5ciIlKZgALB-fDy9N-PqaDxibQI0TbV0Gb4IfieZ584vHa9JvD-dh_dQvQcPl_NP0NvG7dT7bX6MsKvLDVKiw2hJRzLH2vXekt_Dqq71jRsFijmzplP6wdM3eswDRW-srO2hFmeWWY1d0kyoh0YjZl1x37CQlNKJzXkd7XkzlrUoPPneC4JxBDQQrPfQeXw8OL_SO_ZWnwNUJJ5ZeFjNJShQUiTRtoEwmrjbQmNToMTF5aBCTaGiUU4mHDuckF3b9FHBUXMs9N9B4GVV3ZNWBlGmiJOiViw2Mt0RNB77OIZCnQjwx44cFONz6ZblOY00_9zDooQx2bUcdmrmM9-NILjJvsHc9X3egGPGvNeJrxOCGELIPEg63-NRognarkla1vqA6pnYyj4A910C9FXKkE9-BDo0x9eyKuUoW66cGu05m_NTQ73hsdutL6P0tswquzg2F2-m108hGWOG0duGuVGzCYTW7sJ3ipb2fX08nn1obuASgUGJE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+butterflies+keep+their+cool%3A+Physical+and+ecological+traits+influence+thermoregulatory+ability+and+population+trends&rft.jtitle=The+Journal+of+animal+ecology&rft.au=Bladon%2C+Andrew+J.&rft.au=Lewis%2C+Matthew&rft.au=Bladon%2C+Eleanor+K.&rft.au=Buckton%2C+Sam+J.&rft.date=2020-11-01&rft.issn=0021-8790&rft.eissn=1365-2656&rft.volume=89&rft.issue=11&rft.spage=2440&rft.epage=2450&rft_id=info:doi/10.1111%2F1365-2656.13319&rft.externalDBID=10.1111%252F1365-2656.13319&rft.externalDocID=JANE13319 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8790&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8790&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8790&client=summon |