Epigenetic rejuvenation by partial reprogramming

Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age‐associated t...

Full description

Saved in:
Bibliographic Details
Published in:BioEssays Vol. 45; no. 4; pp. e2200208 - n/a
Main Authors: Puri, Deepika, Wagner, Wolfgang
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.04.2023
Subjects:
ISSN:0265-9247, 1521-1878, 1521-1878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age‐associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de‐differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti‐ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed. Generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, but it also entails loss of cellular identity. Partial reprogramming can reset epigenetic ageing clocks while maintaining cellular identity. We discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked.
AbstractList Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age‐associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de‐differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti‐ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed. Generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, but it also entails loss of cellular identity. Partial reprogramming can reset epigenetic ageing clocks while maintaining cellular identity. We discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked.
Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age‐associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de‐differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti‐ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed.
Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age-associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age-associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de-differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti-ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed.Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age-associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age-associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de-differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti-ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed.
Author Puri, Deepika
Wagner, Wolfgang
Author_xml – sequence: 1
  givenname: Deepika
  surname: Puri
  fullname: Puri, Deepika
  email: dpuri@ukaachen.de
  organization: RWTH Aachen University Medical School
– sequence: 2
  givenname: Wolfgang
  orcidid: 0000-0002-1971-3217
  surname: Wagner
  fullname: Wagner, Wolfgang
  email: wwagner@ukaachen.de
  organization: RWTH Aachen University Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36871150$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LAzEQhoNU7IdePUrBi5etk2ySzR61VC0IHtRzyO7OlpT9qMmu0n_v1rYKBekpTHieGWbeIelVdYWEXFKYUAB2m1j0EwaMdQWoEzKggtGAqkj1yACYFEHMeNQnQ--XABBLxs9IP5QqolTAgMBsZRdYYWPTscNl-4mVaWxdjZP1eGVcY03R_a9cvXCmLG21OCenuSk8XuzeEXl_mL1Nn4Lnl8f59O45SDmXKsg58CxXYZ5nIpMSmeQZoKJ5GCmUQqASRlARRzLjJsnRsJCBSTMTQ5KyJAxH5Gbbt5v90aJvdGl9ikVhKqxbr5miNI6Ukvw4GqmQxzyWskOvD9Bl3bqqW2RDRZQpkKKjrnZUm5SY6ZWzpXFrvT9bB_AtkLrae4e5Tm3zc7fGGVtoCnqTjt6ko3_T6bTJgbbv_K8Qb4UvW-D6CK3v57PXP_cbBFOgQA
CitedBy_id crossref_primary_10_3390_ijms241914408
crossref_primary_10_1038_s43587_025_00841_1
crossref_primary_10_1186_s13148_024_01639_5
crossref_primary_10_1002_adhm_202301030
crossref_primary_10_1002_mco2_70369
crossref_primary_10_3390_ijms252011199
crossref_primary_10_1016_j_gde_2025_102351
crossref_primary_10_1038_s41598_024_73975_8
crossref_primary_10_3389_fphar_2023_1288894
crossref_primary_10_1016_j_arr_2024_102204
crossref_primary_10_1016_j_mocell_2024_100137
crossref_primary_10_1073_pnas_2401387122
crossref_primary_10_3390_cells14080619
crossref_primary_10_3390_cells13232002
crossref_primary_10_1016_j_arcmed_2024_103033
crossref_primary_10_1016_j_fufo_2025_100684
crossref_primary_10_1134_S106236042470005X
crossref_primary_10_1038_s41467_024_53276_4
Cites_doi 10.1016/j.molcel.2012.10.016
10.3390/cells11050830
10.1038/s41576‐022‐00468‐7
10.1016/j.cell.2006.07.024
10.1016/j.cell.2016.11.052
10.1186/gb‐2014‐15‐2‐r24
10.1186/s13059‐019‐1824‐y
10.1016/j.celrep.2013.05.043
10.1016/j.stem.2008.12.010
10.1038/s41586‐020‐2975‐4
10.1186/s13148‐021‐01158‐7
10.1038/s41586‐019‐1534‐3
10.18632/aging.100908
10.1016/j.cell.2014.01.005
10.1038/s42003‐021‐02116‐y
10.1101/gr.141945.112
10.1111/acel.13578
10.1186/s13059‐015‐0584‐6
10.1038/s41380‐019‐0468‐3
10.1101/2022.08.11.502778
10.1038/s41598‐018‐30069‐6
10.1126/science.1127168
10.1016/j.stemcr.2014.07.003
10.1111/j.1474‐9726.2011.00784.x
10.1186/s13059‐016‐1017‐x
10.1101/gad.173922.111
10.1186/gb‐2013‐14‐10‐r115
10.1038/nmeth.2255
10.1038/nrm4043
10.1186/s13148‐021‐01220‐4
10.1111/j.1474‐9726.2011.00738.x
10.1111/acel.13714
10.1016/j.tig.2022.03.010
10.3389/fcell.2022.854797
10.1016/j.stem.2012.11.002
10.1016/j.stem.2012.03.003
10.1073/pnas.0602569103
10.1242/dev.200755
10.1038/nrg3354
10.1111/j.1474‐9726.2010.00624.x
10.1002/agm2.12061
10.1126/science.aaa1356
10.1038/s12276‐020‐00497‐4
10.1038/srep10434
10.1038/nature08310
10.1186/s12864‐015‐1271‐4
10.1126/science.abg5159
10.1111/acel.12544
10.1016/j.stem.2015.09.001
10.18632/aging.100395
10.1111/acel.12877
10.1038/s41467‐018‐06398‐5
10.1016/j.bbrc.2020.02.092
10.7554/eLife.71624
10.1038/s41467‐020‐15174‐3
10.1038/nature12586
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC
2023 The Authors. BioEssays published by Wiley Periodicals LLC.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC
– notice: 2023 The Authors. BioEssays published by Wiley Periodicals LLC.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1002/bies.202200208
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage n/a
ExternalDocumentID 36871150
10_1002_bies_202200208
BIES202200208
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: German Research Foundation
  funderid: 363055819/GRK2415; WA1706/11‐1; WA 1706/12‐1; CRU344; WA1706/14‐1
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4468-f404df83ffd5d66e264d0e81f378e655e85a515976d4abfea2320acda90bc2b33
IEDL.DBID 24P
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943606800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0265-9247
1521-1878
IngestDate Fri Jul 11 18:31:25 EDT 2025
Fri Jul 11 16:49:09 EDT 2025
Fri Jul 25 10:48:01 EDT 2025
Mon Jul 21 06:00:22 EDT 2025
Tue Nov 18 22:12:47 EST 2025
Sat Nov 29 05:24:49 EST 2025
Wed Jan 22 16:13:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords pluripotent
reprogramming
ageing clock
transient reprogramming
epigenetic
iPSC
DNA methylation
interrupted reprogramming
rejuvenation
partial reprogramming
Language English
License Attribution
2023 The Authors. BioEssays published by Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4468-f404df83ffd5d66e264d0e81f378e655e85a515976d4abfea2320acda90bc2b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-1971-3217
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202200208
PMID 36871150
PQID 2787128065
PQPubID 37030
PageCount 8
ParticipantIDs proquest_miscellaneous_2811978864
proquest_miscellaneous_2783494966
proquest_journals_2787128065
pubmed_primary_36871150
crossref_citationtrail_10_1002_bies_202200208
crossref_primary_10_1002_bies_202200208
wiley_primary_10_1002_bies_202200208_BIES202200208
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2013; 23
2022; 23
2020; 525
2019; 18
2011; 10
2022; 21
2020; 11
2015; 348
2012; 11
2012; 10
2018; 9
2018; 8
2013; 14
2014; 3
2019; 20
2020; 52
2013; 10
2013; 12
2014; 15
2011; 25
2006; 126
2022; 38
2010; 9
2015; 17
2015; 5
2015; 16
2021; 4
2013; 49
2019; 2
2013; 502
2016; 167
2020; 588
2011; 3
2016; 17
2011; 6
2006; 312
2014; 156
2021; 13
2022
2017; 16
2020; 25
2021; 373
2022; 10
2009; 4
2009; 461
2022; 11
2016; 8
2019; 573
2022; 149
2006; 103
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 23
  start-page: 563
  year: 2022
  end-page: 580
  article-title: Histone post‐translational modifications – cause and consequence of genome function
  publication-title: Nature Reviews Genetics
– volume: 3
  start-page: 414
  year: 2014
  end-page: 422
  article-title: Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells
  publication-title: Stem Cell Reports
– volume: 11
  year: 2022
  article-title: Multi‐omic rejuvenation of human cells by maturation phase transient reprogramming
  publication-title: Elife
– volume: 25
  start-page: 2248
  year: 2011
  end-page: 2253
  article-title: Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state
  publication-title: Genes & Development
– volume: 38
  start-page: 676
  year: 2022
  end-page: 707
  article-title: DNA methylation: A historical perspective
  publication-title: Trends in Genetics
– volume: 11
  start-page: 830
  year: 2022
  article-title: Synergistic anti‐ageing through senescent cells specific reprogramming
  publication-title: Cells
– volume: 4
  start-page: 189
  year: 2013
  end-page: 204
  article-title: Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging
  publication-title: Cell Reports
– volume: 18
  year: 2019
  article-title: Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity
  publication-title: Aging Cell
– volume: 20
  start-page: 249
  year: 2019
  article-title: DNA methylation aging clocks: Challenges and recommendations
  publication-title: Genome Biology
– volume: 17
  start-page: 158
  year: 2016
  article-title: Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability
  publication-title: Genome Biology
– volume: 312
  start-page: 1059
  year: 2006
  end-page: 1063
  article-title: Lamin A‐dependent nuclear defects in human aging
  publication-title: Science
– volume: 15
  start-page: R24
  year: 2014
  article-title: Aging of blood can be tracked by DNA methylation changes at just three CpG sites
  publication-title: Genome Biology
– volume: 16
  start-page: 49
  year: 2015
  article-title: Characterization of tissue‐specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation
  publication-title: BMC Genomics
– volume: 10
  start-page: 980
  year: 2011
  end-page: 990
  article-title: The H3K27 demethylase UTX‐1 regulates C. elegans lifespan in a germline‐independent, insulin‐dependent manner
  publication-title: Aging Cell
– volume: 9
  start-page: 4047
  year: 2018
  article-title: A stably self‐renewing adult blood‐derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation
  publication-title: Nature Communications
– volume: 4
  start-page: 598
  year: 2021
  article-title: DNA methylation changes during long‐term in vitro cell culture are caused by epigenetic drift
  publication-title: Communications Biology
– volume: 16
  start-page: 519
  year: 2015
  end-page: 532
  article-title: DNA methylation pathways and their crosstalk with histone methylation
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 8
  start-page: 394
  year: 2016
  end-page: 401
  article-title: DNA methylation levels at individual age‐associated CpG sites can be indicative for life expectancy
  publication-title: Aging (Albany NY)
– volume: 6
  year: 2011
  article-title: Epigenetic predictor of age
  publication-title: PLoS ONE
– volume: 348
  start-page: 1160
  year: 2015
  end-page: 1163
  article-title: Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging
  publication-title: Science
– volume: 3
  start-page: 1018
  year: 2011
  end-page: 1027
  article-title: Epigenetic‐aging‐signature to determine age in different tissues
  publication-title: Aging (Albany NY)
– volume: 5
  year: 2015
  article-title: Epigenetic regulation of the nuclear‐coded GCAT and SHMT2 genes confers human age‐associated mitochondrial respiration defects
  publication-title: Scientific Reports
– volume: 156
  start-page: 663
  year: 2014
  end-page: 677
  article-title: Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation
  publication-title: Cell
– volume: 573
  start-page: 281
  year: 2019
  end-page: 286
  article-title: The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape
  publication-title: Nature
– volume: 8
  year: 2018
  article-title: Interrupted reprogramming into induced pluripotent stem cells does not rejuvenate human mesenchymal stromal cells
  publication-title: Scientific Reports
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 11
  start-page: 366
  year: 2012
  end-page: 369
  article-title: Monitoring of cellular senescence by DNA‐methylation at specific CpG sites
  publication-title: Aging Cell
– volume: 461
  start-page: 91
  year: 2009
  end-page: 94
  article-title: Adult mice generated from induced pluripotent stem cells
  publication-title: Nature
– volume: 4
  start-page: 141
  year: 2009
  end-page: 154
  article-title: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 103
  start-page: 8703
  year: 2006
  end-page: 8708
  article-title: Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 21
  year: 2022
  article-title: A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan
  publication-title: Aging Cell
– volume: 14
  start-page: 204
  year: 2013
  end-page: 220
  article-title: DNA methylation: Roles in mammalian development
  publication-title: Nature Reviews Genetics
– volume: 16
  start-page: 183
  year: 2017
  article-title: Senescence‐associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells
  publication-title: Aging Cell
– volume: 9
  start-page: 971
  year: 2010
  end-page: 978
  article-title: Chromatin remodeling in the aging genome of Drosophila
  publication-title: Aging Cell
– volume: 11
  start-page: 1545
  year: 2020
  article-title: Transient non‐integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells
  publication-title: Nature Communications
– volume: 373
  start-page: 1537
  year: 2021
  end-page: 1540
  article-title: Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice
  publication-title: Science
– volume: 10
  start-page: 473
  year: 2012
  end-page: 479
  article-title: Direct conversion of fibroblasts into stably expandable neural stem cells
  publication-title: Cell Stem Cell
– volume: 10
  year: 2022
  article-title: How to translate DNA methylation biomarkers into clinical practice
  publication-title: Frontiers in Cell and Developmental Biology
– volume: 2
  start-page: 99
  year: 2019
  end-page: 103
  article-title: Ethical perspectives on advances in biogerontology
  publication-title: Aging Med (Milton)
– volume: 502
  start-page: 340
  year: 2013
  end-page: 345
  article-title: Reprogramming in vivo produces teratomas and iPS cells with totipotency features
  publication-title: Nature
– year: 2022
  article-title: Development of a novel aging clock based on chromatin accessibility
  publication-title: bioRxiv
– volume: 525
  start-page: 563
  year: 2020
  end-page: 569
  article-title: Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells
  publication-title: Biochemical and Biophysical Research Communications
– volume: 25
  start-page: 148
  year: 2020
  end-page: 167
  article-title: Modeling Alzheimer's disease with iPSC‐derived brain cells
  publication-title: Molecular Psychiatry
– volume: 13
  start-page: 170
  year: 2021
  article-title: Cellular reprogramming and epigenetic rejuvenation
  publication-title: Clinical Epigenetics
– volume: 167
  start-page: 1719
  year: 2016
  end-page: 1733.e12
  article-title: In vivo amelioration of age‐associated hallmarks by partial reprogramming
  publication-title: Cell
– volume: 17
  start-page: 705
  year: 2015
  end-page: 718
  article-title: Directly reprogrammed human neurons retain aging‐associated transcriptomic signatures and reveal age‐related nucleocytoplasmic defects
  publication-title: Cell Stem Cell
– volume: 14
  start-page: R115
  year: 2013
  article-title: DNA methylation age of human tissues and cell types
  publication-title: Genome Biology
– volume: 49
  start-page: 359
  year: 2013
  end-page: 367
  article-title: Genome‐wide methylation profiles reveal quantitative views of human aging rates
  publication-title: Molecular Cell
– volume: 10
  start-page: 77
  year: 2013
  end-page: 83
  article-title: Conversion of human fibroblasts to angioblast‐like progenitor cells
  publication-title: Nature Methods
– volume: 12
  start-page: 114
  year: 2013
  end-page: 126
  article-title: Generation of rejuvenated antigen‐specific T cells by reprogramming to pluripotency and redifferentiation
  publication-title: Cell Stem Cell
– volume: 52
  start-page: 1466
  year: 2020
  end-page: 1474
  article-title: Heterochromatin: An epigenetic point of view in aging
  publication-title: Experimental & Molecular Medicine
– volume: 21
  year: 2022
  article-title: Multi‐omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming
  publication-title: Aging Cell
– volume: 588
  start-page: 124
  year: 2020
  end-page: 129
  article-title: Reprogramming to recover youthful epigenetic information and restore vision
  publication-title: Nature
– volume: 23
  start-page: 248
  year: 2013
  end-page: 259
  article-title: Pluripotent stem cells escape from senescence‐associated DNA methylation changes
  publication-title: Genome Research
– volume: 16
  start-page: 25
  year: 2015
  article-title: DNA methylation age of blood predicts all‐cause mortality in later life
  publication-title: Genome Biology
– volume: 149
  year: 2022
  article-title: Age reprogramming: Cell rejuvenation by partial reprogramming
  publication-title: Development (Cambridge, England)
– ident: e_1_2_10_20_1
  doi: 10.1016/j.molcel.2012.10.016
– ident: e_1_2_10_48_1
  doi: 10.3390/cells11050830
– ident: e_1_2_10_30_1
  doi: 10.1038/s41576‐022‐00468‐7
– ident: e_1_2_10_2_1
  doi: 10.1016/j.cell.2006.07.024
– ident: e_1_2_10_50_1
  doi: 10.1016/j.cell.2016.11.052
– ident: e_1_2_10_21_1
  doi: 10.1186/gb‐2014‐15‐2‐r24
– ident: e_1_2_10_14_1
  doi: 10.1186/s13059‐019‐1824‐y
– ident: e_1_2_10_35_1
  doi: 10.1016/j.celrep.2013.05.043
– ident: e_1_2_10_3_1
  doi: 10.1016/j.stem.2008.12.010
– ident: e_1_2_10_54_1
  doi: 10.1038/s41586‐020‐2975‐4
– ident: e_1_2_10_47_1
  doi: 10.1186/s13148‐021‐01158‐7
– ident: e_1_2_10_40_1
  doi: 10.1038/s41586‐019‐1534‐3
– ident: e_1_2_10_22_1
  doi: 10.18632/aging.100908
– ident: e_1_2_10_42_1
  doi: 10.1016/j.cell.2014.01.005
– ident: e_1_2_10_26_1
  doi: 10.1038/s42003‐021‐02116‐y
– ident: e_1_2_10_25_1
  doi: 10.1101/gr.141945.112
– ident: e_1_2_10_51_1
  doi: 10.1111/acel.13578
– ident: e_1_2_10_24_1
  doi: 10.1186/s13059‐015‐0584‐6
– ident: e_1_2_10_11_1
  doi: 10.1038/s41380‐019‐0468‐3
– ident: e_1_2_10_39_1
  doi: 10.1101/2022.08.11.502778
– ident: e_1_2_10_56_1
  doi: 10.1038/s41598‐018‐30069‐6
– ident: e_1_2_10_38_1
  doi: 10.1126/science.1127168
– ident: e_1_2_10_10_1
  doi: 10.1016/j.stemcr.2014.07.003
– ident: e_1_2_10_28_1
  doi: 10.1111/j.1474‐9726.2011.00784.x
– ident: e_1_2_10_32_1
  doi: 10.1186/s13059‐016‐1017‐x
– ident: e_1_2_10_4_1
  doi: 10.1101/gad.173922.111
– ident: e_1_2_10_23_1
  doi: 10.1186/gb‐2013‐14‐10‐r115
– ident: e_1_2_10_43_1
  doi: 10.1038/nmeth.2255
– ident: e_1_2_10_16_1
  doi: 10.1038/nrm4043
– ident: e_1_2_10_19_1
  doi: 10.1186/s13148‐021‐01220‐4
– ident: e_1_2_10_33_1
  doi: 10.1111/j.1474‐9726.2011.00738.x
– ident: e_1_2_10_52_1
  doi: 10.1111/acel.13714
– ident: e_1_2_10_12_1
  doi: 10.1016/j.tig.2022.03.010
– ident: e_1_2_10_17_1
  doi: 10.3389/fcell.2022.854797
– ident: e_1_2_10_7_1
  doi: 10.1016/j.stem.2012.11.002
– ident: e_1_2_10_44_1
  doi: 10.1016/j.stem.2012.03.003
– ident: e_1_2_10_34_1
  doi: 10.1073/pnas.0602569103
– ident: e_1_2_10_49_1
  doi: 10.1242/dev.200755
– ident: e_1_2_10_13_1
  doi: 10.1038/nrg3354
– ident: e_1_2_10_36_1
  doi: 10.1111/j.1474‐9726.2010.00624.x
– ident: e_1_2_10_57_1
  doi: 10.1002/agm2.12061
– ident: e_1_2_10_37_1
  doi: 10.1126/science.aaa1356
– ident: e_1_2_10_31_1
  doi: 10.1038/s12276‐020‐00497‐4
– ident: e_1_2_10_9_1
  doi: 10.1038/srep10434
– ident: e_1_2_10_6_1
  doi: 10.1038/nature08310
– ident: e_1_2_10_15_1
  doi: 10.1186/s12864‐015‐1271‐4
– ident: e_1_2_10_53_1
  doi: 10.1126/science.abg5159
– ident: e_1_2_10_29_1
  doi: 10.1111/acel.12544
– ident: e_1_2_10_8_1
  doi: 10.1016/j.stem.2015.09.001
– ident: e_1_2_10_18_1
  doi: 10.18632/aging.100395
– ident: e_1_2_10_27_1
  doi: 10.1111/acel.12877
– ident: e_1_2_10_46_1
  doi: 10.1038/s41467‐018‐06398‐5
– ident: e_1_2_10_5_1
  doi: 10.1016/j.bbrc.2020.02.092
– ident: e_1_2_10_45_1
  doi: 10.7554/eLife.71624
– ident: e_1_2_10_55_1
  doi: 10.1038/s41467‐020‐15174‐3
– ident: e_1_2_10_41_1
  doi: 10.1038/nature12586
SSID ssj0009624
Score 2.5152135
SecondaryResourceType review_article
Snippet Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200208
SubjectTerms ageing clock
Aging
Cell Differentiation
Cell fate
cell senescence
Cellular Reprogramming - genetics
Clocks
DNA methylation
Elongation
Epigenesis, Genetic
epigenetic
Epigenetics
Induced Pluripotent Stem Cells
interrupted reprogramming
iPSC
partial reprogramming
Pluripotency
pluripotent
Rejuvenation
reprogramming
risk
Senescence
Stem cells
Telomeres
Teratoma
Transcriptomics
transient reprogramming
Title Epigenetic rejuvenation by partial reprogramming
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202200208
https://www.ncbi.nlm.nih.gov/pubmed/36871150
https://www.proquest.com/docview/2787128065
https://www.proquest.com/docview/2783494966
https://www.proquest.com/docview/2811978864
Volume 45
WOSCitedRecordID wos000943606800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-1878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009624
  issn: 0265-9247
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58ghffj-oqFQRPxbRN0_ToYxcPIiIqeytJm4Ciu8s-BP-9M-ludREV9FJaMqEhk5n50nS-ATjCCGFSLbIgsZwH3IZoUsRAy7XKYs0LJhxZ9cNVen0t2-3s5lMWf8UPUX9wI8tw_poMXOnByQdpqKadZESJolRnchbmwzCWVLwh4jcftLvClbXFjUYS4E4jndA2suhkuv90WPqCNaehq4s9rZX_j3oVlse40z-tFsoazJjOOixWlSjfNoA1e0TLSRmNft88jdAFOpX5-s3v0erCvsR_6X7mesFwtwn3rebd-WUwLqYQFJyyqyxnvLQytrZMSiEMAqGSGRnaOJVGJImRiSJsk4qSK22NQqjFVFGqjOki0nG8BXOdbsfsgM9UJhVHL8mV4DZJs0gnZWoipulGxB4Ek7nMizHTOBW8eM4rjuQop1nI61nw4LiW71UcG99KNiaqyce2hq3oc0J3QOzBYd2MVkJHH6pjuiMn43h4hPhBRtKRqpSCe7Bdqb0eTizwHYidPYicdn8ZZ36GWL5-2v1Lpz1Yosr21U9CDZgb9kdmHxaK1-HjoH_gVjle07Y8gPmL29b91Ts2xvu4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50VfTi-1GfFQRPZbNtmqZHFUVxXTyoeCtJm4Ci67K6wv57Z9JuZREVxFtLJzQk8_jymG8ADjBCmESLNIgt5wG3LTQpYqDlWqWR5jkTjqz6rp10OvL-Pr2ubhNSLkzJD1FvuJFlOH9NBk4b0s1P1lBNS8mQMkWp0OQkTHEMNaTqIb_-5N0Vrq4trjTiAJcayYi3kYXN8fbjcekL2BzHri74nC38Q7cXYb5Cnv5RqSpLMGG6yzBT1qIcrgA77RExJ-U0-n3zOEAn6CbN10O_R_qFbYkB013nesaAtwq3Z6c3J-dBVU4hyDnlV1nOeGFlZG0RF0IYhEIFM7Jlo0QaEcdGxorQTSIKrrQ1CsEWU3mhUqbzUEfRGjS6L12zAT5TqVQc_SRXgts4SUMdF4kJmaYHEXkQjAYzyyuucSp58ZSVLMlhRqOQ1aPgwWEt3ytZNr6V3B7NTVZZG35Fr9NyR8Qe7Nef0U7o8EN1zcvAyTgmHiF-kJF0qCql4B6sl_NedycS-A9Ezx6Ebnp_6Wd2jGi-ftv8S6M9mD2_uWpn7YvO5RbMUZ378srQNjTe-gOzA9P5-9vDa3_XqfwHeFT9Gw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90fuCL3x_VqRUEn4pZm6bpox8rimMMceJbSdoEFJ1lOsH_3lzaVYaoIL619NKGXO7ulyb3O4BDEyFUJFnshZpSj-qWMSlkoKVSxIGkGWGWrPq2E3W7_O4u7lWnCTEXpuSHqH-4oWVYf40GropcH3-yhkpcSvqYKYqFJqdhhmIlmQbMnF8n_c4n8y6zlW3NWiP0zGIjGjM3Ev948g2TkekL3JxErzb8JEv_0PFlWKywp3tSTpYVmFKDVZgrq1G-rwFpF0jNiVmN7lA9jIwbtGpz5btb4AwzbZED0x7oejIhbx36Sfvm7MKrCip4GcUMK00JzTUPtM7DnDFlwFBOFG_pIOKKhaHioUB8E7GcCqmVMHCLiCwXMZGZL4NgAxqD54HaApeImAtqPCUVjOowin0Z5pHyicQLFjjgjQczzSq2cSx68ZiWPMl-iqOQ1qPgwFEtX5Q8G99KNse6SSt7M0-N32nZTWIHDurHxlJw-0MM1PPIylguHsZ-kOG4rco5ow5slnqvuxMw8w2Dnx3wrXp_6Wd6avB8fbf9l0b7MN87T9LOZfdqBxaw0H15ZqgJjdfhSO3CbPb2ev8y3Kvm_Aez9f4x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetic+rejuvenation+by+partial+reprogramming&rft.jtitle=BioEssays&rft.au=Puri%2C+Deepika&rft.au=Wagner%2C+Wolfgang&rft.date=2023-04-01&rft.eissn=1521-1878&rft.volume=45&rft.issue=4&rft.spage=e2200208&rft_id=info:doi/10.1002%2Fbies.202200208&rft_id=info%3Apmid%2F36871150&rft.externalDocID=36871150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon