Epigenetic rejuvenation by partial reprogramming
Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age‐associated t...
Saved in:
| Published in: | BioEssays Vol. 45; no. 4; pp. e2200208 - n/a |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.04.2023
|
| Subjects: | |
| ISSN: | 0265-9247, 1521-1878, 1521-1878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age‐associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de‐differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti‐ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed.
Generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, but it also entails loss of cellular identity. Partial reprogramming can reset epigenetic ageing clocks while maintaining cellular identity. We discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. |
|---|---|
| AbstractList | Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age‐associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de‐differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti‐ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed.
Generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, but it also entails loss of cellular identity. Partial reprogramming can reset epigenetic ageing clocks while maintaining cellular identity. We discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age‐associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age‐associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de‐differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti‐ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed. Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age-associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age-associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de-differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti-ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed.Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age-associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age-associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de-differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti-ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed. |
| Author | Puri, Deepika Wagner, Wolfgang |
| Author_xml | – sequence: 1 givenname: Deepika surname: Puri fullname: Puri, Deepika email: dpuri@ukaachen.de organization: RWTH Aachen University Medical School – sequence: 2 givenname: Wolfgang orcidid: 0000-0002-1971-3217 surname: Wagner fullname: Wagner, Wolfgang email: wwagner@ukaachen.de organization: RWTH Aachen University Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36871150$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1LAzEQhoNU7IdePUrBi5etk2ySzR61VC0IHtRzyO7OlpT9qMmu0n_v1rYKBekpTHieGWbeIelVdYWEXFKYUAB2m1j0EwaMdQWoEzKggtGAqkj1yACYFEHMeNQnQ--XABBLxs9IP5QqolTAgMBsZRdYYWPTscNl-4mVaWxdjZP1eGVcY03R_a9cvXCmLG21OCenuSk8XuzeEXl_mL1Nn4Lnl8f59O45SDmXKsg58CxXYZ5nIpMSmeQZoKJ5GCmUQqASRlARRzLjJsnRsJCBSTMTQ5KyJAxH5Gbbt5v90aJvdGl9ikVhKqxbr5miNI6Ukvw4GqmQxzyWskOvD9Bl3bqqW2RDRZQpkKKjrnZUm5SY6ZWzpXFrvT9bB_AtkLrae4e5Tm3zc7fGGVtoCnqTjt6ko3_T6bTJgbbv_K8Qb4UvW-D6CK3v57PXP_cbBFOgQA |
| CitedBy_id | crossref_primary_10_3390_ijms241914408 crossref_primary_10_1038_s43587_025_00841_1 crossref_primary_10_1186_s13148_024_01639_5 crossref_primary_10_1002_adhm_202301030 crossref_primary_10_1002_mco2_70369 crossref_primary_10_3390_ijms252011199 crossref_primary_10_1016_j_gde_2025_102351 crossref_primary_10_1038_s41598_024_73975_8 crossref_primary_10_3389_fphar_2023_1288894 crossref_primary_10_1016_j_arr_2024_102204 crossref_primary_10_1016_j_mocell_2024_100137 crossref_primary_10_1073_pnas_2401387122 crossref_primary_10_3390_cells14080619 crossref_primary_10_3390_cells13232002 crossref_primary_10_1016_j_arcmed_2024_103033 crossref_primary_10_1016_j_fufo_2025_100684 crossref_primary_10_1134_S106236042470005X crossref_primary_10_1038_s41467_024_53276_4 |
| Cites_doi | 10.1016/j.molcel.2012.10.016 10.3390/cells11050830 10.1038/s41576‐022‐00468‐7 10.1016/j.cell.2006.07.024 10.1016/j.cell.2016.11.052 10.1186/gb‐2014‐15‐2‐r24 10.1186/s13059‐019‐1824‐y 10.1016/j.celrep.2013.05.043 10.1016/j.stem.2008.12.010 10.1038/s41586‐020‐2975‐4 10.1186/s13148‐021‐01158‐7 10.1038/s41586‐019‐1534‐3 10.18632/aging.100908 10.1016/j.cell.2014.01.005 10.1038/s42003‐021‐02116‐y 10.1101/gr.141945.112 10.1111/acel.13578 10.1186/s13059‐015‐0584‐6 10.1038/s41380‐019‐0468‐3 10.1101/2022.08.11.502778 10.1038/s41598‐018‐30069‐6 10.1126/science.1127168 10.1016/j.stemcr.2014.07.003 10.1111/j.1474‐9726.2011.00784.x 10.1186/s13059‐016‐1017‐x 10.1101/gad.173922.111 10.1186/gb‐2013‐14‐10‐r115 10.1038/nmeth.2255 10.1038/nrm4043 10.1186/s13148‐021‐01220‐4 10.1111/j.1474‐9726.2011.00738.x 10.1111/acel.13714 10.1016/j.tig.2022.03.010 10.3389/fcell.2022.854797 10.1016/j.stem.2012.11.002 10.1016/j.stem.2012.03.003 10.1073/pnas.0602569103 10.1242/dev.200755 10.1038/nrg3354 10.1111/j.1474‐9726.2010.00624.x 10.1002/agm2.12061 10.1126/science.aaa1356 10.1038/s12276‐020‐00497‐4 10.1038/srep10434 10.1038/nature08310 10.1186/s12864‐015‐1271‐4 10.1126/science.abg5159 10.1111/acel.12544 10.1016/j.stem.2015.09.001 10.18632/aging.100395 10.1111/acel.12877 10.1038/s41467‐018‐06398‐5 10.1016/j.bbrc.2020.02.092 10.7554/eLife.71624 10.1038/s41467‐020‐15174‐3 10.1038/nature12586 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by Wiley Periodicals LLC 2023 The Authors. BioEssays published by Wiley Periodicals LLC. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC – notice: 2023 The Authors. BioEssays published by Wiley Periodicals LLC. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1002/bies.202200208 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1521-1878 |
| EndPage | n/a |
| ExternalDocumentID | 36871150 10_1002_bies_202200208 BIES202200208 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: German Research Foundation funderid: 363055819/GRK2415; WA1706/11‐1; WA 1706/12‐1; CRU344; WA1706/14‐1 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4468-f404df83ffd5d66e264d0e81f378e655e85a515976d4abfea2320acda90bc2b33 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943606800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-9247 1521-1878 |
| IngestDate | Fri Jul 11 18:31:25 EDT 2025 Fri Jul 11 16:49:09 EDT 2025 Fri Jul 25 10:48:01 EDT 2025 Mon Jul 21 06:00:22 EDT 2025 Tue Nov 18 22:12:47 EST 2025 Sat Nov 29 05:24:49 EST 2025 Wed Jan 22 16:13:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | pluripotent reprogramming ageing clock transient reprogramming epigenetic iPSC DNA methylation interrupted reprogramming rejuvenation partial reprogramming |
| Language | English |
| License | Attribution 2023 The Authors. BioEssays published by Wiley Periodicals LLC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4468-f404df83ffd5d66e264d0e81f378e655e85a515976d4abfea2320acda90bc2b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
| ORCID | 0000-0002-1971-3217 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202200208 |
| PMID | 36871150 |
| PQID | 2787128065 |
| PQPubID | 37030 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2811978864 proquest_miscellaneous_2783494966 proquest_journals_2787128065 pubmed_primary_36871150 crossref_citationtrail_10_1002_bies_202200208 crossref_primary_10_1002_bies_202200208 wiley_primary_10_1002_bies_202200208_BIES202200208 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cambridge |
| PublicationTitle | BioEssays |
| PublicationTitleAlternate | Bioessays |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013; 4 2013; 23 2022; 23 2020; 525 2019; 18 2011; 10 2022; 21 2020; 11 2015; 348 2012; 11 2012; 10 2018; 9 2018; 8 2013; 14 2014; 3 2019; 20 2020; 52 2013; 10 2013; 12 2014; 15 2011; 25 2006; 126 2022; 38 2010; 9 2015; 17 2015; 5 2015; 16 2021; 4 2013; 49 2019; 2 2013; 502 2016; 167 2020; 588 2011; 3 2016; 17 2011; 6 2006; 312 2014; 156 2021; 13 2022 2017; 16 2020; 25 2021; 373 2022; 10 2009; 4 2009; 461 2022; 11 2016; 8 2019; 573 2022; 149 2006; 103 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 23 start-page: 563 year: 2022 end-page: 580 article-title: Histone post‐translational modifications – cause and consequence of genome function publication-title: Nature Reviews Genetics – volume: 3 start-page: 414 year: 2014 end-page: 422 article-title: Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells publication-title: Stem Cell Reports – volume: 11 year: 2022 article-title: Multi‐omic rejuvenation of human cells by maturation phase transient reprogramming publication-title: Elife – volume: 25 start-page: 2248 year: 2011 end-page: 2253 article-title: Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state publication-title: Genes & Development – volume: 38 start-page: 676 year: 2022 end-page: 707 article-title: DNA methylation: A historical perspective publication-title: Trends in Genetics – volume: 11 start-page: 830 year: 2022 article-title: Synergistic anti‐ageing through senescent cells specific reprogramming publication-title: Cells – volume: 4 start-page: 189 year: 2013 end-page: 204 article-title: Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging publication-title: Cell Reports – volume: 18 year: 2019 article-title: Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity publication-title: Aging Cell – volume: 20 start-page: 249 year: 2019 article-title: DNA methylation aging clocks: Challenges and recommendations publication-title: Genome Biology – volume: 17 start-page: 158 year: 2016 article-title: Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability publication-title: Genome Biology – volume: 312 start-page: 1059 year: 2006 end-page: 1063 article-title: Lamin A‐dependent nuclear defects in human aging publication-title: Science – volume: 15 start-page: R24 year: 2014 article-title: Aging of blood can be tracked by DNA methylation changes at just three CpG sites publication-title: Genome Biology – volume: 16 start-page: 49 year: 2015 article-title: Characterization of tissue‐specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation publication-title: BMC Genomics – volume: 10 start-page: 980 year: 2011 end-page: 990 article-title: The H3K27 demethylase UTX‐1 regulates C. elegans lifespan in a germline‐independent, insulin‐dependent manner publication-title: Aging Cell – volume: 9 start-page: 4047 year: 2018 article-title: A stably self‐renewing adult blood‐derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation publication-title: Nature Communications – volume: 4 start-page: 598 year: 2021 article-title: DNA methylation changes during long‐term in vitro cell culture are caused by epigenetic drift publication-title: Communications Biology – volume: 16 start-page: 519 year: 2015 end-page: 532 article-title: DNA methylation pathways and their crosstalk with histone methylation publication-title: Nature Reviews Molecular Cell Biology – volume: 8 start-page: 394 year: 2016 end-page: 401 article-title: DNA methylation levels at individual age‐associated CpG sites can be indicative for life expectancy publication-title: Aging (Albany NY) – volume: 6 year: 2011 article-title: Epigenetic predictor of age publication-title: PLoS ONE – volume: 348 start-page: 1160 year: 2015 end-page: 1163 article-title: Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging publication-title: Science – volume: 3 start-page: 1018 year: 2011 end-page: 1027 article-title: Epigenetic‐aging‐signature to determine age in different tissues publication-title: Aging (Albany NY) – volume: 5 year: 2015 article-title: Epigenetic regulation of the nuclear‐coded GCAT and SHMT2 genes confers human age‐associated mitochondrial respiration defects publication-title: Scientific Reports – volume: 156 start-page: 663 year: 2014 end-page: 677 article-title: Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation publication-title: Cell – volume: 573 start-page: 281 year: 2019 end-page: 286 article-title: The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape publication-title: Nature – volume: 8 year: 2018 article-title: Interrupted reprogramming into induced pluripotent stem cells does not rejuvenate human mesenchymal stromal cells publication-title: Scientific Reports – volume: 126 start-page: 663 year: 2006 end-page: 676 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 11 start-page: 366 year: 2012 end-page: 369 article-title: Monitoring of cellular senescence by DNA‐methylation at specific CpG sites publication-title: Aging Cell – volume: 461 start-page: 91 year: 2009 end-page: 94 article-title: Adult mice generated from induced pluripotent stem cells publication-title: Nature – volume: 4 start-page: 141 year: 2009 end-page: 154 article-title: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 103 start-page: 8703 year: 2006 end-page: 8708 article-title: Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging publication-title: Proceedings of the National Academy of Sciences USA – volume: 21 year: 2022 article-title: A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan publication-title: Aging Cell – volume: 14 start-page: 204 year: 2013 end-page: 220 article-title: DNA methylation: Roles in mammalian development publication-title: Nature Reviews Genetics – volume: 16 start-page: 183 year: 2017 article-title: Senescence‐associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells publication-title: Aging Cell – volume: 9 start-page: 971 year: 2010 end-page: 978 article-title: Chromatin remodeling in the aging genome of Drosophila publication-title: Aging Cell – volume: 11 start-page: 1545 year: 2020 article-title: Transient non‐integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells publication-title: Nature Communications – volume: 373 start-page: 1537 year: 2021 end-page: 1540 article-title: Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice publication-title: Science – volume: 10 start-page: 473 year: 2012 end-page: 479 article-title: Direct conversion of fibroblasts into stably expandable neural stem cells publication-title: Cell Stem Cell – volume: 10 year: 2022 article-title: How to translate DNA methylation biomarkers into clinical practice publication-title: Frontiers in Cell and Developmental Biology – volume: 2 start-page: 99 year: 2019 end-page: 103 article-title: Ethical perspectives on advances in biogerontology publication-title: Aging Med (Milton) – volume: 502 start-page: 340 year: 2013 end-page: 345 article-title: Reprogramming in vivo produces teratomas and iPS cells with totipotency features publication-title: Nature – year: 2022 article-title: Development of a novel aging clock based on chromatin accessibility publication-title: bioRxiv – volume: 525 start-page: 563 year: 2020 end-page: 569 article-title: Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells publication-title: Biochemical and Biophysical Research Communications – volume: 25 start-page: 148 year: 2020 end-page: 167 article-title: Modeling Alzheimer's disease with iPSC‐derived brain cells publication-title: Molecular Psychiatry – volume: 13 start-page: 170 year: 2021 article-title: Cellular reprogramming and epigenetic rejuvenation publication-title: Clinical Epigenetics – volume: 167 start-page: 1719 year: 2016 end-page: 1733.e12 article-title: In vivo amelioration of age‐associated hallmarks by partial reprogramming publication-title: Cell – volume: 17 start-page: 705 year: 2015 end-page: 718 article-title: Directly reprogrammed human neurons retain aging‐associated transcriptomic signatures and reveal age‐related nucleocytoplasmic defects publication-title: Cell Stem Cell – volume: 14 start-page: R115 year: 2013 article-title: DNA methylation age of human tissues and cell types publication-title: Genome Biology – volume: 49 start-page: 359 year: 2013 end-page: 367 article-title: Genome‐wide methylation profiles reveal quantitative views of human aging rates publication-title: Molecular Cell – volume: 10 start-page: 77 year: 2013 end-page: 83 article-title: Conversion of human fibroblasts to angioblast‐like progenitor cells publication-title: Nature Methods – volume: 12 start-page: 114 year: 2013 end-page: 126 article-title: Generation of rejuvenated antigen‐specific T cells by reprogramming to pluripotency and redifferentiation publication-title: Cell Stem Cell – volume: 52 start-page: 1466 year: 2020 end-page: 1474 article-title: Heterochromatin: An epigenetic point of view in aging publication-title: Experimental & Molecular Medicine – volume: 21 year: 2022 article-title: Multi‐omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming publication-title: Aging Cell – volume: 588 start-page: 124 year: 2020 end-page: 129 article-title: Reprogramming to recover youthful epigenetic information and restore vision publication-title: Nature – volume: 23 start-page: 248 year: 2013 end-page: 259 article-title: Pluripotent stem cells escape from senescence‐associated DNA methylation changes publication-title: Genome Research – volume: 16 start-page: 25 year: 2015 article-title: DNA methylation age of blood predicts all‐cause mortality in later life publication-title: Genome Biology – volume: 149 year: 2022 article-title: Age reprogramming: Cell rejuvenation by partial reprogramming publication-title: Development (Cambridge, England) – ident: e_1_2_10_20_1 doi: 10.1016/j.molcel.2012.10.016 – ident: e_1_2_10_48_1 doi: 10.3390/cells11050830 – ident: e_1_2_10_30_1 doi: 10.1038/s41576‐022‐00468‐7 – ident: e_1_2_10_2_1 doi: 10.1016/j.cell.2006.07.024 – ident: e_1_2_10_50_1 doi: 10.1016/j.cell.2016.11.052 – ident: e_1_2_10_21_1 doi: 10.1186/gb‐2014‐15‐2‐r24 – ident: e_1_2_10_14_1 doi: 10.1186/s13059‐019‐1824‐y – ident: e_1_2_10_35_1 doi: 10.1016/j.celrep.2013.05.043 – ident: e_1_2_10_3_1 doi: 10.1016/j.stem.2008.12.010 – ident: e_1_2_10_54_1 doi: 10.1038/s41586‐020‐2975‐4 – ident: e_1_2_10_47_1 doi: 10.1186/s13148‐021‐01158‐7 – ident: e_1_2_10_40_1 doi: 10.1038/s41586‐019‐1534‐3 – ident: e_1_2_10_22_1 doi: 10.18632/aging.100908 – ident: e_1_2_10_42_1 doi: 10.1016/j.cell.2014.01.005 – ident: e_1_2_10_26_1 doi: 10.1038/s42003‐021‐02116‐y – ident: e_1_2_10_25_1 doi: 10.1101/gr.141945.112 – ident: e_1_2_10_51_1 doi: 10.1111/acel.13578 – ident: e_1_2_10_24_1 doi: 10.1186/s13059‐015‐0584‐6 – ident: e_1_2_10_11_1 doi: 10.1038/s41380‐019‐0468‐3 – ident: e_1_2_10_39_1 doi: 10.1101/2022.08.11.502778 – ident: e_1_2_10_56_1 doi: 10.1038/s41598‐018‐30069‐6 – ident: e_1_2_10_38_1 doi: 10.1126/science.1127168 – ident: e_1_2_10_10_1 doi: 10.1016/j.stemcr.2014.07.003 – ident: e_1_2_10_28_1 doi: 10.1111/j.1474‐9726.2011.00784.x – ident: e_1_2_10_32_1 doi: 10.1186/s13059‐016‐1017‐x – ident: e_1_2_10_4_1 doi: 10.1101/gad.173922.111 – ident: e_1_2_10_23_1 doi: 10.1186/gb‐2013‐14‐10‐r115 – ident: e_1_2_10_43_1 doi: 10.1038/nmeth.2255 – ident: e_1_2_10_16_1 doi: 10.1038/nrm4043 – ident: e_1_2_10_19_1 doi: 10.1186/s13148‐021‐01220‐4 – ident: e_1_2_10_33_1 doi: 10.1111/j.1474‐9726.2011.00738.x – ident: e_1_2_10_52_1 doi: 10.1111/acel.13714 – ident: e_1_2_10_12_1 doi: 10.1016/j.tig.2022.03.010 – ident: e_1_2_10_17_1 doi: 10.3389/fcell.2022.854797 – ident: e_1_2_10_7_1 doi: 10.1016/j.stem.2012.11.002 – ident: e_1_2_10_44_1 doi: 10.1016/j.stem.2012.03.003 – ident: e_1_2_10_34_1 doi: 10.1073/pnas.0602569103 – ident: e_1_2_10_49_1 doi: 10.1242/dev.200755 – ident: e_1_2_10_13_1 doi: 10.1038/nrg3354 – ident: e_1_2_10_36_1 doi: 10.1111/j.1474‐9726.2010.00624.x – ident: e_1_2_10_57_1 doi: 10.1002/agm2.12061 – ident: e_1_2_10_37_1 doi: 10.1126/science.aaa1356 – ident: e_1_2_10_31_1 doi: 10.1038/s12276‐020‐00497‐4 – ident: e_1_2_10_9_1 doi: 10.1038/srep10434 – ident: e_1_2_10_6_1 doi: 10.1038/nature08310 – ident: e_1_2_10_15_1 doi: 10.1186/s12864‐015‐1271‐4 – ident: e_1_2_10_53_1 doi: 10.1126/science.abg5159 – ident: e_1_2_10_29_1 doi: 10.1111/acel.12544 – ident: e_1_2_10_8_1 doi: 10.1016/j.stem.2015.09.001 – ident: e_1_2_10_18_1 doi: 10.18632/aging.100395 – ident: e_1_2_10_27_1 doi: 10.1111/acel.12877 – ident: e_1_2_10_46_1 doi: 10.1038/s41467‐018‐06398‐5 – ident: e_1_2_10_5_1 doi: 10.1016/j.bbrc.2020.02.092 – ident: e_1_2_10_45_1 doi: 10.7554/eLife.71624 – ident: e_1_2_10_55_1 doi: 10.1038/s41467‐020‐15174‐3 – ident: e_1_2_10_41_1 doi: 10.1038/nature12586 |
| SSID | ssj0009624 |
| Score | 2.5152135 |
| SecondaryResourceType | review_article |
| Snippet | Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs)... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2200208 |
| SubjectTerms | ageing clock Aging Cell Differentiation Cell fate cell senescence Cellular Reprogramming - genetics Clocks DNA methylation Elongation Epigenesis, Genetic epigenetic Epigenetics Induced Pluripotent Stem Cells interrupted reprogramming iPSC partial reprogramming Pluripotency pluripotent Rejuvenation reprogramming risk Senescence Stem cells Telomeres Teratoma Transcriptomics transient reprogramming |
| Title | Epigenetic rejuvenation by partial reprogramming |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202200208 https://www.ncbi.nlm.nih.gov/pubmed/36871150 https://www.proquest.com/docview/2787128065 https://www.proquest.com/docview/2783494966 https://www.proquest.com/docview/2811978864 |
| Volume | 45 |
| WOSCitedRecordID | wos000943606800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-1878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009624 issn: 0265-9247 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58ghffj-oqFQRPxbRN0_ToYxcPIiIqeytJm4Ciu8s-BP-9M-ludREV9FJaMqEhk5n50nS-ATjCCGFSLbIgsZwH3IZoUsRAy7XKYs0LJhxZ9cNVen0t2-3s5lMWf8UPUX9wI8tw_poMXOnByQdpqKadZESJolRnchbmwzCWVLwh4jcftLvClbXFjUYS4E4jndA2suhkuv90WPqCNaehq4s9rZX_j3oVlse40z-tFsoazJjOOixWlSjfNoA1e0TLSRmNft88jdAFOpX5-s3v0erCvsR_6X7mesFwtwn3rebd-WUwLqYQFJyyqyxnvLQytrZMSiEMAqGSGRnaOJVGJImRiSJsk4qSK22NQqjFVFGqjOki0nG8BXOdbsfsgM9UJhVHL8mV4DZJs0gnZWoipulGxB4Ek7nMizHTOBW8eM4rjuQop1nI61nw4LiW71UcG99KNiaqyce2hq3oc0J3QOzBYd2MVkJHH6pjuiMn43h4hPhBRtKRqpSCe7Bdqb0eTizwHYidPYicdn8ZZ36GWL5-2v1Lpz1Yosr21U9CDZgb9kdmHxaK1-HjoH_gVjle07Y8gPmL29b91Ts2xvu4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50VfTi-1GfFQRPZbNtmqZHFUVxXTyoeCtJm4Ci67K6wv57Z9JuZREVxFtLJzQk8_jymG8ADjBCmESLNIgt5wG3LTQpYqDlWqWR5jkTjqz6rp10OvL-Pr2ubhNSLkzJD1FvuJFlOH9NBk4b0s1P1lBNS8mQMkWp0OQkTHEMNaTqIb_-5N0Vrq4trjTiAJcayYi3kYXN8fbjcekL2BzHri74nC38Q7cXYb5Cnv5RqSpLMGG6yzBT1qIcrgA77RExJ-U0-n3zOEAn6CbN10O_R_qFbYkB013nesaAtwq3Z6c3J-dBVU4hyDnlV1nOeGFlZG0RF0IYhEIFM7Jlo0QaEcdGxorQTSIKrrQ1CsEWU3mhUqbzUEfRGjS6L12zAT5TqVQc_SRXgts4SUMdF4kJmaYHEXkQjAYzyyuucSp58ZSVLMlhRqOQ1aPgwWEt3ytZNr6V3B7NTVZZG35Fr9NyR8Qe7Nef0U7o8EN1zcvAyTgmHiF-kJF0qCql4B6sl_NedycS-A9Ezx6Ebnp_6Wd2jGi-ftv8S6M9mD2_uWpn7YvO5RbMUZ378srQNjTe-gOzA9P5-9vDa3_XqfwHeFT9Gw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90fuCL3x_VqRUEn4pZm6bpox8rimMMceJbSdoEFJ1lOsH_3lzaVYaoIL619NKGXO7ulyb3O4BDEyFUJFnshZpSj-qWMSlkoKVSxIGkGWGWrPq2E3W7_O4u7lWnCTEXpuSHqH-4oWVYf40GropcH3-yhkpcSvqYKYqFJqdhhmIlmQbMnF8n_c4n8y6zlW3NWiP0zGIjGjM3Ev948g2TkekL3JxErzb8JEv_0PFlWKywp3tSTpYVmFKDVZgrq1G-rwFpF0jNiVmN7lA9jIwbtGpz5btb4AwzbZED0x7oejIhbx36Sfvm7MKrCip4GcUMK00JzTUPtM7DnDFlwFBOFG_pIOKKhaHioUB8E7GcCqmVMHCLiCwXMZGZL4NgAxqD54HaApeImAtqPCUVjOowin0Z5pHyicQLFjjgjQczzSq2cSx68ZiWPMl-iqOQ1qPgwFEtX5Q8G99KNse6SSt7M0-N32nZTWIHDurHxlJw-0MM1PPIylguHsZ-kOG4rco5ow5slnqvuxMw8w2Dnx3wrXp_6Wd6avB8fbf9l0b7MN87T9LOZfdqBxaw0H15ZqgJjdfhSO3CbPb2ev8y3Kvm_Aez9f4x |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetic+rejuvenation+by+partial+reprogramming&rft.jtitle=BioEssays&rft.au=Puri%2C+Deepika&rft.au=Wagner%2C+Wolfgang&rft.date=2023-04-01&rft.eissn=1521-1878&rft.volume=45&rft.issue=4&rft.spage=e2200208&rft_id=info:doi/10.1002%2Fbies.202200208&rft_id=info%3Apmid%2F36871150&rft.externalDocID=36871150 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |