A CASE-BASED DECISION SUPPORT SYSTEM FOR INDIVIDUAL STRESS DIAGNOSIS USING FUZZY SIMILARITY MATCHING
Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho‐physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret, and analyze complex, lengthy sequent...
Saved in:
| Published in: | Computational intelligence Vol. 25; no. 3; pp. 180 - 195 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Malden, USA
Blackwell Publishing Inc
01.08.2009
Blackwell Publishing Ltd |
| Subjects: | |
| ISSN: | 0824-7935, 1467-8640, 1467-8640 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho‐physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret, and analyze complex, lengthy sequential measurements to make a diagnosis and treatment plan. The paper presents a case‐based decision support system to assist clinicians in performing such tasks. Case‐based reasoning (CBR) is applied as the main methodology to facilitate experience reuse and decision explanation by retrieving previous similar temperature profiles. Further fuzzy techniques are also employed and incorporated into the CBR system to handle vagueness, uncertainty inherently existing in clinicians reasoning as well as imprecision of feature values. Thirty‐nine time series from 24 patients have been used to evaluate the approach (matching algorithms) and an expert has ranked and estimated similarity. On average goodness‐of‐fit for the fuzzy matching algorithm is 90% in ranking and 81% in similarity estimation that shows a level of performance close to an experienced expert. Therefore, we have suggested that a fuzzy matching algorithm in combination with CBR is a valuable approach in domains, where the fuzzy matching model similarity and case preference is consistent with the views of domain expert. This combination is also valuable, where domain experts are aware that the crisp values they use have a possibility distribution that can be estimated by the expert and is used when experienced experts reason about similarity. This is the case in the psycho‐physiological domain and experienced experts can estimate this distribution of feature values and use them in their reasoning and explanation process. |
|---|---|
| AbstractList | Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho‐physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret, and analyze complex, lengthy sequential measurements to make a diagnosis and treatment plan. The paper presents a case‐based decision support system to assist clinicians in performing such tasks. Case‐based reasoning (CBR) is applied as the main methodology to facilitate experience reuse and decision explanation by retrieving previous similar temperature profiles. Further fuzzy techniques are also employed and incorporated into the CBR system to handle vagueness, uncertainty inherently existing in clinicians reasoning as well as imprecision of feature values. Thirty‐nine time series from 24 patients have been used to evaluate the approach (matching algorithms) and an expert has ranked and estimated similarity. On average goodness‐of‐fit for the fuzzy matching algorithm is 90% in ranking and 81% in similarity estimation that shows a level of performance close to an experienced expert. Therefore, we have suggested that a fuzzy matching algorithm in combination with CBR is a valuable approach in domains, where the fuzzy matching model similarity and case preference is consistent with the views of domain expert. This combination is also valuable, where domain experts are aware that the crisp values they use have a possibility distribution that can be estimated by the expert and is used when experienced experts reason about similarity. This is the case in the psycho‐physiological domain and experienced experts can estimate this distribution of feature values and use them in their reasoning and explanation process. Stress diagnosis based on finger temperature signals is receiving increasing interest in the psycho-physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret and analyze complex, lengthy sequential measurements in order to make a diagnosis and treatment plan. The paper presents a case-based decision support system to assist clinicians in performing such tasks. Case-based reasoning is applied as the main methodology to facilitate experience reuse and decision explanation by retrieving previous similar temperature profiles. Further fuzzy techniques are also employed and incorporated into the case-based reasoning system to handle vagueness, uncertainty inherently existing in clinicians reasoning as well as imprecision of feature values. Thirty nine time series from 24 patients have been used to evaluate the approach (matching algorithms) and an expert has ranked and estimated similarity. On average goodness-of-fit for the fuzzy matching algorithm is 90% in ranking and 81% in similarity estimation which shows a level of performance close to an experienced expert. Therefore, we have suggested that a fuzzy matching algorithm in combination with case-based reasoning is a valuable approach in domains where the fuzzy matching model similarity and case preference is consistent with the views of domain expert. This combination is also valuable where domain experts are aware that the crisp values they use have a possibility distribution that can be estimated by the expert and is used when experienced experts reason about similarity. This is the case in the psycho-physiological domain and experienced experts can estimate this distribution of feature values and use them in their reasoning and explanation process. Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho-physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret, and analyze complex, lengthy sequential measurements to make a diagnosis and treatment plan. The paper presents a case-based decision support system to assist clinicians in performing such tasks. Case-based reasoning (CBR) is applied as the main methodology to facilitate experience reuse and decision explanation by retrieving previous similar temperature profiles. Further fuzzy techniques are also employed and incorporated into the CBR system to handle vagueness, uncertainty inherently existing in clinicians reasoning as well as imprecision of feature values. Thirty-nine time series from 24 patients have been used to evaluate the approach (matching algorithms) and an expert has ranked and estimated similarity. On average goodness-of-fit for the fuzzy matching algorithm is 90% in ranking and 81% in similarity estimation that shows a level of performance close to an experienced expert. Therefore, we have suggested that a fuzzy matching algorithm in combination with CBR is a valuable approach in domains, where the fuzzy matching model similarity and case preference is consistent with the views of domain expert. This combination is also valuable, where domain experts are aware that the crisp values they use have a possibility distribution that can be estimated by the expert and is used when experienced experts reason about similarity. This is the case in the psycho-physiological domain and experienced experts can estimate this distribution of feature values and use them in their reasoning and explanation process. [PUBLICATION ABSTRACT] |
| Author | Ahmed, Mobyen Uddin Begum, Shahina Von Schéele, Bo Xiong, Ning Funk, Peter |
| Author_xml | – sequence: 1 givenname: Shahina surname: Begum fullname: Begum, Shahina organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden – sequence: 2 givenname: Mobyen Uddin surname: Ahmed fullname: Ahmed, Mobyen Uddin organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden – sequence: 3 givenname: Peter surname: Funk fullname: Funk, Peter organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden – sequence: 4 givenname: Ning surname: Xiong fullname: Xiong, Ning organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden – sequence: 5 givenname: Bo surname: Von Schéele fullname: Von Schéele, Bo organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-12355$$DView record from Swedish Publication Index (Mälardalens högskola) |
| BookMark | eNqNkV9vmzAUxdHUSUu7fQdrD3sazIDB8LBJDEjmKoEqhlbpyxV_zEZGIAOipt--Zmx96FP9YFs653d0r86lctF2rVAUpGNNl-fLXtOJTVXHJlgzMHY1jE2Tauc3yuJZuFAW2DGISl3TeqdcDsMeY6ybxFkopYd8j4fqd3kFKAh9xlkcIZ7e3MTbBPEdT8INWsZbxKKA3bIg9daIJ9uQcxQwbxXFnHGUchat0DK9v98hzjZs7W1ZskMbL_F_SOW98rbKmkF8-PdeKekylJK6jlfM99ZqQaZRc7fMKRY6tVyXlG4pDCcnRpVRy64sJy_KihS4MHJMcxdnll4SUbnYsQpdEFtq5pXyec4dHsTxlMOxrw9Z_whdVkNQ33rQ9T_hUP4C3TAtS9o_zfZj3_05iWGEQz0UommyVnSnAUxCDWrYVBo_vjDuu1PfylVAd4lNbNt1pOnbbCr6bhh6UUFRj9lYd-3YZ3UDOoapMNjD1AtMvcBUGPwtDM4ywHkR8H_-V6BfZ_ShbsTjqznwYxbJn-TVma-HUZyf-az_DXJ9asFdtAIzwklArincmU8N2LYY |
| CitedBy_id | crossref_primary_10_1007_s00170_018_3112_5 crossref_primary_10_1111_odi_13108 crossref_primary_10_1177_1687814018767681 crossref_primary_10_1007_s40815_020_01043_0 crossref_primary_10_3390_s140711770 crossref_primary_10_1080_23311916_2024_2374520 crossref_primary_10_1016_j_jbi_2019_103127 crossref_primary_10_1109_TSMCC_2010_2071862 crossref_primary_10_3414_ME15_01_0031 crossref_primary_10_1016_j_compbiomed_2021_104450 crossref_primary_10_1016_j_imu_2020_100395 crossref_primary_10_1017_S0890060415000153 crossref_primary_10_1016_j_compind_2015_06_007 crossref_primary_10_1016_j_procs_2015_04_136 crossref_primary_10_1016_j_engappai_2011_05_013 crossref_primary_10_1016_j_inffus_2018_06_008 crossref_primary_10_1155_2013_380239 crossref_primary_10_1177_1687814018804649 crossref_primary_10_1007_s00500_018_3245_3 crossref_primary_10_1016_j_jbi_2016_10_018 crossref_primary_10_1016_j_jds_2020_06_019 crossref_primary_10_1016_j_neucom_2015_06_101 crossref_primary_10_1061__ASCE_ME_1943_5479_0000498 crossref_primary_10_1109_ACCESS_2020_2985301 crossref_primary_10_1016_j_eswa_2013_05_063 crossref_primary_10_1038_s41598_023_35333_y crossref_primary_10_1016_j_compind_2014_08_004 crossref_primary_10_1016_j_artmed_2010_12_004 crossref_primary_10_1016_j_artmed_2015_08_003 crossref_primary_10_4338_ACI_2013_04_RA_0028 crossref_primary_10_1016_j_eswa_2018_07_054 crossref_primary_10_1016_j_engappai_2014_06_017 crossref_primary_10_1016_j_knosys_2011_08_002 crossref_primary_10_1016_j_knosys_2010_09_002 crossref_primary_10_1016_j_eswa_2011_12_055 crossref_primary_10_1016_j_compeleceng_2018_11_009 crossref_primary_10_1007_s10462_019_09723_6 crossref_primary_10_1016_j_eswa_2013_05_068 |
| Cites_doi | 10.1016/j.artmed.2005.04.004 10.1023/A:1023484513455 10.1016/0165-0114(95)00365-7 10.1007/3-540-48229-6_17 10.1111/j.1467-8640.2006.00287.x 10.1007/978-3-540-39619-2_9 10.1007/BFb0056345 10.1201/9781420050394 10.1007/BFb0017033 10.1007/978-3-540-74141-1_33 10.1007/978-1-4612-0103-8 10.1007/3-540-44593-5_50 10.1111/j.1467-8640.2006.00285.x |
| ContentType | Journal Article |
| Copyright | 2009 The Authors. Journal Compilation © 2009 Wiley Periodicals, Inc. 2009 Wiley Periodicals Inc. |
| Copyright_xml | – notice: 2009 The Authors. Journal Compilation © 2009 Wiley Periodicals, Inc. – notice: 2009 Wiley Periodicals Inc. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTPV AOWAS DF7 |
| DOI | 10.1111/j.1467-8640.2009.00337.x |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Mälardalens högskola |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1467-8640 |
| EndPage | 195 |
| ExternalDocumentID | oai_DiVA_org_mdh_12355 1798199961 10_1111_j_1467_8640_2009_00337_x COIN337 ark_67375_WNG_3N0TD4J7_W |
| Genre | article Feature |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACGOD ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE UCJ WRC AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D ADTPV AOWAS DF7 |
| ID | FETCH-LOGICAL-c4467-b9db70e175994d9de28b42fa756f58bcdf4c0c2b07b90a51d4ef9085c1e46f4c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268099800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0824-7935 1467-8640 |
| IngestDate | Tue Nov 04 16:17:23 EST 2025 Thu Oct 02 06:19:39 EDT 2025 Sat Aug 16 22:41:17 EDT 2025 Tue Nov 18 22:20:50 EST 2025 Sat Nov 29 06:41:30 EST 2025 Wed Jan 22 16:47:57 EST 2025 Sun Sep 21 06:17:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4467-b9db70e175994d9de28b42fa756f58bcdf4c0c2b07b90a51d4ef9085c1e46f4c3 |
| Notes | istex:E96E1DF6CCE135DFF4833AA786EB9826CAA49C5A ark:/67375/WNG-3N0TD4J7-W ArticleID:COIN337 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 194646698 |
| PQPubID | 34323 |
| PageCount | 16 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_mdh_12355 proquest_miscellaneous_34727267 proquest_journals_194646698 crossref_citationtrail_10_1111_j_1467_8640_2009_00337_x crossref_primary_10_1111_j_1467_8640_2009_00337_x wiley_primary_10_1111_j_1467_8640_2009_00337_x_COIN337 istex_primary_ark_67375_WNG_3N0TD4J7_W |
| PublicationCentury | 2000 |
| PublicationDate | August 2009 |
| PublicationDateYYYYMMDD | 2009-08-01 |
| PublicationDate_xml | – month: 08 year: 2009 text: August 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Malden, USA |
| PublicationPlace_xml | – name: Malden, USA – name: Hoboken |
| PublicationTitle | Computational intelligence |
| PublicationYear | 2009 |
| Publisher | Blackwell Publishing Inc Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Inc – name: Blackwell Publishing Ltd |
| References | Von Schéele, B. H. C., and I. A. M. Von Schéele. 1999. The measurement of respiratory and metabolic parameters of patients and controls before and after incremental exercise on bicycle: Supporting the effort syndrome hypothesis. Applied Psychophysiology and Biofeedback, 24:167-177. Marling, C., and P. Whitehouse. 2001. Case-based reasoning in the care of Alzheimer's disease patients. Case-Based Research and Development, 2080: 702-715. Watson, I. 1997. Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann Publishers, San Fransisco , CA . Nilsson, M., P. Funk, E. Olsson, B. H. C. Von Schéele, and N. Xiong. 2006. Clinical decision-support for diagnosing stress-related disorders by applying psychophysiological medical knowledge to an instance-based learning system. Artificial Intelligence in Medicine, 159-176. Wang, W. J. 1997. New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 85: 305-309. Schmidt, R., W. Tina, and G. Lothar. 2006. Predicting influenza waves with health insurance data. Computational Intelligence, 22:224-237. Carol, C. H., N. Balakrishnan, M. S. Nikulin, C. Huber-Carol, and M. Mesbah. 2002. Goodness-of-Fit Tests and Model Validity. Birkhauser Verlag, Basel . Aamodt, A., and E. Plaza. 1994. Case-based reasoning: Foundational issues, methodological variations and system approaches. Artificial Intelligence Communications, 7:39-59. Diaz, F., F. Fdez-Riverola, and J. M. Corchado. 2006. Gene-CBR: A case-based reasoning tool for cancer diagnosis using microarray data sets. Computational Intelligence, 22:254-268. 2001; 2080 2001 2000 2006a 2006; 22 1997; 85 1998 1999; 24 1997 2007 1996 2006 1993 2004 2003 2002 1994; 7 1999 Jang J. S. R. (e_1_2_9_14_1) 1997 Burkhard H.‐D. (e_1_2_9_8_1) 2000 Carol C. H. (e_1_2_9_9_1) 2002 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 Funk P. (e_1_2_9_12_1) 2007 e_1_2_9_15_1 Watson I. (e_1_2_9_28_1) 1997 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_26_1 e_1_2_9_25_1 Aamodt A. (e_1_2_9_2_1) 1994; 7 e_1_2_9_27_1 Bichindaritz I. (e_1_2_9_5_1) 1996 |
| References_xml | – reference: Aamodt, A., and E. Plaza. 1994. Case-based reasoning: Foundational issues, methodological variations and system approaches. Artificial Intelligence Communications, 7:39-59. – reference: Von Schéele, B. H. C., and I. A. M. Von Schéele. 1999. The measurement of respiratory and metabolic parameters of patients and controls before and after incremental exercise on bicycle: Supporting the effort syndrome hypothesis. Applied Psychophysiology and Biofeedback, 24:167-177. – reference: Marling, C., and P. Whitehouse. 2001. Case-based reasoning in the care of Alzheimer's disease patients. Case-Based Research and Development, 2080: 702-715. – reference: Schmidt, R., W. Tina, and G. Lothar. 2006. Predicting influenza waves with health insurance data. Computational Intelligence, 22:224-237. – reference: Watson, I. 1997. Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann Publishers, San Fransisco , CA . – reference: Diaz, F., F. Fdez-Riverola, and J. M. Corchado. 2006. Gene-CBR: A case-based reasoning tool for cancer diagnosis using microarray data sets. Computational Intelligence, 22:254-268. – reference: Carol, C. H., N. Balakrishnan, M. S. Nikulin, C. Huber-Carol, and M. Mesbah. 2002. Goodness-of-Fit Tests and Model Validity. Birkhauser Verlag, Basel . – reference: Wang, W. J. 1997. New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 85: 305-309. – reference: Nilsson, M., P. Funk, E. Olsson, B. H. C. Von Schéele, and N. Xiong. 2006. Clinical decision-support for diagnosing stress-related disorders by applying psychophysiological medical knowledge to an instance-based learning system. Artificial Intelligence in Medicine, 159-176. – start-page: 29 year: 2000 end-page: 45 – start-page: 230 year: 1993 end-page: 236 – start-page: 159 year: 2006 end-page: 176 article-title: Clinical decision‐support for diagnosing stress‐related disorders by applying psychophysiological medical knowledge to an instance‐based learning system publication-title: Artificial Intelligence in Medicine – start-page: 348 year: 2007 end-page: 357 – start-page: 39 year: 2002 end-page: 46 – start-page: 121 year: 2001 end-page: 130 – volume: 7 start-page: 39 year: 1994 end-page: 59 article-title: Case‐based reasoning: Foundational issues, methodological variations and system approaches publication-title: Artificial Intelligence Communications – volume: 24 start-page: 167 year: 1999 end-page: 177 article-title: The measurement of respiratory and metabolic parameters of patients and controls before and after incremental exercise on bicycle: Supporting the effort syndrome hypothesis publication-title: Applied Psychophysiology and Biofeedback – start-page: 113 year: 2006a end-page: 122 – start-page: 14 year: 1996 end-page: 20 – start-page: 398 year: 1993 end-page: 411 – year: 1998 – start-page: 191 year: 2006 end-page: 199 – volume: 85 start-page: 305 year: 1997 end-page: 309 article-title: New similarity measures on fuzzy sets and on elements publication-title: Fuzzy Sets and Systems – start-page: 33 year: 1999 end-page: 36 – start-page: 334 year: 1998 end-page: 345 – year: 2002 – year: 1997 – start-page: 252 year: 1997 end-page: 257 – volume: 22 start-page: 254 year: 2006 end-page: 268 article-title: Gene‐CBR: A case‐based reasoning tool for cancer diagnosis using microarray data sets publication-title: Computational Intelligence – start-page: 64 year: 2003 end-page: 77 – start-page: 178 year: 2004 end-page: 183 – volume: 22 start-page: 224 year: 2006 end-page: 237 article-title: Predicting influenza waves with health insurance data publication-title: Computational Intelligence – start-page: 478 year: 2007 end-page: 491 – volume: 2080 start-page: 702 year: 2001 end-page: 715 article-title: Case‐based reasoning in the care of Alzheimer's disease patients publication-title: Case-Based Research and Development – start-page: 247 year: 2007 end-page: 284 – volume: 7 start-page: 39 year: 1994 ident: e_1_2_9_2_1 article-title: Case‐based reasoning: Foundational issues, methodological variations and system approaches publication-title: Artificial Intelligence Communications – ident: e_1_2_9_19_1 doi: 10.1016/j.artmed.2005.04.004 – ident: e_1_2_9_3_1 – ident: e_1_2_9_25_1 – ident: e_1_2_9_26_1 doi: 10.1023/A:1023484513455 – ident: e_1_2_9_27_1 doi: 10.1016/0165-0114(95)00365-7 – ident: e_1_2_9_17_1 doi: 10.1007/3-540-48229-6_17 – volume-title: A Computional Approach to Learning and Machine Intelligence year: 1997 ident: e_1_2_9_14_1 – ident: e_1_2_9_10_1 doi: 10.1111/j.1467-8640.2006.00287.x – ident: e_1_2_9_13_1 – ident: e_1_2_9_20_1 doi: 10.1007/978-3-540-39619-2_9 – start-page: 14 volume-title: Artificial Intelligence in Medicine: Applications of Current Technologies year: 1996 ident: e_1_2_9_5_1 – ident: e_1_2_9_6_1 doi: 10.1007/BFb0056345 – start-page: 29 volume-title: Soft Computing in Case‐Based Reasoning year: 2000 ident: e_1_2_9_8_1 – ident: e_1_2_9_21_1 – ident: e_1_2_9_24_1 – volume-title: Applying Case‐Based Reasoning: Techniques for Enterprise Systems year: 1997 ident: e_1_2_9_28_1 – start-page: 247 volume-title: Case‐Based Reasoning on Images and Signals year: 2007 ident: e_1_2_9_12_1 – ident: e_1_2_9_7_1 doi: 10.1201/9781420050394 – ident: e_1_2_9_15_1 doi: 10.1007/BFb0017033 – ident: e_1_2_9_4_1 doi: 10.1007/978-3-540-74141-1_33 – volume-title: Goodness‐of‐Fit Tests and Model Validity year: 2002 ident: e_1_2_9_9_1 doi: 10.1007/978-1-4612-0103-8 – ident: e_1_2_9_18_1 – ident: e_1_2_9_22_1 – ident: e_1_2_9_16_1 doi: 10.1007/3-540-44593-5_50 – ident: e_1_2_9_11_1 – ident: e_1_2_9_23_1 doi: 10.1111/j.1467-8640.2006.00285.x |
| SSID | ssj0001348 |
| Score | 2.1507032 |
| Snippet | Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho‐physiological domain. However, in practice, it is... Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho-physiological domain. However, in practice, it is... Stress diagnosis based on finger temperature signals is receiving increasing interest in the psycho-physiological domain. However, in practice, it is difficult... |
| SourceID | swepub proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 180 |
| SubjectTerms | Algorithms case-based reasoning Classification Cognition & reasoning Decision making decision support system Decision support systems diagnosis Fuzzy logic Medical diagnosis Physiology Studies Subject specialists Time series |
| Title | A CASE-BASED DECISION SUPPORT SYSTEM FOR INDIVIDUAL STRESS DIAGNOSIS USING FUZZY SIMILARITY MATCHING |
| URI | https://api.istex.fr/ark:/67375/WNG-3N0TD4J7-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8640.2009.00337.x https://www.proquest.com/docview/194646698 https://www.proquest.com/docview/34727267 https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-12355 |
| Volume | 25 |
| WOSCitedRecordID | wos000268099800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001348 issn: 1467-8640 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLdQy4EL468I448PwC3ISZw4PoamrYK6tGqSbd3Fih17TLB2aje0Ix-Bz8gnwU7SSBEcJsQplqyXxPZ7zz_bz78HwDvFndJxuGsLz3Nt7Epkh5WHdCmUnkCV4ZOpk02QNA1PT-mijX8yd2Eafohuw81YRu2vjYGXfPenkYcBRnvaSc8jHzWeHLpajfEADOPlpJh1ftnx6lxaes7DttZKvx_X89d39Saroen32z4SbdhF-8C2npkmB_-zTY_AwxafwqhRqMfgnlw_AQf73A-wdQVPgYrgKMrGv378_KQfMYzHo8T4ZZgVi8V8mcNsleXjI6gXmTBJ4-Q4iYtoBrPcjDiMk2iazrMkgybtxxROirOzFcy0I51FyyRfwaMoH5mNtGegmIx10W5zNtgCm1_ntOIESQ1KKMUVraQbcuyqkviB8kMuKoUFEi5HhFNU-k6FpaIa9glH4kDXec_BYL1ZyxcAhiV3FXJUiBXFvMKl8pWDJBey0hjPRRYg-8FhoiU0N3k1vrHewoYw050m3SZldXeyWws4neRVQ-pxB5kP9fh3AuX2qwmKIz47SafMS1Ee48-EnVjgcK8grPUHO-ZQHOAgoKEF3na12pDN6Uy5lpubHfOwORMPiAXeN1rVfckwgMcXxxHbbM_ZZfWFmfvNvgWCWpXu3AI2miepLr38V8FD8KA5SzPhj6_A4Hp7I1-D--L79cVu-6Y1t994ZB-M |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZQiwQXll9tWGB9AG5BTuL8-BiatgTStGqS3e1erDi2YQW0qN1Fe-QReEaeBDtJI0VwWCFOsWRNEtsz489jez4AXkpmlZbFbLNyHNvEtkBmwB2kSoFwKsR1PpmabMJP0-DsjCxaOiB9F6bJD9EF3LRl1P5aG7gOSP9p5YGH0T7vpOP4bxSgHGKlVe4ADKPlpEg6x2w5NZmWmvSwqdTS7R_s-eu7erPVUHf8dR-KNulF-8i2npomB_-1UffBvRahwrBRqQfgllg_BAd79gfYOoNHQIZwFGbjXz9-vlWPCEbjUaw9M8yKxWK-zGG2yvLxDKplJozTKD6JoyJMYJbrMYdRHE7TeRZnUBN_TOGkOD9fwUy50iRcxvkKzsJ8pENpj0ExGaui2bI2mBXWv84IZz4SCpYQgjnhwg4YtmXpu550A1ZxiStU2Qz5jKDStTgWkijgV1kCe6rOeQIG681aHAIYlMyWyJIBlgQzjkvpSgsJVgmuUJ6NDODvR4dWbUpzzazxhfaWNj7V3akJNwmtu5NeG8DqJL81aT1uIPO6VoBOoNx-1sfifJeeplPqpCiP8HufnhrgaK8htPUIO2oR7GHPI4EBjrtaZcp6f6Zci83VjjpY74p7vgFeNWrVfUnnAI8uTkK62X6kX_knqm84uwbwal26cQvoaB6nqvT0XwWPwZ13-SyhSZx-OAJ3m501fRjyGRhcbq_Ec3C7-n55sdu-aG3vN9EsI3w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLfQihAXxl8tDJgPwC3IiZ0_PoamqQJdWjXptu5ixbENE9BO7YZ25CPwGfkk2EkaKYLDhDjFkvWS2H7v-Wf7-f0AeK24UzoOd-0KY9cmrkR2KDDSpVDiCgmTT6YmmwiyLDw7o7OWDsjchWnyQ3QbbsYyan9tDFxeCvWnlYc-Qbu8kxgH7zSgHBCP-tpKB_E8WUw6x-zgmkxLT3rE1mrp9QN7_vqu3mw1MB1_04eiTXrRPrKtp6Zk_7826iF40CJUGDUq9QjckavHYH_H_gBbZ_AEqAgOo3z068fP9_oRw3g0TI1nhvliNpvOC5gv82J0DPUyE6ZZnJ6k8SKawLwwYw7jNBpn0zzNoSH-GMNkcX6-hLl2pZNonhZLeBwVQ7OV9hQskpEu2i1rg10R8-ucCh4gqWEJpURQId2QE1eVgecrL-SVUKRClctRwCkqPUcQqagGfpUjia_r8DOwt1qv5AGAYcldhRwVEkUJF6RUnnKQ5JUUGuW5yALBbnRY1aY0N8waX1lvaRMw052GcJOyujvZjQWcTvKySetxC5m3tQJ0AuXmiwmLCzx2mo0ZzlARkw8BO7XA4U5DWOsRtsyhxCe-T0MLHHW12pTN-Uy5kuvrLcPEnIr7gQXeNGrVfcnkAI8vTiK23nxi38RnZm44exbwa126dQvYcJpmuvT8XwWPwL1ZnLBJmn08BPebgzUTC_kC7F1truVLcLf6fnWx3bxqTe83Iggi9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CASE%E2%80%90BASED+DECISION+SUPPORT+SYSTEM+FOR+INDIVIDUAL+STRESS+DIAGNOSIS+USING+FUZZY+SIMILARITY+MATCHING&rft.jtitle=Computational+intelligence&rft.au=Begum%2C+Shahina&rft.au=Ahmed%2C+Mobyen+Uddin&rft.au=Funk%2C+Peter&rft.au=Xiong%2C+Ning&rft.date=2009-08-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=25&rft.issue=3&rft.spage=180&rft.epage=195&rft_id=info:doi/10.1111%2Fj.1467-8640.2009.00337.x&rft.externalDBID=10.1111%252Fj.1467-8640.2009.00337.x&rft.externalDocID=COIN337 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon |