A CASE-BASED DECISION SUPPORT SYSTEM FOR INDIVIDUAL STRESS DIAGNOSIS USING FUZZY SIMILARITY MATCHING

Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho‐physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret, and analyze complex, lengthy sequent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational intelligence Ročník 25; číslo 3; s. 180 - 195
Hlavní autori: Begum, Shahina, Ahmed, Mobyen Uddin, Funk, Peter, Xiong, Ning, Von Schéele, Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Malden, USA Blackwell Publishing Inc 01.08.2009
Blackwell Publishing Ltd
Predmet:
ISSN:0824-7935, 1467-8640, 1467-8640
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho‐physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret, and analyze complex, lengthy sequential measurements to make a diagnosis and treatment plan. The paper presents a case‐based decision support system to assist clinicians in performing such tasks. Case‐based reasoning (CBR) is applied as the main methodology to facilitate experience reuse and decision explanation by retrieving previous similar temperature profiles. Further fuzzy techniques are also employed and incorporated into the CBR system to handle vagueness, uncertainty inherently existing in clinicians reasoning as well as imprecision of feature values. Thirty‐nine time series from 24 patients have been used to evaluate the approach (matching algorithms) and an expert has ranked and estimated similarity. On average goodness‐of‐fit for the fuzzy matching algorithm is 90% in ranking and 81% in similarity estimation that shows a level of performance close to an experienced expert. Therefore, we have suggested that a fuzzy matching algorithm in combination with CBR is a valuable approach in domains, where the fuzzy matching model similarity and case preference is consistent with the views of domain expert. This combination is also valuable, where domain experts are aware that the crisp values they use have a possibility distribution that can be estimated by the expert and is used when experienced experts reason about similarity. This is the case in the psycho‐physiological domain and experienced experts can estimate this distribution of feature values and use them in their reasoning and explanation process.
AbstractList Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho‐physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret, and analyze complex, lengthy sequential measurements to make a diagnosis and treatment plan. The paper presents a case‐based decision support system to assist clinicians in performing such tasks. Case‐based reasoning (CBR) is applied as the main methodology to facilitate experience reuse and decision explanation by retrieving previous similar temperature profiles. Further fuzzy techniques are also employed and incorporated into the CBR system to handle vagueness, uncertainty inherently existing in clinicians reasoning as well as imprecision of feature values. Thirty‐nine time series from 24 patients have been used to evaluate the approach (matching algorithms) and an expert has ranked and estimated similarity. On average goodness‐of‐fit for the fuzzy matching algorithm is 90% in ranking and 81% in similarity estimation that shows a level of performance close to an experienced expert. Therefore, we have suggested that a fuzzy matching algorithm in combination with CBR is a valuable approach in domains, where the fuzzy matching model similarity and case preference is consistent with the views of domain expert. This combination is also valuable, where domain experts are aware that the crisp values they use have a possibility distribution that can be estimated by the expert and is used when experienced experts reason about similarity. This is the case in the psycho‐physiological domain and experienced experts can estimate this distribution of feature values and use them in their reasoning and explanation process.
Stress diagnosis based on finger temperature signals is receiving increasing interest in the psycho-physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret and analyze complex, lengthy sequential measurements in order to make a diagnosis and treatment plan. The paper presents a case-based decision support system to assist clinicians in performing such tasks. Case-based reasoning is applied as the main methodology to facilitate experience reuse and decision explanation by retrieving previous similar temperature profiles. Further fuzzy techniques are also employed and incorporated into the case-based reasoning system to handle vagueness, uncertainty inherently existing in clinicians reasoning as well as imprecision of feature values. Thirty nine time series from 24 patients have been used to evaluate the approach (matching algorithms) and an expert has ranked and estimated similarity. On average goodness-of-fit for the fuzzy matching algorithm is 90% in ranking and 81% in similarity estimation which shows a level of performance close to an experienced expert. Therefore, we have suggested that a fuzzy matching algorithm in combination with case-based reasoning is a valuable approach in domains where the fuzzy matching model similarity and case preference is consistent with the views of domain expert. This combination is also valuable where domain experts are aware that the crisp values they use have a possibility distribution that can be estimated by the expert and is used when experienced experts reason about similarity. This is the case in the psycho-physiological domain and experienced experts can estimate this distribution of feature values and use them in their reasoning and explanation process.
Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho-physiological domain. However, in practice, it is difficult and tedious for a clinician and particularly less experienced clinicians to understand, interpret, and analyze complex, lengthy sequential measurements to make a diagnosis and treatment plan. The paper presents a case-based decision support system to assist clinicians in performing such tasks. Case-based reasoning (CBR) is applied as the main methodology to facilitate experience reuse and decision explanation by retrieving previous similar temperature profiles. Further fuzzy techniques are also employed and incorporated into the CBR system to handle vagueness, uncertainty inherently existing in clinicians reasoning as well as imprecision of feature values. Thirty-nine time series from 24 patients have been used to evaluate the approach (matching algorithms) and an expert has ranked and estimated similarity. On average goodness-of-fit for the fuzzy matching algorithm is 90% in ranking and 81% in similarity estimation that shows a level of performance close to an experienced expert. Therefore, we have suggested that a fuzzy matching algorithm in combination with CBR is a valuable approach in domains, where the fuzzy matching model similarity and case preference is consistent with the views of domain expert. This combination is also valuable, where domain experts are aware that the crisp values they use have a possibility distribution that can be estimated by the expert and is used when experienced experts reason about similarity. This is the case in the psycho-physiological domain and experienced experts can estimate this distribution of feature values and use them in their reasoning and explanation process. [PUBLICATION ABSTRACT]
Author Ahmed, Mobyen Uddin
Begum, Shahina
Von Schéele, Bo
Xiong, Ning
Funk, Peter
Author_xml – sequence: 1
  givenname: Shahina
  surname: Begum
  fullname: Begum, Shahina
  organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden
– sequence: 2
  givenname: Mobyen Uddin
  surname: Ahmed
  fullname: Ahmed, Mobyen Uddin
  organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden
– sequence: 3
  givenname: Peter
  surname: Funk
  fullname: Funk, Peter
  organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden
– sequence: 4
  givenname: Ning
  surname: Xiong
  fullname: Xiong, Ning
  organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden
– sequence: 5
  givenname: Bo
  surname: Von Schéele
  fullname: Von Schéele, Bo
  organization: School of Innovation, Design, and Engineering, Mälardalen University, SE-72123 Västerås, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-12355$$DView record from Swedish Publication Index (Mälardalens högskola)
BookMark eNqNkV9vmzAUxdHUSUu7fQdrD3sazIDB8LBJDEjmKoEqhlbpyxV_zEZGIAOipt--Zmx96FP9YFs653d0r86lctF2rVAUpGNNl-fLXtOJTVXHJlgzMHY1jE2Tauc3yuJZuFAW2DGISl3TeqdcDsMeY6ybxFkopYd8j4fqd3kFKAh9xlkcIZ7e3MTbBPEdT8INWsZbxKKA3bIg9daIJ9uQcxQwbxXFnHGUchat0DK9v98hzjZs7W1ZskMbL_F_SOW98rbKmkF8-PdeKekylJK6jlfM99ZqQaZRc7fMKRY6tVyXlG4pDCcnRpVRy64sJy_KihS4MHJMcxdnll4SUbnYsQpdEFtq5pXyec4dHsTxlMOxrw9Z_whdVkNQ33rQ9T_hUP4C3TAtS9o_zfZj3_05iWGEQz0UommyVnSnAUxCDWrYVBo_vjDuu1PfylVAd4lNbNt1pOnbbCr6bhh6UUFRj9lYd-3YZ3UDOoapMNjD1AtMvcBUGPwtDM4ywHkR8H_-V6BfZ_ShbsTjqznwYxbJn-TVma-HUZyf-az_DXJ9asFdtAIzwklArincmU8N2LYY
CitedBy_id crossref_primary_10_1007_s00170_018_3112_5
crossref_primary_10_1111_odi_13108
crossref_primary_10_1177_1687814018767681
crossref_primary_10_1007_s40815_020_01043_0
crossref_primary_10_3390_s140711770
crossref_primary_10_1080_23311916_2024_2374520
crossref_primary_10_1016_j_jbi_2019_103127
crossref_primary_10_1109_TSMCC_2010_2071862
crossref_primary_10_3414_ME15_01_0031
crossref_primary_10_1016_j_compbiomed_2021_104450
crossref_primary_10_1016_j_imu_2020_100395
crossref_primary_10_1017_S0890060415000153
crossref_primary_10_1016_j_compind_2015_06_007
crossref_primary_10_1016_j_procs_2015_04_136
crossref_primary_10_1016_j_engappai_2011_05_013
crossref_primary_10_1016_j_inffus_2018_06_008
crossref_primary_10_1155_2013_380239
crossref_primary_10_1177_1687814018804649
crossref_primary_10_1007_s00500_018_3245_3
crossref_primary_10_1016_j_jbi_2016_10_018
crossref_primary_10_1016_j_jds_2020_06_019
crossref_primary_10_1016_j_neucom_2015_06_101
crossref_primary_10_1061__ASCE_ME_1943_5479_0000498
crossref_primary_10_1109_ACCESS_2020_2985301
crossref_primary_10_1016_j_eswa_2013_05_063
crossref_primary_10_1038_s41598_023_35333_y
crossref_primary_10_1016_j_compind_2014_08_004
crossref_primary_10_1016_j_artmed_2010_12_004
crossref_primary_10_1016_j_artmed_2015_08_003
crossref_primary_10_4338_ACI_2013_04_RA_0028
crossref_primary_10_1016_j_eswa_2018_07_054
crossref_primary_10_1016_j_engappai_2014_06_017
crossref_primary_10_1016_j_knosys_2011_08_002
crossref_primary_10_1016_j_knosys_2010_09_002
crossref_primary_10_1016_j_eswa_2011_12_055
crossref_primary_10_1016_j_compeleceng_2018_11_009
crossref_primary_10_1007_s10462_019_09723_6
crossref_primary_10_1016_j_eswa_2013_05_068
Cites_doi 10.1016/j.artmed.2005.04.004
10.1023/A:1023484513455
10.1016/0165-0114(95)00365-7
10.1007/3-540-48229-6_17
10.1111/j.1467-8640.2006.00287.x
10.1007/978-3-540-39619-2_9
10.1007/BFb0056345
10.1201/9781420050394
10.1007/BFb0017033
10.1007/978-3-540-74141-1_33
10.1007/978-1-4612-0103-8
10.1007/3-540-44593-5_50
10.1111/j.1467-8640.2006.00285.x
ContentType Journal Article
Copyright 2009 The Authors. Journal Compilation © 2009 Wiley Periodicals, Inc.
2009 Wiley Periodicals Inc.
Copyright_xml – notice: 2009 The Authors. Journal Compilation © 2009 Wiley Periodicals, Inc.
– notice: 2009 Wiley Periodicals Inc.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
DF7
DOI 10.1111/j.1467-8640.2009.00337.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Mälardalens högskola
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1467-8640
EndPage 195
ExternalDocumentID oai_DiVA_org_mdh_12355
1798199961
10_1111_j_1467_8640_2009_00337_x
COIN337
ark_67375_WNG_3N0TD4J7_W
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOD
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
UCJ
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
DF7
ID FETCH-LOGICAL-c4467-b9db70e175994d9de28b42fa756f58bcdf4c0c2b07b90a51d4ef9085c1e46f4c3
IEDL.DBID DRFUL
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268099800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0824-7935
1467-8640
IngestDate Tue Nov 04 16:17:23 EST 2025
Thu Oct 02 06:19:39 EDT 2025
Sat Aug 16 22:41:17 EDT 2025
Tue Nov 18 22:20:50 EST 2025
Sat Nov 29 06:41:30 EST 2025
Wed Jan 22 16:47:57 EST 2025
Sun Sep 21 06:17:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4467-b9db70e175994d9de28b42fa756f58bcdf4c0c2b07b90a51d4ef9085c1e46f4c3
Notes istex:E96E1DF6CCE135DFF4833AA786EB9826CAA49C5A
ark:/67375/WNG-3N0TD4J7-W
ArticleID:COIN337
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 194646698
PQPubID 34323
PageCount 16
ParticipantIDs swepub_primary_oai_DiVA_org_mdh_12355
proquest_miscellaneous_34727267
proquest_journals_194646698
crossref_citationtrail_10_1111_j_1467_8640_2009_00337_x
crossref_primary_10_1111_j_1467_8640_2009_00337_x
wiley_primary_10_1111_j_1467_8640_2009_00337_x_COIN337
istex_primary_ark_67375_WNG_3N0TD4J7_W
PublicationCentury 2000
PublicationDate August 2009
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: August 2009
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: Hoboken
PublicationTitle Computational intelligence
PublicationYear 2009
Publisher Blackwell Publishing Inc
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell Publishing Ltd
References Von Schéele, B. H. C., and I. A. M. Von Schéele. 1999. The measurement of respiratory and metabolic parameters of patients and controls before and after incremental exercise on bicycle: Supporting the effort syndrome hypothesis. Applied Psychophysiology and Biofeedback, 24:167-177.
Marling, C., and P. Whitehouse. 2001. Case-based reasoning in the care of Alzheimer's disease patients. Case-Based Research and Development, 2080: 702-715.
Watson, I. 1997. Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann Publishers, San Fransisco , CA .
Nilsson, M., P. Funk, E. Olsson, B. H. C. Von Schéele, and N. Xiong. 2006. Clinical decision-support for diagnosing stress-related disorders by applying psychophysiological medical knowledge to an instance-based learning system. Artificial Intelligence in Medicine, 159-176.
Wang, W. J. 1997. New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 85: 305-309.
Schmidt, R., W. Tina, and G. Lothar. 2006. Predicting influenza waves with health insurance data. Computational Intelligence, 22:224-237.
Carol, C. H., N. Balakrishnan, M. S. Nikulin, C. Huber-Carol, and M. Mesbah. 2002. Goodness-of-Fit Tests and Model Validity. Birkhauser Verlag, Basel .
Aamodt, A., and E. Plaza. 1994. Case-based reasoning: Foundational issues, methodological variations and system approaches. Artificial Intelligence Communications, 7:39-59.
Diaz, F., F. Fdez-Riverola, and J. M. Corchado. 2006. Gene-CBR: A case-based reasoning tool for cancer diagnosis using microarray data sets. Computational Intelligence, 22:254-268.
2001; 2080
2001
2000
2006a
2006; 22
1997; 85
1998
1999; 24
1997
2007
1996
2006
1993
2004
2003
2002
1994; 7
1999
Jang J. S. R. (e_1_2_9_14_1) 1997
Burkhard H.‐D. (e_1_2_9_8_1) 2000
Carol C. H. (e_1_2_9_9_1) 2002
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
Funk P. (e_1_2_9_12_1) 2007
e_1_2_9_15_1
Watson I. (e_1_2_9_28_1) 1997
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_26_1
e_1_2_9_25_1
Aamodt A. (e_1_2_9_2_1) 1994; 7
e_1_2_9_27_1
Bichindaritz I. (e_1_2_9_5_1) 1996
References_xml – reference: Aamodt, A., and E. Plaza. 1994. Case-based reasoning: Foundational issues, methodological variations and system approaches. Artificial Intelligence Communications, 7:39-59.
– reference: Von Schéele, B. H. C., and I. A. M. Von Schéele. 1999. The measurement of respiratory and metabolic parameters of patients and controls before and after incremental exercise on bicycle: Supporting the effort syndrome hypothesis. Applied Psychophysiology and Biofeedback, 24:167-177.
– reference: Marling, C., and P. Whitehouse. 2001. Case-based reasoning in the care of Alzheimer's disease patients. Case-Based Research and Development, 2080: 702-715.
– reference: Schmidt, R., W. Tina, and G. Lothar. 2006. Predicting influenza waves with health insurance data. Computational Intelligence, 22:224-237.
– reference: Watson, I. 1997. Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann Publishers, San Fransisco , CA .
– reference: Diaz, F., F. Fdez-Riverola, and J. M. Corchado. 2006. Gene-CBR: A case-based reasoning tool for cancer diagnosis using microarray data sets. Computational Intelligence, 22:254-268.
– reference: Carol, C. H., N. Balakrishnan, M. S. Nikulin, C. Huber-Carol, and M. Mesbah. 2002. Goodness-of-Fit Tests and Model Validity. Birkhauser Verlag, Basel .
– reference: Wang, W. J. 1997. New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 85: 305-309.
– reference: Nilsson, M., P. Funk, E. Olsson, B. H. C. Von Schéele, and N. Xiong. 2006. Clinical decision-support for diagnosing stress-related disorders by applying psychophysiological medical knowledge to an instance-based learning system. Artificial Intelligence in Medicine, 159-176.
– start-page: 29
  year: 2000
  end-page: 45
– start-page: 230
  year: 1993
  end-page: 236
– start-page: 159
  year: 2006
  end-page: 176
  article-title: Clinical decision‐support for diagnosing stress‐related disorders by applying psychophysiological medical knowledge to an instance‐based learning system
  publication-title: Artificial Intelligence in Medicine
– start-page: 348
  year: 2007
  end-page: 357
– start-page: 39
  year: 2002
  end-page: 46
– start-page: 121
  year: 2001
  end-page: 130
– volume: 7
  start-page: 39
  year: 1994
  end-page: 59
  article-title: Case‐based reasoning: Foundational issues, methodological variations and system approaches
  publication-title: Artificial Intelligence Communications
– volume: 24
  start-page: 167
  year: 1999
  end-page: 177
  article-title: The measurement of respiratory and metabolic parameters of patients and controls before and after incremental exercise on bicycle: Supporting the effort syndrome hypothesis
  publication-title: Applied Psychophysiology and Biofeedback
– start-page: 113
  year: 2006a
  end-page: 122
– start-page: 14
  year: 1996
  end-page: 20
– start-page: 398
  year: 1993
  end-page: 411
– year: 1998
– start-page: 191
  year: 2006
  end-page: 199
– volume: 85
  start-page: 305
  year: 1997
  end-page: 309
  article-title: New similarity measures on fuzzy sets and on elements
  publication-title: Fuzzy Sets and Systems
– start-page: 33
  year: 1999
  end-page: 36
– start-page: 334
  year: 1998
  end-page: 345
– year: 2002
– year: 1997
– start-page: 252
  year: 1997
  end-page: 257
– volume: 22
  start-page: 254
  year: 2006
  end-page: 268
  article-title: Gene‐CBR: A case‐based reasoning tool for cancer diagnosis using microarray data sets
  publication-title: Computational Intelligence
– start-page: 64
  year: 2003
  end-page: 77
– start-page: 178
  year: 2004
  end-page: 183
– volume: 22
  start-page: 224
  year: 2006
  end-page: 237
  article-title: Predicting influenza waves with health insurance data
  publication-title: Computational Intelligence
– start-page: 478
  year: 2007
  end-page: 491
– volume: 2080
  start-page: 702
  year: 2001
  end-page: 715
  article-title: Case‐based reasoning in the care of Alzheimer's disease patients
  publication-title: Case-Based Research and Development
– start-page: 247
  year: 2007
  end-page: 284
– volume: 7
  start-page: 39
  year: 1994
  ident: e_1_2_9_2_1
  article-title: Case‐based reasoning: Foundational issues, methodological variations and system approaches
  publication-title: Artificial Intelligence Communications
– ident: e_1_2_9_19_1
  doi: 10.1016/j.artmed.2005.04.004
– ident: e_1_2_9_3_1
– ident: e_1_2_9_25_1
– ident: e_1_2_9_26_1
  doi: 10.1023/A:1023484513455
– ident: e_1_2_9_27_1
  doi: 10.1016/0165-0114(95)00365-7
– ident: e_1_2_9_17_1
  doi: 10.1007/3-540-48229-6_17
– volume-title: A Computional Approach to Learning and Machine Intelligence
  year: 1997
  ident: e_1_2_9_14_1
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1467-8640.2006.00287.x
– ident: e_1_2_9_13_1
– ident: e_1_2_9_20_1
  doi: 10.1007/978-3-540-39619-2_9
– start-page: 14
  volume-title: Artificial Intelligence in Medicine: Applications of Current Technologies
  year: 1996
  ident: e_1_2_9_5_1
– ident: e_1_2_9_6_1
  doi: 10.1007/BFb0056345
– start-page: 29
  volume-title: Soft Computing in Case‐Based Reasoning
  year: 2000
  ident: e_1_2_9_8_1
– ident: e_1_2_9_21_1
– ident: e_1_2_9_24_1
– volume-title: Applying Case‐Based Reasoning: Techniques for Enterprise Systems
  year: 1997
  ident: e_1_2_9_28_1
– start-page: 247
  volume-title: Case‐Based Reasoning on Images and Signals
  year: 2007
  ident: e_1_2_9_12_1
– ident: e_1_2_9_7_1
  doi: 10.1201/9781420050394
– ident: e_1_2_9_15_1
  doi: 10.1007/BFb0017033
– ident: e_1_2_9_4_1
  doi: 10.1007/978-3-540-74141-1_33
– volume-title: Goodness‐of‐Fit Tests and Model Validity
  year: 2002
  ident: e_1_2_9_9_1
  doi: 10.1007/978-1-4612-0103-8
– ident: e_1_2_9_18_1
– ident: e_1_2_9_22_1
– ident: e_1_2_9_16_1
  doi: 10.1007/3-540-44593-5_50
– ident: e_1_2_9_11_1
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1467-8640.2006.00285.x
SSID ssj0001348
Score 2.1508057
Snippet Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho‐physiological domain. However, in practice, it is...
Stress diagnosis based on finger temperature (FT) signals is receiving increasing interest in the psycho-physiological domain. However, in practice, it is...
Stress diagnosis based on finger temperature signals is receiving increasing interest in the psycho-physiological domain. However, in practice, it is difficult...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 180
SubjectTerms Algorithms
case-based reasoning
Classification
Cognition & reasoning
Decision making
decision support system
Decision support systems
diagnosis
Fuzzy logic
Medical diagnosis
Physiology
Studies
Subject specialists
Time series
Title A CASE-BASED DECISION SUPPORT SYSTEM FOR INDIVIDUAL STRESS DIAGNOSIS USING FUZZY SIMILARITY MATCHING
URI https://api.istex.fr/ark:/67375/WNG-3N0TD4J7-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8640.2009.00337.x
https://www.proquest.com/docview/194646698
https://www.proquest.com/docview/34727267
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-12355
Volume 25
WOSCitedRecordID wos000268099800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001348
  issn: 1467-8640
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLdQy4EL468IY8MH4BaUNE4cH0PTVkFdWjVJt-5iJbYzJqBF7YZ23EfgM_JJ5pekkSI4TIhTLFkvie33137-PYTeCVeLWS59zbxEByiMKRPqHplClNIuVUHKKolmOaVx7J-dsXmT_wR3YWp8iHbDDSSj0tcg4Hmx-1PIfY9Ye9hJx6EftT_ZH2g2Jj3UDxfjbNrqZdupamlpm0dMzZVuN6_nr-_qGKs-zPtN1xOt0UW7jm1lmcYH_3NMT9Djxj_FQc1QT9EDtX6GDva1H3CjCp6jMsDDIBn9vv31ST9CHI6GEehlnGTz-WyR4mSVpKMTrINMHMVhtIzCLJjiJIUVx2EUTOJZEiUYyn5M8Dg7P1_hRCvSabCI0hU-CdIhbKS9QNl4pJtmU7PBFAR-vWCyoJbSTgljRDKpBn5BBmVOXa90_ULIkghLDAqLFszKXVsSVTLt9glbEU_3OS9Rb71Zq1cIl6ygtg3IpS4QSaZ8qZ0bbVwcBwBNDUT3i8NFA2gOdTW-8U5gQzlMJ5TbZLyaTn5jILul_FGDetyD5kO1_i1Bvv0KSXHU5afxhDuxlYbkM-WnBjrcMwhv9MGO24x4xPOYb6C3ba8WZDidyddqc73jDoEzcY8a6H3NVe2XAAE8vFwGfLO94N_lFw73m10DeRUr3XsEfDiLYt16_a-Eh-hRfZYG6Y9vUO9qe62O0EPx8-pytz1uxO0OvfIe-A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLdQiwQXxl8tDDYfgFtQ0jhxfAxNWwJpWjVJt-5iJbEDE9CidkM78hH4jHyS-SVppAgOE-IUS9ZLYvu952f7-fdD6FVhKzPLhKuUl6gFCmNSB94jvShKYZYyJ2WVRLMMaRS5Z2ds3tABwV2YGh-i3XADy6j8NRg4bEj_aeWuQ4w97qRl0bcqoOwTpVV2D_X9xTgNW8dsWhWZlpr0iK7U0u4m9vz1XZ3Zqg8df90NRWt40W5kW01N44P_2qiH6EEToWKvVqlH6I5cP0YHe_YH3DiDJ6j08NCLR79__nqnHj72R8MAPDOO0_l8tkhwvIqT0RSrZSYOIj9YBn7qhThOYMyxH3iTaBYHMQbijwkep-fnKxwrVxp6iyBZ4amXDGEr7SlKxyNV1BvWBr0g8Os5Ezk1pApLGCOCCTlwczIoM2o7pe3mhShJYRSD3KA5MzLbFESWTAV-hSmJo-qsZ6i33qzlIcIly6lpAnapDUKCSVeo8EZNL5YFkKYaovvR4UUDaQ7MGl95Z2lDOXQnEG4yXnUnv9aQ2Up-r2E9biHzplKAViDbfoG0OGrz02jCrchIfPKB8lMNHe01hDceYcdNRhziOMzV0Elbq0wZzmeytdxc7bhF4FTcoRp6XatV-yXAAPcvlh7fbD_xb-IzhxvOtoacSpdu3QI-nAWRKj3_V8ETdO99Mg15GEQfj9D9-mQNkiFfoN7l9kq-RHeLH5cXu-1xY3s3EPki6A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb5swFLemZpp2WfdXpd1WH7bdmCAYjI8shIiNkihA2vRiATZbtS6pknbqcR9hn3GfZH5AkNB2qKadsGQ9wPZ7z8_28--H0JvSVmaWC1cpL1ELFMakDrxHellWwqxkQao6iWYR0Th2z87YrKUDgrswDT5Et-EGllH7azBweSWqP63cdYixw520LPpeBZQDYjNHWenAnwdZ1Dlm06rJtNSkR3SllnY_seev7-rNVgPo-Nt-KNrAi_Yj23pqCvb_a6Meo0dthIq9RqWeoHty9RTt79gfcOsMnqHKwyMvGf_68fODevjYH49C8Mw4yWaz6TzFyTJJxydYLTNxGPvhIvQzL8JJCmOO_dCbxNMkTDAQf0xwkJ2fL3GiXGnkzcN0iU-8dARbac9RFoxVUW9ZG_SSwK8XTBTUkCosYYwIJuTQLciwyqntVLZblKIipVEOC4MWzMhtUxBZMRX4laYkjqqzXqC91XolDxCuWEFNE7BLbRASTLpChTdqerEsgDTVEN2NDi9bSHNg1rjkvaUN5dCdQLjJeN2d_FZDZid51cB63EHmXa0AnUC--QppcdTmp_GEW7GR-uQj5acaOtppCG89wpabjDjEcZiroeOuVpkynM_kK7m-2XKLwKm4QzX0tlGr7kuAAe5fLDy-3nzm38QXDjecbQ05tS7duQV8NA1jVTr8V8Fj9GDmBzwK409H6GFzsAa5kC_R3vXmRr5C98vv1xfbzevW9H4DYloiYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CASE-BASED+DECISION+SUPPORT+SYSTEM+FOR+INDIVIDUAL+STRESS+DIAGNOSIS+USING+FUZZY+SIMILARITY+MATCHING&rft.jtitle=Computational+intelligence&rft.au=Begum%2C+Shahina&rft.au=Ahmed%2C+Mobyen+Uddin&rft.au=Funk%2C+Peter&rft.au=Xiong%2C+Ning&rft.date=2009-08-01&rft.issn=0824-7935&rft.volume=25&rft.issue=3&rft.spage=180&rft.epage=195&rft_id=info:doi/10.1111%2Fj.1467-8640.2009.00337.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon