Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution
Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, int...
Saved in:
| Published in: | Science (American Association for the Advancement of Science) Vol. 334; no. 6058; p. 977 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
18.11.2011
|
| Subjects: | |
| ISSN: | 1095-9203, 1095-9203 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component. |
|---|---|
| AbstractList | Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component. Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component. |
| Author | Kingston, Robert E Narlikar, Geeta J Garlick, Joseph D Canzio, Daniele Armache, Karim-Jean |
| Author_xml | – sequence: 1 givenname: Karim-Jean surname: Armache fullname: Armache, Karim-Jean organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 2 givenname: Joseph D surname: Garlick fullname: Garlick, Joseph D – sequence: 3 givenname: Daniele surname: Canzio fullname: Canzio, Daniele – sequence: 4 givenname: Geeta J surname: Narlikar fullname: Narlikar, Geeta J – sequence: 5 givenname: Robert E surname: Kingston fullname: Kingston, Robert E |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22096199$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1KxDAcxIOsuB969ia5eWpN0jZNvK2LusKCh9VzTZN_NZIma9OiPoBP5otZcAVh4DcDwxxmjiY-eEDolJKUUsYvorbgNaSUUSJpcYBmI4tEMpJN_vkpmsf4SsiYZXaEpowRyamUM_S07btB90OnHK5VtBGHBkfrxlXrny_x1nYZvlqusQmtsh6P0qHdOfjA77Z_wQr7QTsIMbSAVY-zlODvL9xBDG7obfDH6LBRLsLJngv0eHP9sFonm_vbu9Vyk-g850VSaip5XmithWikURxqY1TZCCYlLzKjjNCyppIKWgLhTQMiz7iiZQllxrRgC3T-u7vrwtsAsa9aGzU4pzyEIVaSFLxkIi_G5tm-OdQtmGrX2VZ1n9XfKewHoQFmVw |
| CitedBy_id | crossref_primary_10_3389_fcell_2020_00600 crossref_primary_10_1107_S2059798317004430 crossref_primary_10_1073_pnas_1524607113 crossref_primary_10_1126_science_1259308 crossref_primary_10_1534_g3_117_300252 crossref_primary_10_1146_annurev_micro_041020_100926 crossref_primary_10_1016_j_cell_2012_07_034 crossref_primary_10_1038_nsmb_2641 crossref_primary_10_1002_mlf2_12108 crossref_primary_10_1038_s41586_019_1528_1 crossref_primary_10_1016_j_gene_2015_04_085 crossref_primary_10_1002_anie_201603106 crossref_primary_10_1007_s00412_014_0465_x crossref_primary_10_1080_15592294_2015_1017200 crossref_primary_10_1186_s13072_024_00553_7 crossref_primary_10_1007_s10555_014_9513_5 crossref_primary_10_1016_j_sbi_2021_05_006 crossref_primary_10_1073_pnas_1300126110 crossref_primary_10_1016_j_cell_2014_10_047 crossref_primary_10_1371_journal_pone_0251660 crossref_primary_10_1093_nar_gkae698 crossref_primary_10_1371_journal_pgen_1005898 crossref_primary_10_7554_eLife_33442 crossref_primary_10_1007_s00294_021_01166_3 crossref_primary_10_1080_19491034_2017_1380141 crossref_primary_10_1016_j_molcel_2017_04_009 crossref_primary_10_1038_s41586_025_09523_9 crossref_primary_10_1016_j_jbc_2023_104996 crossref_primary_10_1038_nature10956 crossref_primary_10_1016_j_molcel_2023_07_001 crossref_primary_10_1093_jb_mvx081 crossref_primary_10_1038_nsmb_3190 crossref_primary_10_1016_j_tibs_2020_08_010 crossref_primary_10_1038_emboj_2012_221 crossref_primary_10_1371_journal_pone_0054228 crossref_primary_10_7554_eLife_75653 crossref_primary_10_1016_j_jmb_2018_07_013 crossref_primary_10_1038_s41467_017_01598_x crossref_primary_10_1093_nar_gkv388 crossref_primary_10_1016_j_bbagrm_2014_03_002 crossref_primary_10_1101_gad_197178_112 crossref_primary_10_7554_eLife_21356 crossref_primary_10_1073_pnas_1621159114 crossref_primary_10_1038_s41598_018_37699_w crossref_primary_10_1038_nsmb_3189 crossref_primary_10_1038_s41598_018_19875_0 crossref_primary_10_1038_s41467_019_13550_2 crossref_primary_10_1101_gad_256255_114 crossref_primary_10_3389_fpls_2015_01161 crossref_primary_10_1016_j_cytogfr_2023_09_004 crossref_primary_10_1038_nature18951 crossref_primary_10_1038_nrm3382 crossref_primary_10_1038_s41594_021_00585_7 crossref_primary_10_1073_pnas_1420096111 crossref_primary_10_1038_emboj_2013_72 crossref_primary_10_1038_s41594_018_0166_x crossref_primary_10_1002_bkcs_10578 crossref_primary_10_1038_s41467_020_20089_0 crossref_primary_10_1074_jbc_RA117_000498 crossref_primary_10_1098_rsob_230271 crossref_primary_10_1016_j_sbi_2016_03_003 crossref_primary_10_1534_g3_116_037739 crossref_primary_10_3390_ijms22115578 crossref_primary_10_1016_j_jmb_2016_02_025 crossref_primary_10_1038_nature13890 crossref_primary_10_1038_nsmb_2227 crossref_primary_10_7554_eLife_35720 crossref_primary_10_1016_j_biopha_2019_109678 crossref_primary_10_3389_fmolb_2021_669664 crossref_primary_10_1016_j_sbi_2012_10_009 crossref_primary_10_1371_journal_pgen_1007418 crossref_primary_10_1534_genetics_117_201939 crossref_primary_10_1126_science_aac5681 crossref_primary_10_1371_journal_pgen_1008905 crossref_primary_10_1534_genetics_113_153080 crossref_primary_10_1038_s41467_019_10247_4 crossref_primary_10_1128_MCB_00432_15 crossref_primary_10_1016_j_molcel_2023_07_020 crossref_primary_10_15252_embj_2021108293 crossref_primary_10_1007_s00018_012_1256_2 crossref_primary_10_1038_nature23671 crossref_primary_10_1101_gr_267872_120 crossref_primary_10_1016_j_jmb_2021_167114 crossref_primary_10_5936_csbj_201304001 crossref_primary_10_7554_eLife_23872 crossref_primary_10_1002_pro_3535 crossref_primary_10_1038_s42003_019_0385_7 crossref_primary_10_1074_jbc_M115_707018 crossref_primary_10_1016_j_dnarep_2017_06_011 crossref_primary_10_1126_science_abd0609 crossref_primary_10_1007_s12268_015_0618_3 crossref_primary_10_1016_j_molcel_2019_03_029 crossref_primary_10_1007_s00294_018_0812_1 crossref_primary_10_1038_s41594_020_00528_8 crossref_primary_10_1002_bies_201900234 crossref_primary_10_1074_jbc_M113_460071 crossref_primary_10_15252_embj_201593377 crossref_primary_10_1038_nsmb_2637 crossref_primary_10_1016_j_gene_2013_05_088 crossref_primary_10_1016_j_celrep_2024_113983 crossref_primary_10_1016_j_molcel_2020_04_019 crossref_primary_10_1038_celldisc_2016_4 crossref_primary_10_1002_iub_1322 crossref_primary_10_1534_genetics_112_145243 crossref_primary_10_1042_EBC20180065 crossref_primary_10_1002_iub_1568 crossref_primary_10_1371_journal_pgen_1003798 crossref_primary_10_1002_prot_25203 crossref_primary_10_1074_jbc_M112_390849 crossref_primary_10_1016_j_sbi_2016_01_013 crossref_primary_10_1126_science_1235532 crossref_primary_10_7554_eLife_17556 crossref_primary_10_1002_cmdc_201500478 crossref_primary_10_1016_j_bbapap_2017_02_002 crossref_primary_10_1139_bcb_2016_0017 crossref_primary_10_1126_science_abc6663 crossref_primary_10_1038_ncomms15775 crossref_primary_10_1016_j_sbi_2015_11_014 crossref_primary_10_1073_pnas_1810647115 crossref_primary_10_1042_BST20160173 crossref_primary_10_1093_nar_gkaa1121 crossref_primary_10_1101_gad_230532_113 crossref_primary_10_1073_pnas_2318455121 crossref_primary_10_1038_ncomms3969 crossref_primary_10_1038_ncomms5751 crossref_primary_10_1038_s41589_019_0413_4 crossref_primary_10_1074_jbc_M115_703637 crossref_primary_10_1016_j_cell_2019_02_002 crossref_primary_10_1016_j_febslet_2015_04_023 crossref_primary_10_1093_nar_gkad294 crossref_primary_10_1146_annurev_genet_021313_173730 crossref_primary_10_1007_s00412_013_0435_8 crossref_primary_10_3109_10409238_2012_742035 crossref_primary_10_1038_s41467_020_20775_z crossref_primary_10_1002_ange_201603106 crossref_primary_10_1016_j_bbagrm_2012_04_001 crossref_primary_10_1016_j_bbagrm_2022_194851 crossref_primary_10_1016_j_bbagrm_2014_04_011 crossref_primary_10_7554_eLife_11911 crossref_primary_10_7554_eLife_22451 crossref_primary_10_1093_nar_gkaa544 crossref_primary_10_1101_gad_323790_118 crossref_primary_10_3390_biology6010005 crossref_primary_10_1101_gad_201095_112 crossref_primary_10_7554_eLife_71420 crossref_primary_10_1534_genetics_116_190835 crossref_primary_10_1105_tpc_114_130781 crossref_primary_10_1016_j_fgb_2018_05_005 crossref_primary_10_1016_j_sbi_2019_05_017 crossref_primary_10_1016_j_tips_2015_02_010 crossref_primary_10_1038_srep17038 crossref_primary_10_1128_JVI_02606_13 crossref_primary_10_1038_ncomms14860 crossref_primary_10_1093_genetics_iyac110 crossref_primary_10_1038_emboj_2012_343 crossref_primary_10_1080_10409238_2024_2318547 crossref_primary_10_1038_s41467_022_35182_9 crossref_primary_10_1016_j_molcel_2013_05_020 crossref_primary_10_1016_j_sbi_2016_11_016 crossref_primary_10_1534_genetics_117_300180 crossref_primary_10_7554_eLife_58910 crossref_primary_10_1101_gad_349039_121 crossref_primary_10_1371_journal_pone_0268760 crossref_primary_10_1016_j_bbapap_2017_06_018 crossref_primary_10_1016_j_bbrc_2013_07_096 crossref_primary_10_1128_microbiolspec_MDNA3_0013_2014 crossref_primary_10_1016_j_abb_2019_07_005 crossref_primary_10_1093_nar_gkt662 crossref_primary_10_1038_nrm_2017_119 crossref_primary_10_1101_gr_236554_118 crossref_primary_10_1016_j_sbi_2019_03_010 crossref_primary_10_1073_pnas_1817274115 crossref_primary_10_4161_cc_25457 crossref_primary_10_1016_j_drudis_2016_01_017 crossref_primary_10_1016_j_sbi_2021_06_012 crossref_primary_10_1371_journal_pgen_1005425 crossref_primary_10_1038_s41467_019_10609_y crossref_primary_10_1038_s41586_024_08183_5 crossref_primary_10_1083_jcb_201905040 crossref_primary_10_1007_s00412_015_0570_5 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1126/science.1210915 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) Biology |
| EISSN | 1095-9203 |
| ExternalDocumentID | 22096199 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R37 GM048405 – fundername: NCRR NIH HHS grantid: P41 RR012408 – fundername: NIGMS NIH HHS grantid: R01 GM043901 – fundername: NIGMS NIH HHS grantid: GM043901 |
| GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQAM ACQOY ACTDY ACUHS ADDRP ADQXQ ADUKH ADULT ADXHL ADZCM AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C2- C45 CGR CS3 CUY CVF DB2 DCCCD DU5 EBS ECM EIF EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB NPM O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN SKT TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ZXP ~02 ~H1 ~KM ~ZZ 7X8 |
| ID | FETCH-LOGICAL-c4465-7c19645ccc88f9da6ebdda7f8299653dad8c9b191817e06ffe8436a177e732c82 |
| IEDL.DBID | 7X8 |
| ISSN | 1095-9203 |
| IngestDate | Wed Oct 01 14:37:25 EDT 2025 Mon Jul 21 05:52:05 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6058 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4465-7c19645ccc88f9da6ebdda7f8299653dad8c9b191817e06ffe8436a177e732c82 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1126/science.1210915 |
| PMID | 22096199 |
| PQID | 905672845 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_905672845 pubmed_primary_22096199 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-11-18 |
| PublicationDateYYYYMMDD | 2011-11-18 |
| PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Science (American Association for the Advancement of Science) |
| PublicationTitleAlternate | Science |
| PublicationYear | 2011 |
| SSID | ssj0009593 |
| Score | 2.4874942 |
| Snippet | Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 977 |
| SubjectTerms | Acetylation Amino Acid Sequence Binding Sites Chemical Phenomena Crystallography, X-Ray Gene Silencing Histones - chemistry Histones - metabolism Hydrogen Bonding Methylation Models, Molecular Molecular Sequence Data Mutagenesis Mutant Proteins - chemistry Mutant Proteins - metabolism Nucleosomes - chemistry Nucleosomes - metabolism Nucleosomes - ultrastructure Protein Folding Protein Interaction Domains and Motifs Protein Multimerization Protein Structure, Tertiary Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism Static Electricity |
| Title | Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22096199 https://www.proquest.com/docview/905672845 |
| Volume | 334 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfzMGDHqptum0SL6Li4sVFUGFvNc0DethW7Sr6A_xl_jEzbRQRxIMQCj0ESjqZb2Yy-T5CdlMqdZpL1AjDY0arecCFe2XaGKG0sqkXm2CDAR8OxZXvzal9W-WnT2wcta4U1sgPhUNq5nxpcnz_EKBoFB6uegWNSdKJXSSDRs2G_CfnbhSiHCENY8_s8-3ODHIrOMBMfg8vG5jpz__zAxfInI8v4aQ1iEUyYcolMtMqTr4ukUW_l2vY84TT-8vk7rohkUUCDnCoVtRQWagLvI7kgO0IrovHGE5PLkBXI1mU4EbTiW5eAMu4IKFEVuSqrkYG5BjigxDe38Al8t6uV8ht__zm7CLwyguBQgK1gCnk6UqUUpxboWVqcq0ls9yBV5rEWmquRO5SPR4xE6bWGt6LUxkxZlhMFaerZKqsSrNOIEpYaI0OeznVLldNJJWUpyETSU8lOY-6BD6XM3OWjccVsjTVU519LWiXrLW_JLtvGTgySlGpRoiNvydvktmmDIyDb5GOdbvabJNp9Twu6sedxmLcc3B1-QEB6cry |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+of+silencing%3A+Sir3+BAH+domain+in+complex+with+a+nucleosome+at+3.0+%C3%85+resolution&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Armache%2C+Karim-Jean&rft.au=Garlick%2C+Joseph+D&rft.au=Canzio%2C+Daniele&rft.au=Narlikar%2C+Geeta+J&rft.date=2011-11-18&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=334&rft.issue=6058&rft.spage=977&rft_id=info:doi/10.1126%2Fscience.1210915&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-9203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-9203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-9203&client=summon |