Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution

Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) Jg. 334; H. 6058; S. 977
Hauptverfasser: Armache, Karim-Jean, Garlick, Joseph D, Canzio, Daniele, Narlikar, Geeta J, Kingston, Robert E
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 18.11.2011
Schlagworte:
ISSN:1095-9203, 1095-9203
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.
AbstractList Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.
Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.
Author Kingston, Robert E
Narlikar, Geeta J
Garlick, Joseph D
Canzio, Daniele
Armache, Karim-Jean
Author_xml – sequence: 1
  givenname: Karim-Jean
  surname: Armache
  fullname: Armache, Karim-Jean
  organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 2
  givenname: Joseph D
  surname: Garlick
  fullname: Garlick, Joseph D
– sequence: 3
  givenname: Daniele
  surname: Canzio
  fullname: Canzio, Daniele
– sequence: 4
  givenname: Geeta J
  surname: Narlikar
  fullname: Narlikar, Geeta J
– sequence: 5
  givenname: Robert E
  surname: Kingston
  fullname: Kingston, Robert E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22096199$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1KxDAcxIOsuB969ia5eWpN0jZNvK2LusKCh9VzTZN_NZIma9OiPoBP5otZcAVh4DcDwxxmjiY-eEDolJKUUsYvorbgNaSUUSJpcYBmI4tEMpJN_vkpmsf4SsiYZXaEpowRyamUM_S07btB90OnHK5VtBGHBkfrxlXrny_x1nYZvlqusQmtsh6P0qHdOfjA77Z_wQr7QTsIMbSAVY-zlODvL9xBDG7obfDH6LBRLsLJngv0eHP9sFonm_vbu9Vyk-g850VSaip5XmithWikURxqY1TZCCYlLzKjjNCyppIKWgLhTQMiz7iiZQllxrRgC3T-u7vrwtsAsa9aGzU4pzyEIVaSFLxkIi_G5tm-OdQtmGrX2VZ1n9XfKewHoQFmVw
CitedBy_id crossref_primary_10_3389_fcell_2020_00600
crossref_primary_10_1107_S2059798317004430
crossref_primary_10_1073_pnas_1524607113
crossref_primary_10_1126_science_1259308
crossref_primary_10_1534_g3_117_300252
crossref_primary_10_1146_annurev_micro_041020_100926
crossref_primary_10_1016_j_cell_2012_07_034
crossref_primary_10_1038_nsmb_2641
crossref_primary_10_1002_mlf2_12108
crossref_primary_10_1038_s41586_019_1528_1
crossref_primary_10_1016_j_gene_2015_04_085
crossref_primary_10_1002_anie_201603106
crossref_primary_10_1007_s00412_014_0465_x
crossref_primary_10_1080_15592294_2015_1017200
crossref_primary_10_1186_s13072_024_00553_7
crossref_primary_10_1007_s10555_014_9513_5
crossref_primary_10_1016_j_sbi_2021_05_006
crossref_primary_10_1073_pnas_1300126110
crossref_primary_10_1016_j_cell_2014_10_047
crossref_primary_10_1371_journal_pone_0251660
crossref_primary_10_1093_nar_gkae698
crossref_primary_10_1371_journal_pgen_1005898
crossref_primary_10_7554_eLife_33442
crossref_primary_10_1007_s00294_021_01166_3
crossref_primary_10_1080_19491034_2017_1380141
crossref_primary_10_1016_j_molcel_2017_04_009
crossref_primary_10_1038_s41586_025_09523_9
crossref_primary_10_1016_j_jbc_2023_104996
crossref_primary_10_1038_nature10956
crossref_primary_10_1016_j_molcel_2023_07_001
crossref_primary_10_1093_jb_mvx081
crossref_primary_10_1038_nsmb_3190
crossref_primary_10_1016_j_tibs_2020_08_010
crossref_primary_10_1038_emboj_2012_221
crossref_primary_10_1371_journal_pone_0054228
crossref_primary_10_7554_eLife_75653
crossref_primary_10_1016_j_jmb_2018_07_013
crossref_primary_10_1038_s41467_017_01598_x
crossref_primary_10_1093_nar_gkv388
crossref_primary_10_1016_j_bbagrm_2014_03_002
crossref_primary_10_1101_gad_197178_112
crossref_primary_10_7554_eLife_21356
crossref_primary_10_1073_pnas_1621159114
crossref_primary_10_1038_s41598_018_37699_w
crossref_primary_10_1038_nsmb_3189
crossref_primary_10_1038_s41598_018_19875_0
crossref_primary_10_1038_s41467_019_13550_2
crossref_primary_10_1101_gad_256255_114
crossref_primary_10_3389_fpls_2015_01161
crossref_primary_10_1016_j_cytogfr_2023_09_004
crossref_primary_10_1038_nature18951
crossref_primary_10_1038_nrm3382
crossref_primary_10_1038_s41594_021_00585_7
crossref_primary_10_1073_pnas_1420096111
crossref_primary_10_1038_emboj_2013_72
crossref_primary_10_1038_s41594_018_0166_x
crossref_primary_10_1002_bkcs_10578
crossref_primary_10_1038_s41467_020_20089_0
crossref_primary_10_1074_jbc_RA117_000498
crossref_primary_10_1098_rsob_230271
crossref_primary_10_1016_j_sbi_2016_03_003
crossref_primary_10_1534_g3_116_037739
crossref_primary_10_3390_ijms22115578
crossref_primary_10_1016_j_jmb_2016_02_025
crossref_primary_10_1038_nature13890
crossref_primary_10_1038_nsmb_2227
crossref_primary_10_7554_eLife_35720
crossref_primary_10_1016_j_biopha_2019_109678
crossref_primary_10_3389_fmolb_2021_669664
crossref_primary_10_1016_j_sbi_2012_10_009
crossref_primary_10_1371_journal_pgen_1007418
crossref_primary_10_1534_genetics_117_201939
crossref_primary_10_1126_science_aac5681
crossref_primary_10_1371_journal_pgen_1008905
crossref_primary_10_1534_genetics_113_153080
crossref_primary_10_1038_s41467_019_10247_4
crossref_primary_10_1128_MCB_00432_15
crossref_primary_10_1016_j_molcel_2023_07_020
crossref_primary_10_15252_embj_2021108293
crossref_primary_10_1007_s00018_012_1256_2
crossref_primary_10_1038_nature23671
crossref_primary_10_1101_gr_267872_120
crossref_primary_10_1016_j_jmb_2021_167114
crossref_primary_10_5936_csbj_201304001
crossref_primary_10_7554_eLife_23872
crossref_primary_10_1002_pro_3535
crossref_primary_10_1038_s42003_019_0385_7
crossref_primary_10_1074_jbc_M115_707018
crossref_primary_10_1016_j_dnarep_2017_06_011
crossref_primary_10_1126_science_abd0609
crossref_primary_10_1007_s12268_015_0618_3
crossref_primary_10_1016_j_molcel_2019_03_029
crossref_primary_10_1007_s00294_018_0812_1
crossref_primary_10_1038_s41594_020_00528_8
crossref_primary_10_1002_bies_201900234
crossref_primary_10_1074_jbc_M113_460071
crossref_primary_10_15252_embj_201593377
crossref_primary_10_1038_nsmb_2637
crossref_primary_10_1016_j_gene_2013_05_088
crossref_primary_10_1016_j_celrep_2024_113983
crossref_primary_10_1016_j_molcel_2020_04_019
crossref_primary_10_1038_celldisc_2016_4
crossref_primary_10_1002_iub_1322
crossref_primary_10_1534_genetics_112_145243
crossref_primary_10_1042_EBC20180065
crossref_primary_10_1002_iub_1568
crossref_primary_10_1371_journal_pgen_1003798
crossref_primary_10_1002_prot_25203
crossref_primary_10_1074_jbc_M112_390849
crossref_primary_10_1016_j_sbi_2016_01_013
crossref_primary_10_1126_science_1235532
crossref_primary_10_7554_eLife_17556
crossref_primary_10_1002_cmdc_201500478
crossref_primary_10_1016_j_bbapap_2017_02_002
crossref_primary_10_1139_bcb_2016_0017
crossref_primary_10_1126_science_abc6663
crossref_primary_10_1038_ncomms15775
crossref_primary_10_1016_j_sbi_2015_11_014
crossref_primary_10_1073_pnas_1810647115
crossref_primary_10_1042_BST20160173
crossref_primary_10_1093_nar_gkaa1121
crossref_primary_10_1101_gad_230532_113
crossref_primary_10_1073_pnas_2318455121
crossref_primary_10_1038_ncomms3969
crossref_primary_10_1038_ncomms5751
crossref_primary_10_1038_s41589_019_0413_4
crossref_primary_10_1074_jbc_M115_703637
crossref_primary_10_1016_j_cell_2019_02_002
crossref_primary_10_1016_j_febslet_2015_04_023
crossref_primary_10_1093_nar_gkad294
crossref_primary_10_1146_annurev_genet_021313_173730
crossref_primary_10_1007_s00412_013_0435_8
crossref_primary_10_3109_10409238_2012_742035
crossref_primary_10_1038_s41467_020_20775_z
crossref_primary_10_1002_ange_201603106
crossref_primary_10_1016_j_bbagrm_2012_04_001
crossref_primary_10_1016_j_bbagrm_2022_194851
crossref_primary_10_1016_j_bbagrm_2014_04_011
crossref_primary_10_7554_eLife_11911
crossref_primary_10_7554_eLife_22451
crossref_primary_10_1093_nar_gkaa544
crossref_primary_10_1101_gad_323790_118
crossref_primary_10_3390_biology6010005
crossref_primary_10_1101_gad_201095_112
crossref_primary_10_7554_eLife_71420
crossref_primary_10_1534_genetics_116_190835
crossref_primary_10_1105_tpc_114_130781
crossref_primary_10_1016_j_fgb_2018_05_005
crossref_primary_10_1016_j_sbi_2019_05_017
crossref_primary_10_1016_j_tips_2015_02_010
crossref_primary_10_1038_srep17038
crossref_primary_10_1128_JVI_02606_13
crossref_primary_10_1038_ncomms14860
crossref_primary_10_1093_genetics_iyac110
crossref_primary_10_1038_emboj_2012_343
crossref_primary_10_1080_10409238_2024_2318547
crossref_primary_10_1038_s41467_022_35182_9
crossref_primary_10_1016_j_molcel_2013_05_020
crossref_primary_10_1016_j_sbi_2016_11_016
crossref_primary_10_1534_genetics_117_300180
crossref_primary_10_7554_eLife_58910
crossref_primary_10_1101_gad_349039_121
crossref_primary_10_1371_journal_pone_0268760
crossref_primary_10_1016_j_bbapap_2017_06_018
crossref_primary_10_1016_j_bbrc_2013_07_096
crossref_primary_10_1128_microbiolspec_MDNA3_0013_2014
crossref_primary_10_1016_j_abb_2019_07_005
crossref_primary_10_1093_nar_gkt662
crossref_primary_10_1038_nrm_2017_119
crossref_primary_10_1101_gr_236554_118
crossref_primary_10_1016_j_sbi_2019_03_010
crossref_primary_10_1073_pnas_1817274115
crossref_primary_10_4161_cc_25457
crossref_primary_10_1016_j_drudis_2016_01_017
crossref_primary_10_1016_j_sbi_2021_06_012
crossref_primary_10_1371_journal_pgen_1005425
crossref_primary_10_1038_s41467_019_10609_y
crossref_primary_10_1038_s41586_024_08183_5
crossref_primary_10_1083_jcb_201905040
crossref_primary_10_1007_s00412_015_0570_5
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1126/science.1210915
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 22096199
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R37 GM048405
– fundername: NCRR NIH HHS
  grantid: P41 RR012408
– fundername: NIGMS NIH HHS
  grantid: R01 GM043901
– fundername: NIGMS NIH HHS
  grantid: GM043901
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ACUHS
ADDRP
ADQXQ
ADUKH
ADULT
ADXHL
ADZCM
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C2-
C45
CGR
CS3
CUY
CVF
DB2
DCCCD
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
SKT
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
ZXP
~02
~H1
~KM
~ZZ
7X8
ID FETCH-LOGICAL-c4465-7c19645ccc88f9da6ebdda7f8299653dad8c9b191817e06ffe8436a177e732c82
IEDL.DBID 7X8
ISSN 1095-9203
IngestDate Wed Oct 01 14:37:25 EDT 2025
Mon Jul 21 05:52:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6058
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4465-7c19645ccc88f9da6ebdda7f8299653dad8c9b191817e06ffe8436a177e732c82
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1126/science.1210915
PMID 22096199
PQID 905672845
PQPubID 23479
ParticipantIDs proquest_miscellaneous_905672845
pubmed_primary_22096199
PublicationCentury 2000
PublicationDate 2011-11-18
PublicationDateYYYYMMDD 2011-11-18
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2011
SSID ssj0009593
Score 2.4873207
Snippet Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 977
SubjectTerms Acetylation
Amino Acid Sequence
Binding Sites
Chemical Phenomena
Crystallography, X-Ray
Gene Silencing
Histones - chemistry
Histones - metabolism
Hydrogen Bonding
Methylation
Models, Molecular
Molecular Sequence Data
Mutagenesis
Mutant Proteins - chemistry
Mutant Proteins - metabolism
Nucleosomes - chemistry
Nucleosomes - metabolism
Nucleosomes - ultrastructure
Protein Folding
Protein Interaction Domains and Motifs
Protein Multimerization
Protein Structure, Tertiary
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Silent Information Regulator Proteins, Saccharomyces cerevisiae - chemistry
Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics
Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism
Static Electricity
Title Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution
URI https://www.ncbi.nlm.nih.gov/pubmed/22096199
https://www.proquest.com/docview/905672845
Volume 334
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-wYu6PtcXc_Cgh2rbpE3qRVSUvbgIKuxtTfOAHrZVu4r-AH-Zf8xJG0UE8SCE3hpKOjPfTDL5PkJ2raQ55h0y4CIJA8ZUii4V5oGJLDPUGizJRCM2wft9MRhkV743p_ZtlZ8xsQnUulJuj_wwQ6TmGEuT4_uHwIlGucNVr6AxSaYpZjLOqPlA_OTcjUInRxiH1DP7fLsz47gVEDCT39PLBmYuFv75gYtk3ueXcNIaRIdMmHKJzLaKk69LpON9uYY9Tzi9v0zurhsSWUfAAYhqRQ2Vhbpw15EQ2I7gunikcHrSA12NZFECjqYT3byA28YFCaVjRa7qamRAjoEehPD-BljIe7teIbcX5zdnvcArLwTKEagFXDmerkQpJYTNtExNrrXkViB4pQnVUguV5VjqiYibMLXWCEZTGXFuOI2ViFfJVFmVZp1AznGWkGuaKsqsYlKx1NJM5TnlkdKsS-BzOYdo2e64QpameqqHXwvaJWvtLxnetwwcwzh2SjVZtvH3y5tkrtkGdkNskWmLXm22yYx6Hhf1405jMfjsX11-AFFSy7Y
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+of+silencing%3A+Sir3+BAH+domain+in+complex+with+a+nucleosome+at+3.0+%C3%85+resolution&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Armache%2C+Karim-Jean&rft.au=Garlick%2C+Joseph+D&rft.au=Canzio%2C+Daniele&rft.au=Narlikar%2C+Geeta+J&rft.date=2011-11-18&rft.eissn=1095-9203&rft.volume=334&rft.issue=6058&rft.spage=977&rft_id=info:doi/10.1126%2Fscience.1210915&rft_id=info%3Apmid%2F22096199&rft_id=info%3Apmid%2F22096199&rft.externalDocID=22096199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-9203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-9203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-9203&client=summon