Integration strategies of multi-omics data for machine learning analysis
Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix on which machine learning model can be applied. B) Mixed integration first independently transforms or maps each omics block into a new repr...
Uloženo v:
| Vydáno v: | Computational and structural biotechnology journal Ročník 19; s. 3735 - 3746 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2021
Research Network of Computational and Structural Biotechnology Elsevier |
| Témata: | |
| ISSN: | 2001-0370, 2001-0370 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix on which machine learning model can be applied. B) Mixed integration first independently transforms or maps each omics block into a new representation before combining them for downstream analysis. C) Intermediate integration simultaneously transforms the original datasets into common and omics-specific representations. D) Late integration analyses each omics separately and combines their final predictions. E) Hierarchical integration bases the integration of datasets on prior regulatory relationships between omics layers.
[Display omitted]
Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems.
Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications. |
|---|---|
| AbstractList | Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems.Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications. Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix on which machine learning model can be applied. B) Mixed integration first independently transforms or maps each omics block into a new representation before combining them for downstream analysis. C) Intermediate integration simultaneously transforms the original datasets into common and omics-specific representations. D) Late integration analyses each omics separately and combines their final predictions. E) Hierarchical integration bases the integration of datasets on prior regulatory relationships between omics layers. Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems. Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications. Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems. Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications.Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems. Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications. Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix on which machine learning model can be applied. B) Mixed integration first independently transforms or maps each omics block into a new representation before combining them for downstream analysis. C) Intermediate integration simultaneously transforms the original datasets into common and omics-specific representations. D) Late integration analyses each omics separately and combines their final predictions. E) Hierarchical integration bases the integration of datasets on prior regulatory relationships between omics layers. [Display omitted] Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems. Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications. |
| Author | Périn, Olivier Picard, Milan Bodein, Antoine Droit, Arnaud Scott-Boyer, Marie-Pier |
| Author_xml | – sequence: 1 givenname: Milan orcidid: 0000-0002-2466-2012 surname: Picard fullname: Picard, Milan organization: Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada – sequence: 2 givenname: Marie-Pier surname: Scott-Boyer fullname: Scott-Boyer, Marie-Pier organization: Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada – sequence: 3 givenname: Antoine orcidid: 0000-0002-9843-504X surname: Bodein fullname: Bodein, Antoine organization: Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada – sequence: 4 givenname: Olivier surname: Périn fullname: Périn, Olivier organization: Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France – sequence: 5 givenname: Arnaud surname: Droit fullname: Droit, Arnaud email: Arnaud.Droit@crchudequebec.ulaval.ca organization: Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada |
| BookMark | eNqFkU1r3DAQhk1JadI0f6AnH3vxVt_WQimU0DYLgV7asxiPJEfGllLJG8i_jzYbStNDqosGad6HYZ63zUlM0TXNe0o2lFD1cdpgGaYNI4xuiNoQTl41Z4wQ2hHek5O_6tPmopSJ1KOp2nLypjnlgmnZ9_KsudrF1Y0Z1pBiW9ZauDG40ibfLvt5DV1aApbWwgqtT7ldAG9CdO3sIMcQxxYizPcllHfNaw9zcRdP93nz69vXn5dX3fWP77vLL9cdCqFINziFMFjJ_JYLL3u0CKzvtUJNEVB6zTmAt1QOjCuKRDMgHoQaiJVWIj9vdkeuTTCZ2xwWyPcmQTCPDymPBvIacHZGcauGAQUbBi00IxqxByEFByXUVvjK-nxk3e6HxVl0sS5gfgZ9_hPDjRnTndFM6l7rCvjwBMjp996V1SyhoJtniC7ti2GKK67FVvD_t0rJNe25VrWVHVsxp1Ky838mosQc5JvJHOSbg3xDlKnya0j_E8KwPmqtk4f55einY9RVb3fBZVMwuIjOhuxwrYsNL8UfAFlny7M |
| CitedBy_id | crossref_primary_10_3390_biology12081135 crossref_primary_10_1016_j_csbj_2024_01_024 crossref_primary_10_1186_s12967_023_04720_4 crossref_primary_10_3390_genes16050580 crossref_primary_10_1038_s41598_025_90917_0 crossref_primary_10_1007_s00210_024_03320_3 crossref_primary_10_1021_acsnano_5c01197 crossref_primary_10_1038_s41598_025_13337_0 crossref_primary_10_47482_acmr_1627345 crossref_primary_10_3389_fnmol_2022_999938 crossref_primary_10_1186_s12859_024_06022_y crossref_primary_10_3389_fgene_2024_1513938 crossref_primary_10_1080_17474124_2025_2483406 crossref_primary_10_1146_annurev_pharmtox_032023_121106 crossref_primary_10_1016_j_ygeno_2024_110977 crossref_primary_10_1016_j_molmed_2023_09_004 crossref_primary_10_1016_j_gene_2024_148295 crossref_primary_10_1093_bib_bbad304 crossref_primary_10_1016_j_cca_2024_119686 crossref_primary_10_1016_j_semnephrol_2025_151584 crossref_primary_10_3390_ijms252011154 crossref_primary_10_3390_ijms23031237 crossref_primary_10_1002_qub2_70002 crossref_primary_10_1016_j_apsb_2025_07_030 crossref_primary_10_1007_s11010_024_05139_1 crossref_primary_10_3389_fmicb_2022_1058772 crossref_primary_10_3389_fmed_2022_911977 crossref_primary_10_1016_j_atherosclerosis_2025_120414 crossref_primary_10_3390_ijms25031655 crossref_primary_10_1002_btm2_10641 crossref_primary_10_1016_j_inffus_2024_102361 crossref_primary_10_2478_ijssis_2025_0037 crossref_primary_10_4236_health_2024_163015 crossref_primary_10_1093_oxfimm_iqaf006 crossref_primary_10_1109_JBHI_2024_3439713 crossref_primary_10_1007_s11692_025_09655_w crossref_primary_10_1186_s13040_024_00406_9 crossref_primary_10_3390_cancers14133215 crossref_primary_10_1016_j_engappai_2025_111607 crossref_primary_10_1109_JBHI_2024_3415641 crossref_primary_10_1038_s41408_023_00914_7 crossref_primary_10_1038_s41467_024_46888_3 crossref_primary_10_1016_j_csbj_2024_01_002 crossref_primary_10_3389_fdsfr_2024_1356405 crossref_primary_10_1016_j_eswa_2024_125932 crossref_primary_10_1093_bib_bbae300 crossref_primary_10_3390_proteomes12030025 crossref_primary_10_1053_j_gastro_2025_02_035 crossref_primary_10_1186_s12951_025_03429_4 crossref_primary_10_1002_pmic_202200275 crossref_primary_10_1186_s13326_025_00325_6 crossref_primary_10_1371_journal_pone_0307482 crossref_primary_10_3389_fmicb_2024_1516667 crossref_primary_10_3389_fendo_2023_1266557 crossref_primary_10_1016_j_biotechadv_2022_108069 crossref_primary_10_3390_biom12121839 crossref_primary_10_1016_j_tcb_2024_02_001 crossref_primary_10_1016_j_csbj_2024_12_027 crossref_primary_10_1016_j_procs_2025_04_515 crossref_primary_10_1016_j_cmpb_2023_107377 crossref_primary_10_1038_s41531_022_00409_5 crossref_primary_10_1016_j_imu_2025_101679 crossref_primary_10_1093_gigascience_giaf057 crossref_primary_10_1002_ejhf_3268 crossref_primary_10_1007_s00500_024_10302_3 crossref_primary_10_1371_journal_pone_0263940 crossref_primary_10_3389_fonc_2022_998222 crossref_primary_10_3389_frai_2023_1098308 crossref_primary_10_3389_fams_2024_1380996 crossref_primary_10_3390_biomedicines13092171 crossref_primary_10_1186_s40364_025_00798_8 crossref_primary_10_3390_metabo15060362 crossref_primary_10_1016_j_compbiomed_2024_108588 crossref_primary_10_1007_s12033_024_01133_6 crossref_primary_10_3389_fmicb_2025_1618177 crossref_primary_10_1016_j_prp_2025_156083 crossref_primary_10_1016_j_compbiolchem_2024_108254 crossref_primary_10_1016_j_heliyon_2024_e29322 crossref_primary_10_32628_IJSRST2411596 crossref_primary_10_3389_fmolb_2022_962799 crossref_primary_10_3390_pathogens11010027 crossref_primary_10_1136_bmjsem_2024_002410 crossref_primary_10_1080_19490976_2023_2297860 crossref_primary_10_1186_s12864_024_11112_5 crossref_primary_10_1007_s00122_025_04948_2 crossref_primary_10_3390_metabo14120708 crossref_primary_10_1016_j_semnephrol_2025_151663 crossref_primary_10_1016_j_trac_2024_117852 crossref_primary_10_1002_wcms_1585 crossref_primary_10_1016_j_tplants_2022_02_001 crossref_primary_10_1038_s41596_023_00950_4 crossref_primary_10_31083_j_fbl2902075 crossref_primary_10_3389_fgene_2022_1090394 crossref_primary_10_3389_fgene_2022_929736 crossref_primary_10_1016_j_imu_2024_101507 crossref_primary_10_3389_fgene_2022_1032768 crossref_primary_10_1038_s41390_025_04021_0 crossref_primary_10_3390_v16121828 crossref_primary_10_1016_j_trac_2024_117860 crossref_primary_10_1109_ACCESS_2024_3362647 crossref_primary_10_1186_s40104_025_01234_5 crossref_primary_10_3389_fped_2024_1483940 crossref_primary_10_1080_17435390_2024_2368005 crossref_primary_10_1161_CIRCRESAHA_123_321999 crossref_primary_10_1016_j_ebiom_2024_105247 crossref_primary_10_1016_j_scitotenv_2024_172310 crossref_primary_10_3390_metabo15060384 crossref_primary_10_1111_all_16526 crossref_primary_10_1016_j_chemolab_2023_104999 crossref_primary_10_1016_j_molp_2022_09_001 crossref_primary_10_3892_ol_2025_14989 crossref_primary_10_1093_bib_bbaf150 crossref_primary_10_3390_diagnostics13040664 crossref_primary_10_1016_j_biotechadv_2024_108506 crossref_primary_10_1186_s13073_024_01350_3 crossref_primary_10_1371_journal_pcbi_1011842 crossref_primary_10_1177_10998004241256031 crossref_primary_10_1016_j_compbiomed_2023_107425 crossref_primary_10_1016_j_compbiomed_2023_107303 crossref_primary_10_1093_femsec_fiae058 crossref_primary_10_1186_s12967_025_06425_2 crossref_primary_10_1016_j_foodres_2025_116034 crossref_primary_10_1101_gr_280041_124 crossref_primary_10_1002_tox_24284 crossref_primary_10_1186_s40246_025_00718_9 crossref_primary_10_1002_agj2_21393 crossref_primary_10_1161_CIRCRESAHA_123_321765 crossref_primary_10_1186_s11689_025_09601_z crossref_primary_10_3390_biom15040484 crossref_primary_10_1016_j_cmpb_2025_109024 crossref_primary_10_3390_microorganisms11082116 crossref_primary_10_31083_j_fbl2912404 crossref_primary_10_3390_biomedicines12030550 crossref_primary_10_1016_j_joca_2023_11_019 crossref_primary_10_1360_TB_2024_0416 crossref_primary_10_1093_bib_bbae606 crossref_primary_10_1016_j_nbt_2023_06_002 crossref_primary_10_1038_s41386_024_01938_8 crossref_primary_10_1093_gpbjnl_qzaf072 crossref_primary_10_3390_biomedicines12102389 crossref_primary_10_1093_bioadv_vbae005 crossref_primary_10_1371_journal_pone_0298623 crossref_primary_10_1016_j_neuroscience_2025_06_048 crossref_primary_10_1186_s12911_024_02521_3 crossref_primary_10_1016_j_molp_2024_04_005 crossref_primary_10_1002_pmic_202200335 crossref_primary_10_1186_s12859_025_06089_1 crossref_primary_10_1161_ATVBAHA_122_318892 crossref_primary_10_1016_j_bbcan_2025_189425 crossref_primary_10_1371_journal_pcbi_1011224 crossref_primary_10_1016_j_livsci_2025_105716 crossref_primary_10_1038_s43856_025_00984_7 crossref_primary_10_3390_ai5030078 crossref_primary_10_1016_j_tifs_2025_105145 crossref_primary_10_1016_j_compbiomed_2022_106192 crossref_primary_10_1186_s12911_024_02642_9 crossref_primary_10_1016_j_csbj_2024_11_022 crossref_primary_10_1016_j_jbi_2024_104629 crossref_primary_10_1371_journal_pone_0295361 crossref_primary_10_2174_1573412919666230406100948 crossref_primary_10_1016_j_pbi_2024_102657 crossref_primary_10_1186_s12859_024_05719_4 crossref_primary_10_3389_fgene_2022_921775 crossref_primary_10_3389_fpsyt_2025_1594313 crossref_primary_10_1016_j_csbj_2024_06_012 crossref_primary_10_3390_bioengineering10050621 crossref_primary_10_1016_j_cofs_2023_101049 crossref_primary_10_1016_j_crmeth_2025_101026 crossref_primary_10_1038_s42256_023_00633_5 crossref_primary_10_1007_s41870_022_00928_7 crossref_primary_10_1136_bmjopen_2021_053674 crossref_primary_10_3390_biology13110848 crossref_primary_10_1016_j_jaci_2025_06_036 crossref_primary_10_1038_s41597_025_05235_x crossref_primary_10_3390_metabo13070855 crossref_primary_10_1016_j_nutres_2024_09_010 crossref_primary_10_1007_s12672_025_02734_6 crossref_primary_10_1038_s41598_024_76093_7 crossref_primary_10_1093_bioadv_vbad172 crossref_primary_10_3390_app14135660 crossref_primary_10_1186_s12864_023_09833_0 crossref_primary_10_1093_bib_bbaf355 crossref_primary_10_1093_bib_bbaf116 crossref_primary_10_1155_2022_2009545 crossref_primary_10_1007_s10096_025_05152_2 crossref_primary_10_3390_biology14030223 crossref_primary_10_1016_j_bbi_2023_07_022 crossref_primary_10_3389_fpubh_2022_899638 crossref_primary_10_1089_cmb_2024_0927 crossref_primary_10_3389_fimmu_2025_1648987 crossref_primary_10_1007_s00253_024_13384_z crossref_primary_10_3389_fcell_2024_1376639 crossref_primary_10_1002_cpz1_70168 crossref_primary_10_1016_j_copbio_2024_103115 crossref_primary_10_1128_msystems_00707_25 crossref_primary_10_1038_s44222_024_00163_8 crossref_primary_10_3389_fmolb_2025_1665390 crossref_primary_10_3892_ijmm_2024_5479 crossref_primary_10_1016_j_critrevonc_2025_104948 crossref_primary_10_1016_j_mce_2023_112046 crossref_primary_10_1038_s41598_023_36438_0 crossref_primary_10_1016_j_insi_2025_100062 crossref_primary_10_1016_j_artmed_2024_102962 crossref_primary_10_1186_s13059_022_02749_0 crossref_primary_10_1016_j_procs_2025_05_047 crossref_primary_10_1186_s12859_025_06248_4 crossref_primary_10_1038_s41598_025_96695_z crossref_primary_10_1016_j_pneurobio_2023_102480 crossref_primary_10_1016_j_taap_2023_116597 crossref_primary_10_1016_j_ijbiomac_2023_127808 crossref_primary_10_1093_qjmed_hcaf108 crossref_primary_10_1016_j_cmpb_2024_108478 crossref_primary_10_7554_eLife_87133 crossref_primary_10_1016_j_biosystems_2023_105095 crossref_primary_10_1016_j_stress_2024_100704 crossref_primary_10_3389_fmolb_2022_962644 crossref_primary_10_1039_D4NP00003J crossref_primary_10_3390_antibiotics12081250 crossref_primary_10_1016_j_tifs_2024_104481 crossref_primary_10_1080_0954898X_2024_2348726 crossref_primary_10_1016_j_trac_2023_117063 crossref_primary_10_1016_j_xplc_2025_101416 crossref_primary_10_1016_j_chmed_2025_05_003 crossref_primary_10_1093_bioadv_vbae164 crossref_primary_10_3389_fpls_2021_777028 crossref_primary_10_3390_ijms24108884 crossref_primary_10_3390_cancers17020287 crossref_primary_10_3390_ijms24076445 crossref_primary_10_1109_RBME_2023_3324264 crossref_primary_10_1038_s41416_024_02706_7 crossref_primary_10_1016_j_crbiot_2025_100334 crossref_primary_10_1038_s41598_023_42365_x crossref_primary_10_1038_s41390_022_02181_x crossref_primary_10_1371_journal_pone_0309921 crossref_primary_10_3390_biomedicines9101481 crossref_primary_10_3390_plants11223067 crossref_primary_10_1016_j_heliyon_2024_e25369 crossref_primary_10_1186_s12859_023_05262_8 crossref_primary_10_3389_fgene_2022_824451 crossref_primary_10_1080_87559129_2024_2432924 crossref_primary_10_1038_s41598_024_67104_8 crossref_primary_10_1038_s41570_022_00439_w crossref_primary_10_1016_j_biortech_2024_131380 crossref_primary_10_1016_j_csbj_2023_07_002 crossref_primary_10_1186_s12967_025_06446_x crossref_primary_10_3390_app15073650 crossref_primary_10_1038_s41587_022_01520_x crossref_primary_10_1186_s13040_025_00452_x crossref_primary_10_3390_jpm14090931 crossref_primary_10_37349_edht_2025_101153 crossref_primary_10_1016_j_csbj_2025_06_035 crossref_primary_10_1016_j_isci_2024_109859 crossref_primary_10_3390_ijms241914912 crossref_primary_10_1158_2767_9764_CRC_24_0285 crossref_primary_10_3389_fgene_2022_1004912 crossref_primary_10_3390_cells13060504 crossref_primary_10_1016_j_heliyon_2024_e27411 crossref_primary_10_3390_computation9120146 crossref_primary_10_1007_s11432_024_4461_0 crossref_primary_10_1186_s12967_025_06495_2 crossref_primary_10_1093_bioadv_vbac042 crossref_primary_10_3389_fgene_2024_1378809 crossref_primary_10_1038_s41576_024_00768_0 crossref_primary_10_3390_biomedicines12030492 crossref_primary_10_1038_s41698_025_00917_6 crossref_primary_10_1007_s12035_022_02930_3 crossref_primary_10_1186_s12944_025_02605_7 crossref_primary_10_1186_s12967_024_05085_y crossref_primary_10_1093_bib_bbaf315 crossref_primary_10_1038_s43856_024_00637_1 crossref_primary_10_1016_j_csbj_2024_10_006 crossref_primary_10_1186_s12931_023_02431_4 crossref_primary_10_5599_admet_2772 crossref_primary_10_3390_jpm14070694 crossref_primary_10_1016_j_tifs_2025_104994 crossref_primary_10_3390_cancers17172799 crossref_primary_10_1016_j_csbj_2022_11_008 crossref_primary_10_7554_eLife_87133_3 crossref_primary_10_1016_j_nanoen_2023_108656 crossref_primary_10_1093_gigascience_giaf028 crossref_primary_10_3389_fimmu_2025_1548735 crossref_primary_10_3389_fmolb_2021_768106 crossref_primary_10_3390_ijms232314744 crossref_primary_10_3389_fmicb_2023_1250806 crossref_primary_10_3390_ijms252111406 crossref_primary_10_3389_fdgth_2022_799341 crossref_primary_10_1016_j_csbr_2025_100051 crossref_primary_10_1093_bib_bbae331 crossref_primary_10_3390_biom14040409 crossref_primary_10_1093_nar_gkaf844 crossref_primary_10_1016_j_inffus_2023_101950 crossref_primary_10_1016_j_anireprosci_2024_107538 crossref_primary_10_3389_fcvm_2022_961991 crossref_primary_10_1007_s00521_025_11386_0 crossref_primary_10_1186_s12931_023_02368_8 crossref_primary_10_1016_j_compbiomed_2023_106988 crossref_primary_10_1016_j_biotechadv_2024_108477 crossref_primary_10_1016_j_heliyon_2023_e14749 crossref_primary_10_1038_s41526_022_00224_5 crossref_primary_10_3390_biomedicines10102387 crossref_primary_10_3389_fphar_2025_1591696 crossref_primary_10_1039_D3MO00266G crossref_primary_10_3390_genes13050764 |
| Cites_doi | 10.1093/bib/bbz015 10.1007/s10994-010-5222-7 10.1073/pnas.1208949110 10.1002/prca.201800137 10.3389/fgene.2020.570255 10.1093/bioinformatics/bty637 10.1038/s41467-020-20430-7 10.15252/msb.20178124 10.1007/s00204-020-02656-y 10.3389/fcvm.2019.00091 10.1002/cem.759 10.3390/genes10030200 10.1038/s41598-018-28066-w 10.1162/089976698300017467 10.1016/bs.adgen.2015.11.004 10.1002/gepi.22066 10.1093/bib/bbz070 10.1186/s12920-019-0624-2 10.1093/biostatistics/kxx017 10.3389/fgene.2020.00008 10.1093/bib/bbz138 10.1101/317982 10.1186/s13148-021-01064-y 10.1007/s11336-017-9573-x 10.1186/s12859-021-04029-3 10.21203/rs.3.rs-92731/v1 10.1101/2020.05.20.107458 10.1089/omi.2015.0020 10.1093/bioinformatics/btp543 10.1002/pmic.201900282 10.1093/bib/bbv090 10.1093/bioinformatics/btv268 10.1214/12-AOAS597 10.1093/bioinformatics/btv244 10.1145/3270323.3270326 10.1371/journal.pcbi.1003068 10.1038/s41598-020-74921-0 10.3389/fgene.2018.00477 10.1038/nrg3868 10.1504/IJDMB.2017.087178 10.1093/bib/bby115 10.1109/TPAMI.2005.159 10.1101/794503 10.3390/genes10030240 10.1007/s11606-017-4149-0 10.1155/2018/2520706 10.3390/ijms20184414 10.1016/j.compbiomed.2020.103692 10.1002/pmic.201900312 10.1101/415950 10.1016/j.csbj.2021.01.009 10.1080/10618600.2014.900500 10.1093/bioinformatics/btaa437 10.1021/acs.jcim.0c00331 10.1038/s41540-019-0086-3 10.1016/j.jmva.2018.06.009 10.1093/bioinformatics/btz418 10.1186/s13059-020-02015-1 10.18632/aging.202556 10.1093/bioinformatics/btz318 10.1038/s41467-017-00680-8 10.1038/44565 10.3389/fonc.2020.01065 10.1002/wics.1246 10.1007/s10994-011-5252-9 10.21203/rs.3.rs-56433/v1 10.1186/s12859-015-0857-9 10.1093/bib/bbaa122 10.1093/toxsci/kfn001 10.1038/s41467-018-06921-8 10.3390/ht8010004 10.1101/2020.07.22.163949 10.1186/s12885-021-07888-4 10.1016/j.ymeth.2018.05.020 10.1023/B:AMAI.0000018580.96245.c6 10.1038/s42003-020-01491-2 10.3389/fpls.2020.00944 10.3389/fmolb.2020.590842 10.1002/cem.1180070606 10.1198/106186006X113430 10.1038/srep37646 10.1093/bioinformatics/btaa655 10.1093/bioinformatics/bty440 10.1016/j.csbj.2020.08.005 10.3390/genes11080888 10.1093/bioinformatics/btab109 10.1109/TNNLS.2020.2978386 10.1007/978-1-4615-0907-3_3 10.3390/cancers12030603 10.1101/139287 10.1016/j.inffus.2018.09.012 10.3390/ijms20051175 10.1186/s40246-020-00287-z 10.1371/journal.pcbi.1008182 10.1093/bib/bbaa257 10.3390/cancers13092013 10.1093/nar/gky889 10.1007/3-540-57868-4_57 10.1089/omi.2015.0185 10.1158/1078-0432.CCR-17-0853 10.3390/genes10020087 10.1038/s41598-017-17031-8 10.1145/2347736.2347755 10.1016/j.jmva.2018.03.008 10.1111/biom.13108 10.3389/fgene.2019.01381 10.1097/MEG.0b013e3282f198a0 10.3389/fgene.2019.00459 10.1093/bib/bbx167 10.3389/fgene.2019.00381 10.1007/978-3-319-16706-0_9 10.1038/nbt0308-303 10.1186/s12859-019-3116-7 10.3389/fgene.2020.632901 10.1186/s13059-017-1215-1 10.1186/s13062-019-0239-8 10.3389/fgene.2017.00084 10.1093/bioinformatics/bts655 10.1021/acsinfecdis.9b00080 10.1093/bioinformatics/btt373 10.1093/bib/bbv108 10.3389/fnins.2020.577755 10.1186/1471-2105-15-162 10.3389/fgene.2019.00535 10.3390/ijms17091555 10.1109/TCBB.2016.2551745 10.1101/2020.07.02.184705 10.1093/bioinformatics/bty294 10.1093/biostatistics/kxw010 10.1111/j.1751-5823.2004.tb00236.x 10.3390/ijms21218202 10.1186/1471-2164-10-32 10.1093/bioinformatics/bty591 10.1016/j.neucom.2011.09.024 10.1038/nmeth.2810 10.1101/2020.07.08.192930 10.1016/j.compbiomed.2020.103625 10.1371/journal.pone.0176278 10.1109/TCBB.2018.2806438 10.20944/preprints201804.0352.v1 10.1038/nmeth.4207 10.1186/s13195-021-00814-7 10.3390/metabo10050202 10.1038/227561a0 10.1016/j.csda.2013.02.022 10.1093/nar/gks725 10.1109/BIBE.2014.71 10.3389/fonc.2020.01030 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) 2021 The Author(s). 2021 The Author(s) 2021 |
| Copyright_xml | – notice: 2021 The Author(s) – notice: 2021 The Author(s). – notice: 2021 The Author(s) 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1016/j.csbj.2021.06.030 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2001-0370 |
| EndPage | 3746 |
| ExternalDocumentID | oai_doaj_org_article_63d6bbc42bb848208cc7a4543a64694f PMC8258788 10_1016_j_csbj_2021_06_030 S2001037021002683 |
| GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c4460-be6cabd52f934f57cdca27786c81cac5f833aafd15b2361c082a0fa46b0d5d5c3 |
| IEDL.DBID | DOA |
| ISSN | 2001-0370 |
| IngestDate | Fri Oct 03 12:28:08 EDT 2025 Tue Nov 04 01:53:21 EST 2025 Fri Jul 11 16:25:30 EDT 2025 Thu Jul 10 19:19:19 EDT 2025 Tue Nov 18 22:09:42 EST 2025 Sat Nov 29 05:55:08 EST 2025 Sat Aug 31 16:00:59 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Multi-view Integration strategy Multi-omics Machine learning Network |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4460-be6cabd52f934f57cdca27786c81cac5f833aafd15b2361c082a0fa46b0d5d5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-9843-504X 0000-0002-2466-2012 |
| OpenAccessLink | https://doaj.org/article/63d6bbc42bb848208cc7a4543a64694f |
| PMID | 34285775 |
| PQID | 2553817386 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_63d6bbc42bb848208cc7a4543a64694f pubmedcentral_primary_oai_pubmedcentral_nih_gov_8258788 proquest_miscellaneous_2636384943 proquest_miscellaneous_2553817386 crossref_primary_10_1016_j_csbj_2021_06_030 crossref_citationtrail_10_1016_j_csbj_2021_06_030 elsevier_sciencedirect_doi_10_1016_j_csbj_2021_06_030 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computational and structural biotechnology journal |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Research Network of Computational and Structural Biotechnology Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Research Network of Computational and Structural Biotechnology – name: Elsevier |
| References | Sun, Wang, Li (b0775) 2019; 16 Kim D-C et al. Integration of DNA Methylation, Copy Number Variation, and Gene Expression for Gene Regulatory Network Inference and Application to Psychiatric Disorders. in 2014 IEEE International Conference on Bioinformatics and Bioengineering 238–242 (2014). Fellinghauer, Bühlmann, Ryffel, von Rhein, Reinhardt (b0385) 2013; 64 Suzuki, Tomioka (b0445) 2011; 85 Xie (b0275) 1993; 7 Morello, Salomone, D’Agata, Conforti, Cavallaro (b0195) 2020; 14 EL-Manzalawy Y, Hsieh T-Y, Shivakumar M, Kim D, Honavar V. Min-Redundancy and Max-Relevance Multi-view Feature Selection for Predicting Ovarian Cancer Survival using Multi-omics Data. doi:10.1101/317982. Joachims T. Support Vector Machines. Learning to Classify Text Using Support Vector Machines 35–44 (2002) doi: 10.1007/978-1-4615-0907-3_3. Zhang, Li, Peng, Wang (b0455) 2016; 13 Liu Q, Hu Z, Jiang R, Zhou M. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. doi:10.1101/2020.07.08.192930. Vinga (b0255) 2021; 22 Herrmann, Probst, Hornung, Jurinovic, Boulesteix (b0840) 2020 Kaplan, Lock (b0765) 2017; 16 Murodzhon A, Alberto A, Montemanni R, Francesco B, Ivo K. OmicsNet: Integration of Multi-Omics Data using Path Analysis in Multilayer Networks. (2017). Yue (b0550) 2019 Mo, Li, Adeegbe, Peng, Chan (b0750) 2020; 3 Luo, Tao, Ramamohanarao, Xu, Wen (b0680) 2016 Lee, Zhang, Poleksic, Xie (b0145) 2019; 10 Zitnik (b0085) 2019; 50 Zhu (b0425) 2017; 7 Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. (1999). Xuan (b0565) 2019; 10 Raileanu, Stoffel (b0240) 2004; 41 Kim SY, Choe EK, Shivakumar M, Kim D, Sohn K-A. Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer. doi: 10.1101/2020.07.22.163949. Mariette J, Villa-Vialaneix N. Unsupervised multiple kernel learning for heterogeneous data integration. doi: 10.1101/139287. Ahmed (b0010) 2020; 14 Schölkopf, Smola, Müller (b0265) 1998; 10 Hardoon, Shawe-Taylor (b0295) 2011; 83 Tepeli, Ünal, Akdemir, Tastan (b0590) 2021; 36 Nicora, Vitali, Dagliati, Geifman, Bellazzi (b0105) 2020; 10 Deng (b0365) 2020; 60 Chai (b0795) 2017; 41 Mirza (b0205) 2019; 10 Yang, Cao, He, Wang, Cui (b0420) 2018 Mo (b0735) 2018; 19 Lock, Hoadley, Marron, Nobel (b0755) 2013; 7 Lanckriet GRG. Learning the kernel matrix with semideønite programming. https://www.jmlr.org/papers/volume5/lanckriet04a/lanckriet04a.pdf (2004). Zhang (b0660) 2012; 40 Nounou, Bakshi, Goel, Shen (b0270) 2002; 16 Lee, Hastie (b0375) 2015; 24 Mo (b0730) 2013; 110 Dahal, Yurkovich, Xu, Palsson, Yang (b0045) 2020; 20 Grossi, Buscema (b0340) 2007; 19 Zarayeneh (b0055) 2017; 18 Peng, Long, Ding (b0245) 2005; 27 Luo (b0555) 2017; 8 Nelson (b0545) 2019; 10 Burney, Lakhtakia (b0015) 2017; 17 Meng (b0120) 2016; 17 Xie (b0345) 2019; 10 Zeng (b0575) 2019; 35 Wei, Zhang, Weng, Chen, Cai (b0850) 2020 Wang, Zhu, Pierson, Ramazzotti, Batzoglou (b0465) 2017; 14 Balluff (b0820) 2019; 13 Cavill, Jennen, Kleinjans, Briedé (b0150) 2016; 17 Chierici (b0510) 2020; 10 Cai, Bazerque, Giannakis (b0810) 2013; 9 Canzler (b0165) 2020; 94 Wosiak, Zakrzewska (b0230) 2018; 2018 Ponzi E, Thoresen M, Nøst, TH, Møllersen K. Integrative analyses of multi-omics data improves model predictions: an application to lung cancer. bioRxiv 2020.10.02.299834 (2020) doi: 10.1101/2020.10.02.299834. Gligorijević, Barot, Bonneau (b0570) 2018; 34 Wang T. et al. MORONET: Multi-omics Integration via Graph Convolutional Networks for Biomedical Data Classification. doi: 10.1101/2020.07.02.184705. Mantini, Pham, Piersma, Jimenez (b0160) 2021; 21 Higdon (b0080) 2015; 19 Spicker, Brunak, Frederiksen, Toft (b0330) 2008; 102 Petralia, Wang, Yang, Tu (b0395) 2015; 31 Shang, Liu (b0520) 2020; 119 Gönen, Alpaydın (b0430) 2011; 12 Chen Y, de Rijke M. A Collective Variational Autoencoder for Top-N Recommendation with Side Information. in Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems 3–9 (Association for Computing Machinery, 2018). Zitnik, Agrawal, Leskovec (b0610) 2018; 34 Ringnér (b0260) 2008; 26 Leon-Mimila, Wang, Huertas-Vazquez (b0185) 2019; 6 Yang, Chen, Li, Wang (b0645) 2021 Peharz, Pernkopf (b0300) 2012; 80 Wu (b0115) 2019; 8 Culibrk, Croft, Tebbutt (b0170) 2016; 20 Paul D, Chakraborty S, Das S, Xu J. Kernel k-Means, By All Means: Algorithms and Strong Consistency. arXiv [stat.ML] (2020). Wu, Zhang, Jiang, Ma (b0800) 2018; 168 Tini, Marchetti, Priami, Scott-Boyer (b0070) 2019; 20 Tang TM, Allen GI. Integrated Principal Components Analysis. arXiv [stat.ME] (2018). De Tayrac, Lê, Aubry, Mosser, Husson (b0315) 2009; 10 Meng, Kuster, Culhane, Gholami (b0690) 2014; 15 Fujita, Mizuarai, Murakami, Nakai (b0700) 2018; 8 Wang, Zhou, Arnold (b0600) 2020; 36 Argelaguet (b0710) 2020; 21 Zierer (b0220) 2016; 6 Ritchie, Holzinger, Li, Pendergrass, Kim (b0110) 2015; 16 Zhu, Xie, Han, Guo (b0860) 2020; 12 Cho, Berger, Peng (b0560) 2015; 9029 Yan, Risacher, Shen, Saykin (b0050) 2018; 19 Tenenhaus, Tenenhaus, Groenen (b0685) 2017; 82 Menyhárt, Győrffy (b0030) 2021; 19 Khan (b0175) 2019; 5 Tao (b0450) 2019; 10 Wani N, Raza K. Integrative Approaches to Reconstruct Regulatory Networks From Multi-Omics Data: A Review of State-of-the-Art Methods. doi:10.20944/preprints201804.0352.v1. Chalise, Ni, Fridley (b0695) 2020; 118 Martorell-Marugán J. et al. Deep Learning in Omics Data Analysis and Precision Medicine. in Computational Biology (ed. Husi, H.) (Codon Publications, 2019). Wen (b0500) 2021; 22 Rappoport, Safra, Shamir (b0060) 2020; 16 Liu R, Niang N, Saporta G, Wang H. Sparse Correspondence Analysis for Contingency Tables. arXiv [stat.ME] (2020). Hawe, Theis, Heinig (b0405) 2019; 10 Kim, Jeong, Kim, Moon, Sohn (b0535) 2019; 14 Zhang (b0625) 2018; 9 Zhao, Gao, Xu, Zhou, Wang (b0745) 2021; 21 Ma, Ren, Fenyö (b0825) 2016; 2016 Pierre-Jean, Deleuze, Le Floch, Mauger (b0845) 2020; 21 Crick (b0215) 1970; 227 Zhu (b0835) 2020; 10 Labory (b0190) 2020; 7 Argelaguet (b0705) 2018; 14 Jarada T, Rokne J, Alhajj R. SNF-NN: Computational Method To Predict Drug-Disease Interactions Using Similarity Network Fusion and Neural Networks. doi:10.21203/rs.3.rs-56433/v1. Ma (b0740) 2021; 13 Valdeolivas (b0515) 2019; 35 Bersanelli (b0090) 2016; 17 Wang (b0785) 2013; 29 McCabe, Lin, Love (b0855) 2020; 21 Talukder, Barham, Li, Hu (b0355) 2020 Manatakis, Raghu, Benos (b0390) 2018; 34 Jaccard, Cornuz, Waeber, Guessous (b0020) 2018; 33 Rakotomamonjy, Bach, Canu, Grandvalet (b0440) 2008; 9 Kononenko I. Estimating attributes: Analysis and extensions of RELIEF. in Machine Learning: ECML-94 171–182 (Springer Berlin Heidelberg, 1994). Sompairac (b0285) 2019; 20 Feng, Jiang, Hannig, Marron (b0760) 2018; 166 Palou-Márquez, Subirana, Nonell, Fernández-Sanlés, Elosua (b0720) 2021; 13 Chauvel, Novoloaca, Veyre, Reynier, Becker (b0135) 2020; 21 Islam (b0640) 2020; 18 Chaudhary, Poirion, Lu, Garmire (b0350) 2018; 24 Tebani, Afonso, Marret, Bekri (b0025) 2016; 17 Sun, Hu (b0040) 2016; 93 Altenbuchinger, Weihs, Quackenbush, Grabe, Zacharias (b0380) 2020; 1863 Huang, Chaudhary, Garmire (b0095) 2017; 8 Li, Wu, Ngom (b0100) 2018; 19 Domingos (b0210) 2012; 55 Hall MA. Correlation-based feature selection for machine learning. http://www.cs.waikato.ac.nz/~ml/publications/1999/99MH-Thesis.pdf. Gaynanova, Li (b0650) 2019; 75 Zhong (b0400) 2020; 11 Shen, Olshen, Ladanyi (b0725) 2009; 25 Xu (b0630) 2019; 20 Hasin, Seldin, Lusis (b0035) 2017; 18 Manica, Cadow, Mathis, Martínez (b0585) 2019; 5 Ma, Zhang (b0495) 2018; 145 Lee, Seung (b0655) 1999; 401 Fortelny N, Bock C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. doi:10.1101/794503. Liu (b0530) 2013; 29 Clark, Dayon, Masoodi, Bowman, Popp (b0715) 2021; 13 Zhu, Zhao, Zhao, Ma (b0790) 2016; 17 Rappoport, Shamir (b0130) 2018; 46 Zou, Hastie, Tibshirani (b0290) 2006; 15 Franco (b0125) 2021; 13 Hao, Kim, Mallavarapu, Oh, Kang (b0370) 2019; 12 Wang (b0490) 2014; 11 Cantini (b0675) 2021; 12 Wilson CM, Li K, Kuan P-F, Wang X. Multiple-kernel learning for genomic data mining and prediction. doi: 10.1101/415950. Song (b0200) 2020; 11 Misra, Langefeld, Olivier, Cox (b0005) 2018 He, Zhang, Yuan, Zhang (b0460) 2021; 11 Beh (b0280) 2007; 72 Park, Kim, Moon, Park (b0310) 2020; 21 Singha, M. et al. GraphGR: A graph neural network to predict the effect of pharmacotherapy on the cancer cell growth. doi: 10.1101/2020.05.20.107458. Sharifi-Noghabi, Zolotareva, Collins, Ester (b0065) 2019; 35 Lin, Zhang, Cao, Li, Du (b0635) 2020; 11 Ramazzotti, Lal, Wang, Batzoglou, Sidow (b0470) 2018; 9 Muzio, O’Bray, Borgwardt (b0620) 2021; 22 Chalise, Fridley (b0670) 2017; 12 Eicher (b0155) 2020; 10 Wu (b0595) 2021; 32 Jamil (b0180) 2020; 11 Scornet E. Trees, forests, and impurity-based variable importance. arXiv [math.ST] (2020). Speicher, Pfeifer (b0480) 2015; 31 McDonald (b0830) 2019; 20 Abdi, Williams, Valentin (b0335) 2013; 5 Yang, Michailidis (b0665) 2015; btv544 Zierer (10.1016/j.csbj.2021.06.030_b0220) 2016; 6 Rakotomamonjy (10.1016/j.csbj.2021.06.030_b0440) 2008; 9 Clark (10.1016/j.csbj.2021.06.030_b0715) 2021; 13 Lin (10.1016/j.csbj.2021.06.030_b0635) 2020; 11 Jaccard (10.1016/j.csbj.2021.06.030_b0020) 2018; 33 Spicker (10.1016/j.csbj.2021.06.030_b0330) 2008; 102 Dahal (10.1016/j.csbj.2021.06.030_b0045) 2020; 20 Tao (10.1016/j.csbj.2021.06.030_b0450) 2019; 10 10.1016/j.csbj.2021.06.030_b0435 Gaynanova (10.1016/j.csbj.2021.06.030_b0650) 2019; 75 Bersanelli (10.1016/j.csbj.2021.06.030_b0090) 2016; 17 Manica (10.1016/j.csbj.2021.06.030_b0585) 2019; 5 Chierici (10.1016/j.csbj.2021.06.030_b0510) 2020; 10 Abdi (10.1016/j.csbj.2021.06.030_b0335) 2013; 5 Ma (10.1016/j.csbj.2021.06.030_b0740) 2021; 13 Ritchie (10.1016/j.csbj.2021.06.030_b0110) 2015; 16 Argelaguet (10.1016/j.csbj.2021.06.030_b0705) 2018; 14 10.1016/j.csbj.2021.06.030_b0540 Feng (10.1016/j.csbj.2021.06.030_b0760) 2018; 166 Mo (10.1016/j.csbj.2021.06.030_b0730) 2013; 110 10.1016/j.csbj.2021.06.030_b0140 Deng (10.1016/j.csbj.2021.06.030_b0365) 2020; 60 Yang (10.1016/j.csbj.2021.06.030_b0420) 2018 Song (10.1016/j.csbj.2021.06.030_b0200) 2020; 11 10.1016/j.csbj.2021.06.030_b0780 Park (10.1016/j.csbj.2021.06.030_b0310) 2020; 21 Argelaguet (10.1016/j.csbj.2021.06.030_b0710) 2020; 21 Wu (10.1016/j.csbj.2021.06.030_b0595) 2021; 32 Leon-Mimila (10.1016/j.csbj.2021.06.030_b0185) 2019; 6 10.1016/j.csbj.2021.06.030_b0305 Zhang (10.1016/j.csbj.2021.06.030_b0625) 2018; 9 Nounou (10.1016/j.csbj.2021.06.030_b0270) 2002; 16 Lock (10.1016/j.csbj.2021.06.030_b0755) 2013; 7 Ringnér (10.1016/j.csbj.2021.06.030_b0260) 2008; 26 Misra (10.1016/j.csbj.2021.06.030_b0005) 2018 Meng (10.1016/j.csbj.2021.06.030_b0120) 2016; 17 Chaudhary (10.1016/j.csbj.2021.06.030_b0350) 2018; 24 Zarayeneh (10.1016/j.csbj.2021.06.030_b0055) 2017; 18 10.1016/j.csbj.2021.06.030_b0410 Xie (10.1016/j.csbj.2021.06.030_b0275) 1993; 7 10.1016/j.csbj.2021.06.030_b0250 Grossi (10.1016/j.csbj.2021.06.030_b0340) 2007; 19 Zhang (10.1016/j.csbj.2021.06.030_b0660) 2012; 40 10.1016/j.csbj.2021.06.030_b0770 Chauvel (10.1016/j.csbj.2021.06.030_b0135) 2020; 21 Nicora (10.1016/j.csbj.2021.06.030_b0105) 2020; 10 10.1016/j.csbj.2021.06.030_b0815 Sompairac (10.1016/j.csbj.2021.06.030_b0285) 2019; 20 10.1016/j.csbj.2021.06.030_b0415 Burney (10.1016/j.csbj.2021.06.030_b0015) 2017; 17 Gligorijević (10.1016/j.csbj.2021.06.030_b0570) 2018; 34 De Tayrac (10.1016/j.csbj.2021.06.030_b0315) 2009; 10 Wen (10.1016/j.csbj.2021.06.030_b0500) 2021; 22 Suzuki (10.1016/j.csbj.2021.06.030_b0445) 2011; 85 Gönen (10.1016/j.csbj.2021.06.030_b0430) 2011; 12 Zhang (10.1016/j.csbj.2021.06.030_b0455) 2016; 13 Meng (10.1016/j.csbj.2021.06.030_b0690) 2014; 15 Zeng (10.1016/j.csbj.2021.06.030_b0575) 2019; 35 Rappoport (10.1016/j.csbj.2021.06.030_b0060) 2020; 16 Domingos (10.1016/j.csbj.2021.06.030_b0210) 2012; 55 Vinga (10.1016/j.csbj.2021.06.030_b0255) 2021; 22 10.1016/j.csbj.2021.06.030_b0485 Tenenhaus (10.1016/j.csbj.2021.06.030_b0685) 2017; 82 Franco (10.1016/j.csbj.2021.06.030_b0125) 2021; 13 10.1016/j.csbj.2021.06.030_b0360 Cho (10.1016/j.csbj.2021.06.030_b0560) 2015; 9029 Chai (10.1016/j.csbj.2021.06.030_b0795) 2017; 41 Sharifi-Noghabi (10.1016/j.csbj.2021.06.030_b0065) 2019; 35 He (10.1016/j.csbj.2021.06.030_b0460) 2021; 11 10.1016/j.csbj.2021.06.030_b0525 Shang (10.1016/j.csbj.2021.06.030_b0520) 2020; 119 Fujita (10.1016/j.csbj.2021.06.030_b0700) 2018; 8 Raileanu (10.1016/j.csbj.2021.06.030_b0240) 2004; 41 Balluff (10.1016/j.csbj.2021.06.030_b0820) 2019; 13 10.1016/j.csbj.2021.06.030_b0805 Yan (10.1016/j.csbj.2021.06.030_b0050) 2018; 19 Wosiak (10.1016/j.csbj.2021.06.030_b0230) 2018; 2018 10.1016/j.csbj.2021.06.030_b0475 Zitnik (10.1016/j.csbj.2021.06.030_b0610) 2018; 34 Eicher (10.1016/j.csbj.2021.06.030_b0155) 2020; 10 10.1016/j.csbj.2021.06.030_b0235 Beh (10.1016/j.csbj.2021.06.030_b0280) 2007; 72 10.1016/j.csbj.2021.06.030_b0075 Wang (10.1016/j.csbj.2021.06.030_b0490) 2014; 11 Wu (10.1016/j.csbj.2021.06.030_b0115) 2019; 8 Fellinghauer (10.1016/j.csbj.2021.06.030_b0385) 2013; 64 Khan (10.1016/j.csbj.2021.06.030_b0175) 2019; 5 Kim (10.1016/j.csbj.2021.06.030_b0535) 2019; 14 Tepeli (10.1016/j.csbj.2021.06.030_b0590) 2021; 36 Wei (10.1016/j.csbj.2021.06.030_b0850) 2020 Yang (10.1016/j.csbj.2021.06.030_b0645) 2021 Talukder (10.1016/j.csbj.2021.06.030_b0355) 2020 Sun (10.1016/j.csbj.2021.06.030_b0040) 2016; 93 Liu (10.1016/j.csbj.2021.06.030_b0530) 2013; 29 Nelson (10.1016/j.csbj.2021.06.030_b0545) 2019; 10 Muzio (10.1016/j.csbj.2021.06.030_b0620) 2021; 22 Menyhárt (10.1016/j.csbj.2021.06.030_b0030) 2021; 19 Morello (10.1016/j.csbj.2021.06.030_b0195) 2020; 14 Mantini (10.1016/j.csbj.2021.06.030_b0160) 2021; 21 Li (10.1016/j.csbj.2021.06.030_b0100) 2018; 19 Mo (10.1016/j.csbj.2021.06.030_b0750) 2020; 3 Zhu (10.1016/j.csbj.2021.06.030_b0425) 2017; 7 10.1016/j.csbj.2021.06.030_b0580 Huang (10.1016/j.csbj.2021.06.030_b0095) 2017; 8 Yang (10.1016/j.csbj.2021.06.030_b0665) 2015; btv544 Hawe (10.1016/j.csbj.2021.06.030_b0405) 2019; 10 10.1016/j.csbj.2021.06.030_b0505 Xu (10.1016/j.csbj.2021.06.030_b0630) 2019; 20 Herrmann (10.1016/j.csbj.2021.06.030_b0840) 2020 Rappoport (10.1016/j.csbj.2021.06.030_b0130) 2018; 46 Hardoon (10.1016/j.csbj.2021.06.030_b0295) 2011; 83 10.1016/j.csbj.2021.06.030_b0225 Yue (10.1016/j.csbj.2021.06.030_b0550) 2019 Shen (10.1016/j.csbj.2021.06.030_b0725) 2009; 25 Petralia (10.1016/j.csbj.2021.06.030_b0395) 2015; 31 Zhu (10.1016/j.csbj.2021.06.030_b0860) 2020; 12 Wu (10.1016/j.csbj.2021.06.030_b0800) 2018; 168 Zou (10.1016/j.csbj.2021.06.030_b0290) 2006; 15 Canzler (10.1016/j.csbj.2021.06.030_b0165) 2020; 94 Chalise (10.1016/j.csbj.2021.06.030_b0670) 2017; 12 Kaplan (10.1016/j.csbj.2021.06.030_b0765) 2017; 16 Chalise (10.1016/j.csbj.2021.06.030_b0695) 2020; 118 Xie (10.1016/j.csbj.2021.06.030_b0345) 2019; 10 Zhong (10.1016/j.csbj.2021.06.030_b0400) 2020; 11 Peharz (10.1016/j.csbj.2021.06.030_b0300) 2012; 80 Ma (10.1016/j.csbj.2021.06.030_b0495) 2018; 145 Tebani (10.1016/j.csbj.2021.06.030_b0025) 2016; 17 Ahmed (10.1016/j.csbj.2021.06.030_b0010) 2020; 14 Higdon (10.1016/j.csbj.2021.06.030_b0080) 2015; 19 10.1016/j.csbj.2021.06.030_b0615 Jamil (10.1016/j.csbj.2021.06.030_b0180) 2020; 11 Ramazzotti (10.1016/j.csbj.2021.06.030_b0470) 2018; 9 Wang (10.1016/j.csbj.2021.06.030_b0600) 2020; 36 Xuan (10.1016/j.csbj.2021.06.030_b0565) 2019; 10 Schölkopf (10.1016/j.csbj.2021.06.030_b0265) 1998; 10 Altenbuchinger (10.1016/j.csbj.2021.06.030_b0380) 2020; 1863 Peng (10.1016/j.csbj.2021.06.030_b0245) 2005; 27 Luo (10.1016/j.csbj.2021.06.030_b0555) 2017; 8 Zhu (10.1016/j.csbj.2021.06.030_b0835) 2020; 10 Manatakis (10.1016/j.csbj.2021.06.030_b0390) 2018; 34 Cantini (10.1016/j.csbj.2021.06.030_b0675) 2021; 12 Wang (10.1016/j.csbj.2021.06.030_b0785) 2013; 29 Tini (10.1016/j.csbj.2021.06.030_b0070) 2019; 20 Lee (10.1016/j.csbj.2021.06.030_b0655) 1999; 401 Palou-Márquez (10.1016/j.csbj.2021.06.030_b0720) 2021; 13 Crick (10.1016/j.csbj.2021.06.030_b0215) 1970; 227 Zitnik (10.1016/j.csbj.2021.06.030_b0085) 2019; 50 Lee (10.1016/j.csbj.2021.06.030_b0145) 2019; 10 Islam (10.1016/j.csbj.2021.06.030_b0640) 2020; 18 Mirza (10.1016/j.csbj.2021.06.030_b0205) 2019; 10 10.1016/j.csbj.2021.06.030_b0320 Hasin (10.1016/j.csbj.2021.06.030_b0035) 2017; 18 Culibrk (10.1016/j.csbj.2021.06.030_b0170) 2016; 20 Zhu (10.1016/j.csbj.2021.06.030_b0790) 2016; 17 McDonald (10.1016/j.csbj.2021.06.030_b0830) 2019; 20 Sun (10.1016/j.csbj.2021.06.030_b0775) 2019; 16 Speicher (10.1016/j.csbj.2021.06.030_b0480) 2015; 31 McCabe (10.1016/j.csbj.2021.06.030_b0855) 2020; 21 Hao (10.1016/j.csbj.2021.06.030_b0370) 2019; 12 10.1016/j.csbj.2021.06.030_b0605 10.1016/j.csbj.2021.06.030_b0325 Pierre-Jean (10.1016/j.csbj.2021.06.030_b0845) 2020; 21 Lee (10.1016/j.csbj.2021.06.030_b0375) 2015; 24 Cai (10.1016/j.csbj.2021.06.030_b0810) 2013; 9 Mo (10.1016/j.csbj.2021.06.030_b0735) 2018; 19 Valdeolivas (10.1016/j.csbj.2021.06.030_b0515) 2019; 35 Zhao (10.1016/j.csbj.2021.06.030_b0745) 2021; 21 Cavill (10.1016/j.csbj.2021.06.030_b0150) 2016; 17 Wang (10.1016/j.csbj.2021.06.030_b0465) 2017; 14 Luo (10.1016/j.csbj.2021.06.030_b0680) 2016 Labory (10.1016/j.csbj.2021.06.030_b0190) 2020; 7 Ma (10.1016/j.csbj.2021.06.030_b0825) 2016; 2016 |
| References_xml | – volume: 21 start-page: 541 year: 2020 end-page: 552 ident: b0135 article-title: Evaluation of integrative clustering methods for the analysis of multi-omics data publication-title: Brief. Bioinform. – volume: 10 year: 2019 ident: b0345 article-title: Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features publication-title: Genes – volume: 9029 start-page: 62 year: 2015 end-page: 64 ident: b0560 article-title: Diffusion component analysis: unraveling functional topology in biological networks publication-title: Res. Comput. Mol. Biol. – volume: 10 year: 2019 ident: b0565 article-title: Gradient boosting decision tree-based method for predicting interactions between target genes and drugs publication-title: Front Genet – reference: Tang TM, Allen GI. Integrated Principal Components Analysis. arXiv [stat.ME] (2018). – volume: 19 start-page: 949 year: 2021 end-page: 960 ident: b0030 article-title: Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis publication-title: Comput Struct Biotechnol J – volume: 10 year: 2019 ident: b0450 article-title: Classifying breast cancer subtypes using multiple kernel learning based on omics data publication-title: Genes – year: 2021 ident: b0645 article-title: Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data publication-title: Bioinformatics – volume: 35 start-page: 497 year: 2019 end-page: 505 ident: b0515 article-title: Random walk with restart on multiplex and heterogeneous biological networks publication-title: Bioinformatics – volume: 26 start-page: 303 year: 2008 end-page: 304 ident: b0260 article-title: What is principal component analysis? publication-title: Nat Biotechnol – volume: 12 year: 2019 ident: b0370 article-title: Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data publication-title: BMC Med Genomics – volume: 35 start-page: 5191 year: 2019 end-page: 5198 ident: b0575 article-title: deepDR: a network-based deep learning approach to in silico drug repositioning publication-title: Bioinformatics – volume: 83 start-page: 331 year: 2011 end-page: 353 ident: b0295 article-title: Sparse canonical correlation analysis publication-title: Mach. Learn. – volume: 93 start-page: 147 year: 2016 end-page: 190 ident: b0040 article-title: Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases publication-title: Adv Genet – year: 2019 ident: b0550 article-title: Graph embedding on biomedical networks: methods, applications and evaluations publication-title: Bioinformatics – volume: 11 start-page: 888 year: 2020 ident: b0635 article-title: Classifying breast cancer subtypes using deep neural networks based on multi-omics data publication-title: Genes – volume: 3 start-page: 784 year: 2020 ident: b0750 article-title: Integrative multi-omics analysis of muscle-invasive bladder cancer identifies prognostic biomarkers for frontline chemotherapy and immunotherapy publication-title: Commun Biol – volume: 17 year: 2016 ident: b0025 article-title: Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations publication-title: Int J Mol Sci – volume: 12 year: 2017 ident: b0670 article-title: Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm publication-title: PLoS ONE – volume: 5 start-page: 493 year: 2019 end-page: 505 ident: b0175 article-title: Multi-omics strategies uncover host-pathogen interactions publication-title: ACS Infect Dis – volume: 1863 year: 2020 ident: b0380 article-title: Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools publication-title: Biochim Biophys Acta (BBA) – Gene Regulatory Mech – year: 2016 ident: b0680 article-title: Tensor canonical correlation analysis for multi-view dimension reduction publication-title: 2016 IEEE 32nd International Conference on Data Engineering (ICDE) – volume: 85 start-page: 77 year: 2011 end-page: 108 ident: b0445 article-title: SpicyMKL: a fast algorithm for Multiple Kernel Learning with thousands of kernels publication-title: Mach. Learn. – volume: 5 year: 2019 ident: b0585 article-title: PIMKL: Pathway-induced multiple kernel learning publication-title: npj Syst Biol Appl – volume: 14 start-page: 414 year: 2017 end-page: 416 ident: b0465 article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning publication-title: Nat Methods – volume: 102 start-page: 444 year: 2008 end-page: 454 ident: b0330 article-title: Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation publication-title: Toxicol Sci – reference: Wilson CM, Li K, Kuan P-F, Wang X. Multiple-kernel learning for genomic data mining and prediction. doi: 10.1101/415950. – volume: 11 start-page: 333 year: 2014 end-page: 337 ident: b0490 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods – reference: Ponzi E, Thoresen M, Nøst, TH, Møllersen K. Integrative analyses of multi-omics data improves model predictions: an application to lung cancer. bioRxiv 2020.10.02.299834 (2020) doi: 10.1101/2020.10.02.299834. – volume: 16 start-page: 85 year: 2015 end-page: 97 ident: b0110 article-title: Methods of integrating data to uncover genotype–phenotype interactions publication-title: Nat Rev Genet – volume: 21 start-page: 1277 year: 2020 end-page: 1284 ident: b0855 article-title: Consistency and overfitting of multi-omics methods on experimental data publication-title: Brief. Bioinform. – reference: Liu R, Niang N, Saporta G, Wang H. Sparse Correspondence Analysis for Contingency Tables. arXiv [stat.ME] (2020). – volume: 20 start-page: 1269 year: 2019 end-page: 1279 ident: b0070 article-title: Multi-omics integration—a comparison of unsupervised clustering methodologies publication-title: Briefings Bioinf. – volume: 60 start-page: 4497 year: 2020 end-page: 4505 ident: b0365 article-title: Pathway-guided deep neural network toward interpretable and predictive modeling of drug sensitivity publication-title: J Chem Inf Model – volume: 29 start-page: 2169 year: 2013 end-page: 2177 ident: b0530 article-title: Topologically inferring risk-active pathways toward precise cancer classification by directed random walk publication-title: Bioinformatics – volume: 9 start-page: 477 year: 2018 ident: b0625 article-title: Deep learning-based multi-omics data integration reveals two prognostic subtypes in high-risk neuroblastoma publication-title: Front Genet – volume: 8 start-page: 84 year: 2017 ident: b0095 article-title: More is better: recent progress in multi-omics data integration methods publication-title: Front Genet – volume: 12 year: 2020 ident: b0860 article-title: The application of deep learning in cancer prognosis prediction publication-title: Cancers – reference: Hall MA. Correlation-based feature selection for machine learning. http://www.cs.waikato.ac.nz/~ml/publications/1999/99MH-Thesis.pdf. – volume: 18 start-page: 223 year: 2017 ident: b0055 article-title: Integration of multi-omics data for integrative gene regulatory network inference publication-title: Int. J. Data Mining Bioinformatics – volume: 19 start-page: 1370 year: 2018 end-page: 1381 ident: b0050 article-title: Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data publication-title: Brief. Bioinform. – volume: 46 start-page: 10546 year: 2018 end-page: 10562 ident: b0130 article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark publication-title: Nucl Acids Res – volume: 40 start-page: 9379 year: 2012 end-page: 9391 ident: b0660 article-title: Discovery of multi-dimensional modules by integrative analysis of cancer genomic data publication-title: Nucl Acids Res – reference: Paul D, Chakraborty S, Das S, Xu J. Kernel k-Means, By All Means: Algorithms and Strong Consistency. arXiv [stat.ML] (2020). – volume: 10 start-page: 1381 year: 2019 ident: b0145 article-title: Heterogeneous multi-layered network model for omics data integration and analysis publication-title: Front Genet – volume: 22 start-page: 1515 year: 2021 end-page: 1530 ident: b0620 article-title: Biological network analysis with deep learning publication-title: Briefings Bioinf – volume: 14 year: 2018 ident: b0705 article-title: Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets publication-title: Mol Syst Biol – volume: 11 start-page: 944 year: 2020 ident: b0180 article-title: Systematic multi-omics integration (MOI) approach in plant systems biology publication-title: Front Plant Sci – volume: 75 start-page: 1121 year: 2019 end-page: 1132 ident: b0650 article-title: Structural learning and integrative decomposition of multi-view data publication-title: Biometrics – volume: 10 year: 2020 ident: b0155 article-title: Metabolomics and multi-omics integration: a survey of computational methods and resources publication-title: Metabolites – volume: 64 start-page: 132 year: 2013 end-page: 152 ident: b0385 article-title: Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables publication-title: Comput Stat Data Anal – volume: 10 start-page: 1065 year: 2020 ident: b0510 article-title: Integrative network fusion: a multi-omics approach in molecular profiling publication-title: Front Oncol – reference: Wani N, Raza K. Integrative Approaches to Reconstruct Regulatory Networks From Multi-Omics Data: A Review of State-of-the-Art Methods. doi:10.20944/preprints201804.0352.v1. – reference: Murodzhon A, Alberto A, Montemanni R, Francesco B, Ivo K. OmicsNet: Integration of Multi-Omics Data using Path Analysis in Multilayer Networks. (2017). – year: 2020 ident: b0355 article-title: Interpretation of deep learning in genomics and epigenomics publication-title: Briefings Bioinf – volume: 118 year: 2020 ident: b0695 article-title: Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization publication-title: Comput Biol Med – reference: Kim D-C et al. Integration of DNA Methylation, Copy Number Variation, and Gene Expression for Gene Regulatory Network Inference and Application to Psychiatric Disorders. in 2014 IEEE International Conference on Bioinformatics and Bioengineering 238–242 (2014). – volume: 10 year: 2019 ident: b0405 article-title: Inferring interaction networks from multi-omics data publication-title: Front Genet – volume: 22 year: 2021 ident: b0500 article-title: Multi-dimensional data integration algorithm based on random walk with restart publication-title: BMC Bioinf – volume: 6 start-page: 91 year: 2019 ident: b0185 article-title: Relevance of multi-omics studies in cardiovascular diseases publication-title: Front Cardiovasc Med – volume: 22 start-page: 77 year: 2021 end-page: 87 ident: b0255 article-title: Structured sparsity regularization for analyzing high-dimensional omics data publication-title: Brief. Bioinform. – volume: 41 start-page: 779 year: 2017 end-page: 789 ident: b0795 article-title: Analysis of cancer gene expression data with an assisted robust marker identification approach publication-title: Genet Epidemiol – reference: Joachims T. Support Vector Machines. Learning to Classify Text Using Support Vector Machines 35–44 (2002) doi: 10.1007/978-1-4615-0907-3_3. – volume: 24 start-page: 1248 year: 2018 end-page: 1259 ident: b0350 article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin Cancer Res – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: b0655 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 2016 start-page: 52 year: 2016 end-page: 59 ident: b0825 article-title: Breast cancer prognostics using multi-omics data publication-title: AMIA Jt Summits Transl Sci Proc – reference: Martorell-Marugán J. et al. Deep Learning in Omics Data Analysis and Precision Medicine. in Computational Biology (ed. Husi, H.) (Codon Publications, 2019). – volume: 21 year: 2020 ident: b0310 article-title: integrative analysis of multi-omics data based on blockwise sparse principal components publication-title: Int J Mol Sci – volume: 15 start-page: 162 year: 2014 ident: b0690 article-title: A multivariate approach to the integration of multi-omics datasets publication-title: BMC Bioinf – volume: 8 year: 2019 ident: b0115 article-title: A selective review of multi-level omics data integration using variable selection publication-title: High Throughput – reference: EL-Manzalawy Y, Hsieh T-Y, Shivakumar M, Kim D, Honavar V. Min-Redundancy and Max-Relevance Multi-view Feature Selection for Predicting Ovarian Cancer Survival using Multi-omics Data. doi:10.1101/317982. – volume: 13 start-page: 825 year: 2016 end-page: 835 ident: b0455 article-title: Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning publication-title: IEEE/ACM Trans Comput Biol Bioinf – volume: 13 start-page: 71 year: 2021 ident: b0715 article-title: An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer’s disease publication-title: Alzheimers. Res. Ther. – volume: 19 start-page: 325 year: 2018 end-page: 340 ident: b0100 article-title: A review on machine learning principles for multi-view biological data integration publication-title: Brief. Bioinform. – volume: 34 start-page: i848 year: 2018 end-page: i856 ident: b0390 article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks publication-title: Bioinformatics – volume: 20 year: 2019 ident: b0630 article-title: A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data publication-title: BMC Bioinf – volume: 20 year: 2020 ident: b0045 article-title: Synthesizing systems biology knowledge from omics using genome-scale models publication-title: Proteomics – volume: 13 start-page: 6999 year: 2021 end-page: 7019 ident: b0740 article-title: Integrative analysis of genomic, epigenomic and transcriptomic data identified molecular subtypes of esophageal carcinoma publication-title: Aging – volume: 8 year: 2017 ident: b0555 article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information publication-title: Nat Commun – volume: 10 year: 2019 ident: b0205 article-title: Machine learning and integrative analysis of biomedical big data publication-title: Genes – year: 2020 ident: b0850 article-title: Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets publication-title: Briefings Bioinf – volume: 145 start-page: 16 year: 2018 end-page: 24 ident: b0495 article-title: Affinity network fusion and semi-supervised learning for cancer patient clustering publication-title: Methods – volume: 17 start-page: 15 year: 2016 ident: b0090 article-title: Methods for the integration of multi-omics data: mathematical aspects publication-title: BMC Bioinf – reference: Wang T. et al. MORONET: Multi-omics Integration via Graph Convolutional Networks for Biomedical Data Classification. doi: 10.1101/2020.07.02.184705. – volume: 15 start-page: 265 year: 2006 end-page: 286 ident: b0290 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Stat. – volume: 11 year: 2020 ident: b0400 article-title: Inferring regulatory networks from mixed observational data using directed acyclic graphs publication-title: Front Genet – volume: 32 start-page: 4 year: 2021 end-page: 24 ident: b0595 article-title: A Comprehensive survey on graph neural networks publication-title: IEEE Trans Neural Networks Learn Syst – volume: 29 start-page: 149 year: 2013 end-page: 159 ident: b0785 article-title: iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data publication-title: Bioinformatics – volume: 72 start-page: 257 year: 2007 end-page: 284 ident: b0280 article-title: Simple correspondence analysis: a bibliographic review publication-title: Int. Stat. Rev. – volume: 16 year: 2017 ident: b0765 article-title: Prediction with dimension reduction of multiple molecular data sources for patient survival publication-title: Cancer Inf – volume: 16 start-page: 841 year: 2019 end-page: 850 ident: b0775 article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data publication-title: IEEE/ACM Trans Comput Biol Bioinf – volume: 10 start-page: 1299 year: 1998 end-page: 1319 ident: b0265 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput – volume: 17 year: 2017 ident: b0015 article-title: Precision Medicine: Where have we reached and where are we headed? publication-title: Sultan Qaboos Univ. Med. J. – volume: 6 start-page: 37646 year: 2016 ident: b0220 article-title: Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model publication-title: Sci Rep – volume: 50 start-page: 71 year: 2019 end-page: 91 ident: b0085 article-title: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities publication-title: Inf. Fusion – volume: 16 year: 2020 ident: b0060 article-title: MONET: Multi-omic module discovery by omic selection publication-title: PLoS Comput Biol – volume: 7 start-page: 527 year: 1993 end-page: 541 ident: b0275 article-title: Robust principal component analysis by projection pursuit publication-title: J Chemom – volume: 20 start-page: 127 year: 2016 end-page: 138 ident: b0170 article-title: Systems biology approaches for host-fungal interactions: an expanding multi-omics frontier publication-title: OMICS – volume: 20 year: 2019 ident: b0830 article-title: Molecular characterization of non-responders to chemotherapy in serous ovarian cancer publication-title: Int J Mol Sci – volume: 18 start-page: 2185 year: 2020 end-page: 2199 ident: b0640 article-title: An integrative deep learning framework for classifying molecular subtypes of breast cancer publication-title: Comput Struct Biotechnol J – reference: Kim SY, Choe EK, Shivakumar M, Kim D, Sohn K-A. Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer. doi: 10.1101/2020.07.22.163949. – volume: 82 start-page: 737 year: 2017 end-page: 777 ident: b0685 article-title: Regularized generalized canonical correlation analysis: a framework for sequential multiblock component methods publication-title: Psychometrika – volume: 13 year: 2019 ident: b0820 article-title: Integrative clustering in mass spectrometry imaging for enhanced patient stratification publication-title: Proteomics Clin Appl – volume: 166 start-page: 241 year: 2018 end-page: 265 ident: b0760 article-title: Angle-based joint and individual variation explained publication-title: J Multivariate Anal – volume: 10 start-page: 1 year: 2009 end-page: 17 ident: b0315 article-title: Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach publication-title: BMC Genomics – volume: 80 start-page: 38 year: 2012 end-page: 46 ident: b0300 article-title: Sparse nonnegative matrix factorization with ℓ0-constraints publication-title: Neurocomputing – volume: 21 year: 2020 ident: b0710 article-title: MOFA: a statistical framework for comprehensive integration of multi-modal single-cell data publication-title: Genome Biol – year: 2020 ident: b0840 article-title: Large-scale benchmark study of survival prediction methods using multi-omics data publication-title: Brief. Bioinform. – volume: 21 start-page: 2011 year: 2020 end-page: 2030 ident: b0845 article-title: Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration publication-title: Brief. Bioinform. – volume: 19 start-page: 1046 year: 2007 end-page: 1054 ident: b0340 article-title: Introduction to artificial neural networks publication-title: Eur J Gastroenterol Hepatol – reference: Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. (1999). – reference: Chen Y, de Rijke M. A Collective Variational Autoencoder for Top-N Recommendation with Side Information. in Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems 3–9 (Association for Computing Machinery, 2018). – volume: 2018 year: 2018 ident: b0230 article-title: Integrating correlation-based feature selection and clustering for improved cardiovascular disease diagnosis publication-title: Complexity – reference: Liu Q, Hu Z, Jiang R, Zhou M. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. doi:10.1101/2020.07.08.192930. – volume: 10 start-page: 1030 year: 2020 ident: b0105 article-title: Integrated multi-omics analyses in oncology: a review of machine learning methods and tools publication-title: Front Oncol – volume: 25 start-page: 2906 year: 2009 end-page: 2912 ident: b0725 article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis publication-title: Bioinformatics – volume: 18 start-page: 83 year: 2017 ident: b0035 article-title: Multi-omics approaches to disease publication-title: Genome Biol – volume: 7 year: 2013 ident: b0755 article-title: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types publication-title: Ann Appl Statistics – reference: Kononenko I. Estimating attributes: Analysis and extensions of RELIEF. in Machine Learning: ECML-94 171–182 (Springer Berlin Heidelberg, 1994). – reference: Singha, M. et al. GraphGR: A graph neural network to predict the effect of pharmacotherapy on the cancer cell growth. doi: 10.1101/2020.05.20.107458. – reference: Scornet E. Trees, forests, and impurity-based variable importance. arXiv [math.ST] (2020). – volume: 12 start-page: 2211 year: 2011 end-page: 2268 ident: b0430 article-title: Multiple kernel learning algorithms publication-title: J. Mach. Learn. Res. – volume: 17 start-page: 891 year: 2016 end-page: 901 ident: b0150 article-title: Transcriptomic and metabolomic data integration publication-title: Brief. Bioinform. – volume: 94 start-page: 371 year: 2020 end-page: 388 ident: b0165 article-title: Prospects and challenges of multi-omics data integration in toxicology publication-title: Arch Toxicol – reference: Jarada T, Rokne J, Alhajj R. SNF-NN: Computational Method To Predict Drug-Disease Interactions Using Similarity Network Fusion and Neural Networks. doi:10.21203/rs.3.rs-56433/v1. – volume: 34 start-page: 3873 year: 2018 end-page: 3881 ident: b0570 article-title: deepNF: deep network fusion for protein function prediction publication-title: Bioinformatics – reference: Fortelny N, Bock C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. doi:10.1101/794503. – volume: 36 start-page: 5237 year: 2021 end-page: 5246 ident: b0590 article-title: PAMOGK: a pathway graph kernel-based multiomics approach for patient clustering publication-title: Bioinformatics – year: 2018 ident: b0420 article-title: Multilevel heterogeneous omics data integration with kernel fusion publication-title: Briefings Bioinf – reference: Mariette J, Villa-Vialaneix N. Unsupervised multiple kernel learning for heterogeneous data integration. doi: 10.1101/139287. – volume: 9 year: 2013 ident: b0810 article-title: Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations publication-title: PLoS Comput Biol – volume: 11 year: 2021 ident: b0460 article-title: Integrating somatic mutations for breast cancer survival prediction using machine learning methods publication-title: Front Genet – volume: 9 year: 2018 ident: b0470 article-title: Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival publication-title: Nat Commun – volume: 14 year: 2020 ident: b0010 article-title: Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis publication-title: Hum. Genomics – volume: 19 start-page: 71 year: 2018 end-page: 86 ident: b0735 article-title: A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data publication-title: Biostatistics – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b0245 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 227 start-page: 561 year: 1970 end-page: 563 ident: b0215 article-title: Central dogma of molecular biology publication-title: Nature – volume: 34 start-page: i457 year: 2018 end-page: i466 ident: b0610 article-title: Modeling polypharmacy side effects with graph convolutional networks publication-title: Bioinformatics – volume: 10 start-page: 18040 year: 2020 ident: b0835 article-title: Ensemble transfer learning for the prediction of anti-cancer drug response publication-title: Sci Rep – volume: 17 start-page: 628 year: 2016 end-page: 641 ident: b0120 article-title: Dimension reduction techniques for the integrative analysis of multi-omics data publication-title: Brief. Bioinform. – volume: btv544 year: 2015 ident: b0665 article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data – volume: 168 start-page: 119 year: 2018 end-page: 130 ident: b0800 article-title: Robust network-based analysis of the associations between (epi)genetic measurements publication-title: J. Multivar. Anal. – volume: 9 start-page: 2491 year: 2008 end-page: 2521 ident: b0440 article-title: SimpleMKL publication-title: J. Mach. Learn. Res. – volume: 8 year: 2018 ident: b0700 article-title: Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses publication-title: Sci Rep – volume: 110 start-page: 4245 year: 2013 end-page: 4250 ident: b0730 article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 35 start-page: i501 year: 2019 end-page: i509 ident: b0065 article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction publication-title: Bioinformatics – volume: 13 year: 2021 ident: b0125 article-title: Performance comparison of deep learning autoencoders for cancer subtype detection using multi-omics data publication-title: Cancers – volume: 21 year: 2021 ident: b0160 article-title: Computational analysis of phosphoproteomics data in multi-omics cancer studies publication-title: Proteomics – volume: 41 start-page: 77 year: 2004 end-page: 93 ident: b0240 article-title: Theoretical comparison between the Gini index and information gain criteria publication-title: Ann. Math. Artif. Intell. – volume: 36 start-page: i525 year: 2020 end-page: i533 ident: b0600 article-title: Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing publication-title: Bioinformatics – volume: 119 year: 2020 ident: b0520 article-title: Network-based prioritization of cancer genes by integrative ranks from multi-omics data publication-title: Comput Biol Med – volume: 31 start-page: i197 year: 2015 end-page: i205 ident: b0395 article-title: Integrative random forest for gene regulatory network inference publication-title: Bioinformatics – volume: 12 year: 2021 ident: b0675 article-title: Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer publication-title: Nat Commun – volume: 10 year: 2019 ident: b0545 article-title: To embed or not: network embedding as a paradigm in computational biology publication-title: Front Genet – volume: 14 year: 2020 ident: b0195 article-title: From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis publication-title: Front Neurosci – volume: 17 start-page: 605 year: 2016 end-page: 618 ident: b0790 article-title: Integrating multidimensional omics data for cancer outcome publication-title: Biostatistics – volume: 7 year: 2017 ident: b0425 article-title: Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers publication-title: Sci Rep – volume: 55 start-page: 78 year: 2012 end-page: 87 ident: b0210 article-title: A few useful things to know about machine learning publication-title: Commun ACM – volume: 5 start-page: 149 year: 2013 end-page: 179 ident: b0335 article-title: Multiple factor analysis: principal component analysis for multitable and multiblock data sets: Multiple factor analysis publication-title: Wiley Interdiscip Rev Comput Stat – volume: 7 year: 2020 ident: b0190 article-title: Multi-omics approaches to improve mitochondrial disease diagnosis: challenges, advances, and perspectives publication-title: Front Mol Biosci – volume: 33 year: 2018 ident: b0020 article-title: Evidence-based precision medicine is needed to move toward general internal precision medicine publication-title: J Gen Intern Med – volume: 16 start-page: 576 year: 2002 end-page: 595 ident: b0270 article-title: Bayesian principal component analysis publication-title: J Chemom – volume: 31 start-page: i268 year: 2015 end-page: i275 ident: b0480 article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery publication-title: Bioinformatics – volume: 11 year: 2020 ident: b0200 article-title: A review of integrative imputation for multi-omics datasets publication-title: Front Genet – volume: 14 year: 2019 ident: b0535 article-title: Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies publication-title: Biol Direct – volume: 21 start-page: 257 year: 2021 ident: b0745 article-title: Multi-omics analysis of genomics, epigenomics and transcriptomics for molecular subtypes and core genes for lung adenocarcinoma publication-title: BMC Cancer – volume: 13 start-page: 75 year: 2021 ident: b0720 article-title: DNA methylation and gene expression integration in cardiovascular disease publication-title: Clin. Epigenetics – year: 2018 ident: b0005 article-title: Integrated omics: tools, advances, and future approaches publication-title: J Mol Endocrinol – volume: 24 start-page: 230 year: 2015 end-page: 253 ident: b0375 article-title: Learning the structure of mixed graphical models publication-title: J Comput Graph Stat – volume: 19 start-page: 197 year: 2015 end-page: 208 ident: b0080 article-title: The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders publication-title: OMICS – volume: 20 year: 2019 ident: b0285 article-title: Independent component analysis for unraveling the complexity of cancer omics datasets publication-title: Int J Mol Sci – reference: Lanckriet GRG. Learning the kernel matrix with semideønite programming. https://www.jmlr.org/papers/volume5/lanckriet04a/lanckriet04a.pdf (2004). – volume: 21 start-page: 541 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0135 article-title: Evaluation of integrative clustering methods for the analysis of multi-omics data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz015 – volume: 83 start-page: 331 year: 2011 ident: 10.1016/j.csbj.2021.06.030_b0295 article-title: Sparse canonical correlation analysis publication-title: Mach. Learn. doi: 10.1007/s10994-010-5222-7 – volume: 110 start-page: 4245 year: 2013 ident: 10.1016/j.csbj.2021.06.030_b0730 article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1208949110 – volume: 13 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0820 article-title: Integrative clustering in mass spectrometry imaging for enhanced patient stratification publication-title: Proteomics Clin Appl doi: 10.1002/prca.201800137 – volume: 11 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0200 article-title: A review of integrative imputation for multi-omics datasets publication-title: Front Genet doi: 10.3389/fgene.2020.570255 – volume: 16 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0765 article-title: Prediction with dimension reduction of multiple molecular data sources for patient survival publication-title: Cancer Inf – volume: 35 start-page: 497 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0515 article-title: Random walk with restart on multiplex and heterogeneous biological networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty637 – volume: 12 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0675 article-title: Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer publication-title: Nat Commun doi: 10.1038/s41467-020-20430-7 – volume: 14 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0705 article-title: Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets publication-title: Mol Syst Biol doi: 10.15252/msb.20178124 – volume: 94 start-page: 371 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0165 article-title: Prospects and challenges of multi-omics data integration in toxicology publication-title: Arch Toxicol doi: 10.1007/s00204-020-02656-y – volume: 6 start-page: 91 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0185 article-title: Relevance of multi-omics studies in cardiovascular diseases publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2019.00091 – volume: 16 start-page: 576 year: 2002 ident: 10.1016/j.csbj.2021.06.030_b0270 article-title: Bayesian principal component analysis publication-title: J Chemom doi: 10.1002/cem.759 – volume: 10 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0450 article-title: Classifying breast cancer subtypes using multiple kernel learning based on omics data publication-title: Genes doi: 10.3390/genes10030200 – volume: 8 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0700 article-title: Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses publication-title: Sci Rep doi: 10.1038/s41598-018-28066-w – volume: 10 start-page: 1299 year: 1998 ident: 10.1016/j.csbj.2021.06.030_b0265 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput doi: 10.1162/089976698300017467 – volume: 93 start-page: 147 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0040 article-title: Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases publication-title: Adv Genet doi: 10.1016/bs.adgen.2015.11.004 – year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0355 article-title: Interpretation of deep learning in genomics and epigenomics publication-title: Briefings Bioinf – volume: 41 start-page: 779 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0795 article-title: Analysis of cancer gene expression data with an assisted robust marker identification approach publication-title: Genet Epidemiol doi: 10.1002/gepi.22066 – volume: 21 start-page: 1277 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0855 article-title: Consistency and overfitting of multi-omics methods on experimental data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz070 – volume: 12 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0370 article-title: Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data publication-title: BMC Med Genomics doi: 10.1186/s12920-019-0624-2 – volume: 19 start-page: 71 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0735 article-title: A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data publication-title: Biostatistics doi: 10.1093/biostatistics/kxx017 – volume: 11 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0400 article-title: Inferring regulatory networks from mixed observational data using directed acyclic graphs publication-title: Front Genet doi: 10.3389/fgene.2020.00008 – volume: 21 start-page: 2011 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0845 article-title: Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz138 – ident: 10.1016/j.csbj.2021.06.030_b0325 doi: 10.1101/317982 – volume: 13 start-page: 75 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0720 article-title: DNA methylation and gene expression integration in cardiovascular disease publication-title: Clin. Epigenetics doi: 10.1186/s13148-021-01064-y – volume: 82 start-page: 737 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0685 article-title: Regularized generalized canonical correlation analysis: a framework for sequential multiblock component methods publication-title: Psychometrika doi: 10.1007/s11336-017-9573-x – ident: 10.1016/j.csbj.2021.06.030_b0410 – volume: 22 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0500 article-title: Multi-dimensional data integration algorithm based on random walk with restart publication-title: BMC Bioinf doi: 10.1186/s12859-021-04029-3 – ident: 10.1016/j.csbj.2021.06.030_b0770 doi: 10.21203/rs.3.rs-92731/v1 – ident: 10.1016/j.csbj.2021.06.030_b0605 doi: 10.1101/2020.05.20.107458 – volume: 9 start-page: 2491 year: 2008 ident: 10.1016/j.csbj.2021.06.030_b0440 article-title: SimpleMKL publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 197 year: 2015 ident: 10.1016/j.csbj.2021.06.030_b0080 article-title: The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders publication-title: OMICS doi: 10.1089/omi.2015.0020 – volume: 25 start-page: 2906 year: 2009 ident: 10.1016/j.csbj.2021.06.030_b0725 article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp543 – volume: 20 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0045 article-title: Synthesizing systems biology knowledge from omics using genome-scale models publication-title: Proteomics doi: 10.1002/pmic.201900282 – volume: 17 start-page: 891 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0150 article-title: Transcriptomic and metabolomic data integration publication-title: Brief. Bioinform. doi: 10.1093/bib/bbv090 – volume: 31 start-page: i197 year: 2015 ident: 10.1016/j.csbj.2021.06.030_b0395 article-title: Integrative random forest for gene regulatory network inference publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv268 – volume: 7 year: 2013 ident: 10.1016/j.csbj.2021.06.030_b0755 article-title: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types publication-title: Ann Appl Statistics doi: 10.1214/12-AOAS597 – volume: 31 start-page: i268 year: 2015 ident: 10.1016/j.csbj.2021.06.030_b0480 article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv244 – year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0850 article-title: Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets publication-title: Briefings Bioinf – ident: 10.1016/j.csbj.2021.06.030_b0580 doi: 10.1145/3270323.3270326 – volume: 9 year: 2013 ident: 10.1016/j.csbj.2021.06.030_b0810 article-title: Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003068 – volume: 10 start-page: 18040 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0835 article-title: Ensemble transfer learning for the prediction of anti-cancer drug response publication-title: Sci Rep doi: 10.1038/s41598-020-74921-0 – volume: 9 start-page: 477 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0625 article-title: Deep learning-based multi-omics data integration reveals two prognostic subtypes in high-risk neuroblastoma publication-title: Front Genet doi: 10.3389/fgene.2018.00477 – volume: 16 start-page: 85 year: 2015 ident: 10.1016/j.csbj.2021.06.030_b0110 article-title: Methods of integrating data to uncover genotype–phenotype interactions publication-title: Nat Rev Genet doi: 10.1038/nrg3868 – volume: 18 start-page: 223 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0055 article-title: Integration of multi-omics data for integrative gene regulatory network inference publication-title: Int. J. Data Mining Bioinformatics doi: 10.1504/IJDMB.2017.087178 – year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0420 article-title: Multilevel heterogeneous omics data integration with kernel fusion publication-title: Briefings Bioinf doi: 10.1093/bib/bby115 – volume: 27 start-page: 1226 year: 2005 ident: 10.1016/j.csbj.2021.06.030_b0245 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – ident: 10.1016/j.csbj.2021.06.030_b0815 doi: 10.1101/794503 – volume: 10 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0345 article-title: Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features publication-title: Genes doi: 10.3390/genes10030240 – volume: 33 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0020 article-title: Evidence-based precision medicine is needed to move toward general internal precision medicine publication-title: J Gen Intern Med doi: 10.1007/s11606-017-4149-0 – volume: 2018 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0230 article-title: Integrating correlation-based feature selection and clustering for improved cardiovascular disease diagnosis publication-title: Complexity doi: 10.1155/2018/2520706 – ident: 10.1016/j.csbj.2021.06.030_b0250 – volume: 20 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0285 article-title: Independent component analysis for unraveling the complexity of cancer omics datasets publication-title: Int J Mol Sci doi: 10.3390/ijms20184414 – volume: 119 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0520 article-title: Network-based prioritization of cancer genes by integrative ranks from multi-omics data publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103692 – volume: 21 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0160 article-title: Computational analysis of phosphoproteomics data in multi-omics cancer studies publication-title: Proteomics doi: 10.1002/pmic.201900312 – ident: 10.1016/j.csbj.2021.06.030_b0435 doi: 10.1101/415950 – ident: 10.1016/j.csbj.2021.06.030_b0075 – volume: 19 start-page: 1370 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0050 article-title: Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data publication-title: Brief. Bioinform. – volume: 19 start-page: 949 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0030 article-title: Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2021.01.009 – volume: 24 start-page: 230 year: 2015 ident: 10.1016/j.csbj.2021.06.030_b0375 article-title: Learning the structure of mixed graphical models publication-title: J Comput Graph Stat doi: 10.1080/10618600.2014.900500 – volume: 36 start-page: i525 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0600 article-title: Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa437 – volume: 60 start-page: 4497 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0365 article-title: Pathway-guided deep neural network toward interpretable and predictive modeling of drug sensitivity publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.0c00331 – volume: 5 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0585 article-title: PIMKL: Pathway-induced multiple kernel learning publication-title: npj Syst Biol Appl doi: 10.1038/s41540-019-0086-3 – volume: 168 start-page: 119 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0800 article-title: Robust network-based analysis of the associations between (epi)genetic measurements publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2018.06.009 – volume: 35 start-page: 5191 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0575 article-title: deepDR: a network-based deep learning approach to in silico drug repositioning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz418 – volume: 21 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0710 article-title: MOFA: a statistical framework for comprehensive integration of multi-modal single-cell data publication-title: Genome Biol doi: 10.1186/s13059-020-02015-1 – volume: 13 start-page: 6999 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0740 article-title: Integrative analysis of genomic, epigenomic and transcriptomic data identified molecular subtypes of esophageal carcinoma publication-title: Aging doi: 10.18632/aging.202556 – volume: 35 start-page: i501 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0065 article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz318 – volume: 8 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0555 article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information publication-title: Nat Commun doi: 10.1038/s41467-017-00680-8 – volume: 401 start-page: 788 year: 1999 ident: 10.1016/j.csbj.2021.06.030_b0655 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 10 start-page: 1065 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0510 article-title: Integrative network fusion: a multi-omics approach in molecular profiling publication-title: Front Oncol doi: 10.3389/fonc.2020.01065 – volume: btv544 year: 2015 ident: 10.1016/j.csbj.2021.06.030_b0665 article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data publication-title: Bioinformatics – volume: 5 start-page: 149 year: 2013 ident: 10.1016/j.csbj.2021.06.030_b0335 article-title: Multiple factor analysis: principal component analysis for multitable and multiblock data sets: Multiple factor analysis publication-title: Wiley Interdiscip Rev Comput Stat doi: 10.1002/wics.1246 – ident: 10.1016/j.csbj.2021.06.030_b0485 – volume: 85 start-page: 77 year: 2011 ident: 10.1016/j.csbj.2021.06.030_b0445 article-title: SpicyMKL: a fast algorithm for Multiple Kernel Learning with thousands of kernels publication-title: Mach. Learn. doi: 10.1007/s10994-011-5252-9 – ident: 10.1016/j.csbj.2021.06.030_b0505 doi: 10.21203/rs.3.rs-56433/v1 – volume: 17 start-page: 15 issue: Suppl 2 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0090 article-title: Methods for the integration of multi-omics data: mathematical aspects publication-title: BMC Bioinf doi: 10.1186/s12859-015-0857-9 – volume: 22 start-page: 77 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0255 article-title: Structured sparsity regularization for analyzing high-dimensional omics data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa122 – volume: 102 start-page: 444 year: 2008 ident: 10.1016/j.csbj.2021.06.030_b0330 article-title: Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation publication-title: Toxicol Sci doi: 10.1093/toxsci/kfn001 – volume: 9 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0470 article-title: Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival publication-title: Nat Commun doi: 10.1038/s41467-018-06921-8 – volume: 8 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0115 article-title: A selective review of multi-level omics data integration using variable selection publication-title: High Throughput doi: 10.3390/ht8010004 – ident: 10.1016/j.csbj.2021.06.030_b0540 doi: 10.1101/2020.07.22.163949 – ident: 10.1016/j.csbj.2021.06.030_b0525 – volume: 21 start-page: 257 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0745 article-title: Multi-omics analysis of genomics, epigenomics and transcriptomics for molecular subtypes and core genes for lung adenocarcinoma publication-title: BMC Cancer doi: 10.1186/s12885-021-07888-4 – volume: 145 start-page: 16 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0495 article-title: Affinity network fusion and semi-supervised learning for cancer patient clustering publication-title: Methods doi: 10.1016/j.ymeth.2018.05.020 – ident: 10.1016/j.csbj.2021.06.030_b0225 – volume: 41 start-page: 77 year: 2004 ident: 10.1016/j.csbj.2021.06.030_b0240 article-title: Theoretical comparison between the Gini index and information gain criteria publication-title: Ann. Math. Artif. Intell. doi: 10.1023/B:AMAI.0000018580.96245.c6 – volume: 3 start-page: 784 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0750 article-title: Integrative multi-omics analysis of muscle-invasive bladder cancer identifies prognostic biomarkers for frontline chemotherapy and immunotherapy publication-title: Commun Biol doi: 10.1038/s42003-020-01491-2 – volume: 11 start-page: 944 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0180 article-title: Systematic multi-omics integration (MOI) approach in plant systems biology publication-title: Front Plant Sci doi: 10.3389/fpls.2020.00944 – volume: 7 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0190 article-title: Multi-omics approaches to improve mitochondrial disease diagnosis: challenges, advances, and perspectives publication-title: Front Mol Biosci doi: 10.3389/fmolb.2020.590842 – volume: 7 start-page: 527 year: 1993 ident: 10.1016/j.csbj.2021.06.030_b0275 article-title: Robust principal component analysis by projection pursuit publication-title: J Chemom doi: 10.1002/cem.1180070606 – volume: 15 start-page: 265 year: 2006 ident: 10.1016/j.csbj.2021.06.030_b0290 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X113430 – volume: 6 start-page: 37646 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0220 article-title: Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model publication-title: Sci Rep doi: 10.1038/srep37646 – year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0005 article-title: Integrated omics: tools, advances, and future approaches publication-title: J Mol Endocrinol – volume: 36 start-page: 5237 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0590 article-title: PAMOGK: a pathway graph kernel-based multiomics approach for patient clustering publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa655 – volume: 34 start-page: 3873 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0570 article-title: deepNF: deep network fusion for protein function prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty440 – volume: 18 start-page: 2185 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0640 article-title: An integrative deep learning framework for classifying molecular subtypes of breast cancer publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2020.08.005 – volume: 17 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0015 article-title: Precision Medicine: Where have we reached and where are we headed? publication-title: Sultan Qaboos Univ. Med. J. – volume: 11 start-page: 888 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0635 article-title: Classifying breast cancer subtypes using deep neural networks based on multi-omics data publication-title: Genes doi: 10.3390/genes11080888 – year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0645 article-title: Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab109 – volume: 32 start-page: 4 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0595 article-title: A Comprehensive survey on graph neural networks publication-title: IEEE Trans Neural Networks Learn Syst doi: 10.1109/TNNLS.2020.2978386 – ident: 10.1016/j.csbj.2021.06.030_b0415 doi: 10.1007/978-1-4615-0907-3_3 – year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0550 article-title: Graph embedding on biomedical networks: methods, applications and evaluations publication-title: Bioinformatics – volume: 12 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0860 article-title: The application of deep learning in cancer prognosis prediction publication-title: Cancers doi: 10.3390/cancers12030603 – ident: 10.1016/j.csbj.2021.06.030_b0320 – ident: 10.1016/j.csbj.2021.06.030_b0475 doi: 10.1101/139287 – volume: 50 start-page: 71 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0085 article-title: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.012 – volume: 20 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0830 article-title: Molecular characterization of non-responders to chemotherapy in serous ovarian cancer publication-title: Int J Mol Sci doi: 10.3390/ijms20051175 – ident: 10.1016/j.csbj.2021.06.030_b0305 – volume: 14 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0010 article-title: Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis publication-title: Hum. Genomics doi: 10.1186/s40246-020-00287-z – year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0680 article-title: Tensor canonical correlation analysis for multi-view dimension reduction – volume: 19 start-page: 325 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0100 article-title: A review on machine learning principles for multi-view biological data integration publication-title: Brief. Bioinform. – volume: 16 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0060 article-title: MONET: Multi-omic module discovery by omic selection publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008182 – volume: 22 start-page: 1515 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0620 article-title: Biological network analysis with deep learning publication-title: Briefings Bioinf doi: 10.1093/bib/bbaa257 – volume: 13 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0125 article-title: Performance comparison of deep learning autoencoders for cancer subtype detection using multi-omics data publication-title: Cancers doi: 10.3390/cancers13092013 – volume: 46 start-page: 10546 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0130 article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark publication-title: Nucl Acids Res doi: 10.1093/nar/gky889 – ident: 10.1016/j.csbj.2021.06.030_b0235 doi: 10.1007/3-540-57868-4_57 – volume: 20 start-page: 127 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0170 article-title: Systems biology approaches for host-fungal interactions: an expanding multi-omics frontier publication-title: OMICS doi: 10.1089/omi.2015.0185 – volume: 24 start-page: 1248 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0350 article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-0853 – volume: 10 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0205 article-title: Machine learning and integrative analysis of biomedical big data publication-title: Genes doi: 10.3390/genes10020087 – volume: 7 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0425 article-title: Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers publication-title: Sci Rep doi: 10.1038/s41598-017-17031-8 – volume: 55 start-page: 78 year: 2012 ident: 10.1016/j.csbj.2021.06.030_b0210 article-title: A few useful things to know about machine learning publication-title: Commun ACM doi: 10.1145/2347736.2347755 – volume: 166 start-page: 241 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0760 article-title: Angle-based joint and individual variation explained publication-title: J Multivariate Anal doi: 10.1016/j.jmva.2018.03.008 – volume: 75 start-page: 1121 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0650 article-title: Structural learning and integrative decomposition of multi-view data publication-title: Biometrics doi: 10.1111/biom.13108 – volume: 10 start-page: 1381 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0145 article-title: Heterogeneous multi-layered network model for omics data integration and analysis publication-title: Front Genet doi: 10.3389/fgene.2019.01381 – volume: 19 start-page: 1046 year: 2007 ident: 10.1016/j.csbj.2021.06.030_b0340 article-title: Introduction to artificial neural networks publication-title: Eur J Gastroenterol Hepatol doi: 10.1097/MEG.0b013e3282f198a0 – volume: 12 start-page: 2211 year: 2011 ident: 10.1016/j.csbj.2021.06.030_b0430 article-title: Multiple kernel learning algorithms publication-title: J. Mach. Learn. Res. – volume: 10 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0565 article-title: Gradient boosting decision tree-based method for predicting interactions between target genes and drugs publication-title: Front Genet doi: 10.3389/fgene.2019.00459 – volume: 20 start-page: 1269 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0070 article-title: Multi-omics integration—a comparison of unsupervised clustering methodologies publication-title: Briefings Bioinf. doi: 10.1093/bib/bbx167 – volume: 10 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0545 article-title: To embed or not: network embedding as a paradigm in computational biology publication-title: Front Genet doi: 10.3389/fgene.2019.00381 – volume: 9029 start-page: 62 year: 2015 ident: 10.1016/j.csbj.2021.06.030_b0560 article-title: Diffusion component analysis: unraveling functional topology in biological networks publication-title: Res. Comput. Mol. Biol. doi: 10.1007/978-3-319-16706-0_9 – volume: 26 start-page: 303 year: 2008 ident: 10.1016/j.csbj.2021.06.030_b0260 article-title: What is principal component analysis? publication-title: Nat Biotechnol doi: 10.1038/nbt0308-303 – volume: 20 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0630 article-title: A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data publication-title: BMC Bioinf doi: 10.1186/s12859-019-3116-7 – volume: 11 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0460 article-title: Integrating somatic mutations for breast cancer survival prediction using machine learning methods publication-title: Front Genet doi: 10.3389/fgene.2020.632901 – volume: 18 start-page: 83 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0035 article-title: Multi-omics approaches to disease publication-title: Genome Biol doi: 10.1186/s13059-017-1215-1 – volume: 14 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0535 article-title: Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies publication-title: Biol Direct doi: 10.1186/s13062-019-0239-8 – volume: 8 start-page: 84 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0095 article-title: More is better: recent progress in multi-omics data integration methods publication-title: Front Genet doi: 10.3389/fgene.2017.00084 – volume: 29 start-page: 149 year: 2013 ident: 10.1016/j.csbj.2021.06.030_b0785 article-title: iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts655 – volume: 5 start-page: 493 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0175 article-title: Multi-omics strategies uncover host-pathogen interactions publication-title: ACS Infect Dis doi: 10.1021/acsinfecdis.9b00080 – volume: 29 start-page: 2169 year: 2013 ident: 10.1016/j.csbj.2021.06.030_b0530 article-title: Topologically inferring risk-active pathways toward precise cancer classification by directed random walk publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt373 – volume: 17 start-page: 628 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0120 article-title: Dimension reduction techniques for the integrative analysis of multi-omics data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbv108 – volume: 14 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0195 article-title: From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis publication-title: Front Neurosci doi: 10.3389/fnins.2020.577755 – volume: 15 start-page: 162 year: 2014 ident: 10.1016/j.csbj.2021.06.030_b0690 article-title: A multivariate approach to the integration of multi-omics datasets publication-title: BMC Bioinf doi: 10.1186/1471-2105-15-162 – volume: 10 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0405 article-title: Inferring interaction networks from multi-omics data publication-title: Front Genet doi: 10.3389/fgene.2019.00535 – ident: 10.1016/j.csbj.2021.06.030_b0360 – volume: 17 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0025 article-title: Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations publication-title: Int J Mol Sci doi: 10.3390/ijms17091555 – volume: 13 start-page: 825 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0455 article-title: Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2016.2551745 – ident: 10.1016/j.csbj.2021.06.030_b0780 doi: 10.1101/2020.07.02.184705 – volume: 34 start-page: i457 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0610 article-title: Modeling polypharmacy side effects with graph convolutional networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty294 – volume: 2016 start-page: 52 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0825 article-title: Breast cancer prognostics using multi-omics data publication-title: AMIA Jt Summits Transl Sci Proc – volume: 17 start-page: 605 year: 2016 ident: 10.1016/j.csbj.2021.06.030_b0790 article-title: Integrating multidimensional omics data for cancer outcome publication-title: Biostatistics doi: 10.1093/biostatistics/kxw010 – volume: 72 start-page: 257 year: 2007 ident: 10.1016/j.csbj.2021.06.030_b0280 article-title: Simple correspondence analysis: a bibliographic review publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2004.tb00236.x – volume: 21 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0310 article-title: integrative analysis of multi-omics data based on blockwise sparse principal components publication-title: Int J Mol Sci doi: 10.3390/ijms21218202 – volume: 10 start-page: 1 year: 2009 ident: 10.1016/j.csbj.2021.06.030_b0315 article-title: Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach publication-title: BMC Genomics doi: 10.1186/1471-2164-10-32 – volume: 34 start-page: i848 year: 2018 ident: 10.1016/j.csbj.2021.06.030_b0390 article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty591 – volume: 1863 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0380 article-title: Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools publication-title: Biochim Biophys Acta (BBA) – Gene Regulatory Mech – volume: 80 start-page: 38 year: 2012 ident: 10.1016/j.csbj.2021.06.030_b0300 article-title: Sparse nonnegative matrix factorization with ℓ0-constraints publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.09.024 – volume: 11 start-page: 333 year: 2014 ident: 10.1016/j.csbj.2021.06.030_b0490 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods doi: 10.1038/nmeth.2810 – ident: 10.1016/j.csbj.2021.06.030_b0615 doi: 10.1101/2020.07.08.192930 – volume: 118 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0695 article-title: Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103625 – volume: 12 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0670 article-title: Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm publication-title: PLoS ONE doi: 10.1371/journal.pone.0176278 – volume: 16 start-page: 841 year: 2019 ident: 10.1016/j.csbj.2021.06.030_b0775 article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2018.2806438 – ident: 10.1016/j.csbj.2021.06.030_b0140 doi: 10.20944/preprints201804.0352.v1 – volume: 14 start-page: 414 year: 2017 ident: 10.1016/j.csbj.2021.06.030_b0465 article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning publication-title: Nat Methods doi: 10.1038/nmeth.4207 – volume: 13 start-page: 71 year: 2021 ident: 10.1016/j.csbj.2021.06.030_b0715 article-title: An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer’s disease publication-title: Alzheimers. Res. Ther. doi: 10.1186/s13195-021-00814-7 – volume: 10 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0155 article-title: Metabolomics and multi-omics integration: a survey of computational methods and resources publication-title: Metabolites doi: 10.3390/metabo10050202 – volume: 227 start-page: 561 year: 1970 ident: 10.1016/j.csbj.2021.06.030_b0215 article-title: Central dogma of molecular biology publication-title: Nature doi: 10.1038/227561a0 – volume: 64 start-page: 132 year: 2013 ident: 10.1016/j.csbj.2021.06.030_b0385 article-title: Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.02.022 – volume: 40 start-page: 9379 year: 2012 ident: 10.1016/j.csbj.2021.06.030_b0660 article-title: Discovery of multi-dimensional modules by integrative analysis of cancer genomic data publication-title: Nucl Acids Res doi: 10.1093/nar/gks725 – ident: 10.1016/j.csbj.2021.06.030_b0805 doi: 10.1109/BIBE.2014.71 – volume: 10 start-page: 1030 year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0105 article-title: Integrated multi-omics analyses in oncology: a review of machine learning methods and tools publication-title: Front Oncol doi: 10.3389/fonc.2020.01030 – year: 2020 ident: 10.1016/j.csbj.2021.06.030_b0840 article-title: Large-scale benchmark study of survival prediction methods using multi-omics data publication-title: Brief. Bioinform. |
| SSID | ssj0000816930 |
| Score | 2.642233 |
| SecondaryResourceType | review_article |
| Snippet | Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix... Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary... |
| SourceID | doaj pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3735 |
| SubjectTerms | biomarkers biotechnology Deep learning epigenetics genomics Integration strategy Machine learning metabolomics Multi-omics Multi-view multiomics Network proteomics Review transcriptomics |
| Title | Integration strategies of multi-omics data for machine learning analysis |
| URI | https://dx.doi.org/10.1016/j.csbj.2021.06.030 https://www.proquest.com/docview/2553817386 https://www.proquest.com/docview/2636384943 https://pubmed.ncbi.nlm.nih.gov/PMC8258788 https://doaj.org/article/63d6bbc42bb848208cc7a4543a64694f |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gCHiqfYQisjcUMRSfzMEapWRYKKA0h7s-yxDVtBFjVbjvx2PI5TJZflwiWHxHl4ZuyZcT5_Q8jrrvM2OeZYOa54hRWNK91GVyVPr50FpZ3Lmv6oLi_1et19npX6QkzYSA88Cu6tZF46B7x1TvPkrjSAslxwZmXK7HjE2bdW3SyZynOwRpIRXGApmCFVlx0zI7gLBneVksO2yeSdCIGeeaVM3r9wTrPgcwmdnPmi84fksASR9N348Y_IndA_Jg9m1IJPyMWHwgOR5E6H3UQIQbeRZgxhhbuRB4oAUZriVvozgyoDLVUkvlFb2Eqekq_nZ19OL6pSNaGClNrVlQsSrPOijR3jUSjwYFtkiQPdgAURNWPWRt8Ih8QrkNRj62i5dLUXXgB7Rg76bR-eE9qqqKSCpvV14NAo1wXVphEfpI8iaWRFmklqBgqlOFa2-GEm7NiVQUkblLRBAB2rV-TN7T2_RkKNva3fozJuWyIZdj6RTMQUEzH_MpEVEZMqTYkrxnghPWqz9-WvJr2bNOjwT4rtw_ZmMCkPQ2ZDpuWeNpKluY13nK2IWhjNojfLK_3me6b4Tnm7Vlof_Y_uvyD3sVPjutFLcrC7vgnH5B783m2G6xNyV631SR496fjpz9lf_30fEQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+strategies+of+multi-omics+data+for+machine+learning+analysis&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Picard%2C+Milan&rft.au=Scott-Boyer%2C+Marie-Pier&rft.au=Bodein%2C+Antoine&rft.au=P%C3%A9rin%2C+Olivier&rft.date=2021-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=19+p.3735-3746&rft.spage=3735&rft.epage=3746&rft_id=info:doi/10.1016%2Fj.csbj.2021.06.030&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon |