Integration strategies of multi-omics data for machine learning analysis

Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix on which machine learning model can be applied. B) Mixed integration first independently transforms or maps each omics block into a new repr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational and structural biotechnology journal Ročník 19; s. 3735 - 3746
Hlavní autori: Picard, Milan, Scott-Boyer, Marie-Pier, Bodein, Antoine, Périn, Olivier, Droit, Arnaud
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2021
Research Network of Computational and Structural Biotechnology
Elsevier
Predmet:
ISSN:2001-0370, 2001-0370
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix on which machine learning model can be applied. B) Mixed integration first independently transforms or maps each omics block into a new representation before combining them for downstream analysis. C) Intermediate integration simultaneously transforms the original datasets into common and omics-specific representations. D) Late integration analyses each omics separately and combines their final predictions. E) Hierarchical integration bases the integration of datasets on prior regulatory relationships between omics layers. [Display omitted] Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems. Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications.
AbstractList Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems.Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications.
Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix on which machine learning model can be applied. B) Mixed integration first independently transforms or maps each omics block into a new representation before combining them for downstream analysis. C) Intermediate integration simultaneously transforms the original datasets into common and omics-specific representations. D) Late integration analyses each omics separately and combines their final predictions. E) Hierarchical integration bases the integration of datasets on prior regulatory relationships between omics layers. Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems. Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications.
Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems. Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications.Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems. Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications.
Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix on which machine learning model can be applied. B) Mixed integration first independently transforms or maps each omics block into a new representation before combining them for downstream analysis. C) Intermediate integration simultaneously transforms the original datasets into common and omics-specific representations. D) Late integration analyses each omics separately and combines their final predictions. E) Hierarchical integration bases the integration of datasets on prior regulatory relationships between omics layers. [Display omitted] Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary biological layers including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained by machine learning algorithms that have produced diagnostic and classification biomarkers. Most biomarkers obtained to date however only include one omic measurement at a time and thus do not take full advantage of recent multi-omics experiments that now capture the entire complexity of biological systems. Multi-omics data integration strategies are needed to combine the complementary knowledge brought by each omics layer. We have summarized the most recent data integration methods/ frameworks into five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-review, we focus on challenges and existing multi-omics integration strategies by paying special attention to machine learning applications.
Author Périn, Olivier
Picard, Milan
Bodein, Antoine
Droit, Arnaud
Scott-Boyer, Marie-Pier
Author_xml – sequence: 1
  givenname: Milan
  orcidid: 0000-0002-2466-2012
  surname: Picard
  fullname: Picard, Milan
  organization: Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
– sequence: 2
  givenname: Marie-Pier
  surname: Scott-Boyer
  fullname: Scott-Boyer, Marie-Pier
  organization: Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
– sequence: 3
  givenname: Antoine
  orcidid: 0000-0002-9843-504X
  surname: Bodein
  fullname: Bodein, Antoine
  organization: Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
– sequence: 4
  givenname: Olivier
  surname: Périn
  fullname: Périn, Olivier
  organization: Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
– sequence: 5
  givenname: Arnaud
  surname: Droit
  fullname: Droit, Arnaud
  email: Arnaud.Droit@crchudequebec.ulaval.ca
  organization: Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
BookMark eNqFkU1r3DAQhk1JadI0f6AnH3vxVt_WQimU0DYLgV7asxiPJEfGllLJG8i_jzYbStNDqosGad6HYZ63zUlM0TXNe0o2lFD1cdpgGaYNI4xuiNoQTl41Z4wQ2hHek5O_6tPmopSJ1KOp2nLypjnlgmnZ9_KsudrF1Y0Z1pBiW9ZauDG40ibfLvt5DV1aApbWwgqtT7ldAG9CdO3sIMcQxxYizPcllHfNaw9zcRdP93nz69vXn5dX3fWP77vLL9cdCqFINziFMFjJ_JYLL3u0CKzvtUJNEVB6zTmAt1QOjCuKRDMgHoQaiJVWIj9vdkeuTTCZ2xwWyPcmQTCPDymPBvIacHZGcauGAQUbBi00IxqxByEFByXUVvjK-nxk3e6HxVl0sS5gfgZ9_hPDjRnTndFM6l7rCvjwBMjp996V1SyhoJtniC7ti2GKK67FVvD_t0rJNe25VrWVHVsxp1Ky838mosQc5JvJHOSbg3xDlKnya0j_E8KwPmqtk4f55einY9RVb3fBZVMwuIjOhuxwrYsNL8UfAFlny7M
CitedBy_id crossref_primary_10_3390_biology12081135
crossref_primary_10_1016_j_csbj_2024_01_024
crossref_primary_10_1186_s12967_023_04720_4
crossref_primary_10_3390_genes16050580
crossref_primary_10_1038_s41598_025_90917_0
crossref_primary_10_1007_s00210_024_03320_3
crossref_primary_10_1021_acsnano_5c01197
crossref_primary_10_1038_s41598_025_13337_0
crossref_primary_10_47482_acmr_1627345
crossref_primary_10_3389_fnmol_2022_999938
crossref_primary_10_1186_s12859_024_06022_y
crossref_primary_10_3389_fgene_2024_1513938
crossref_primary_10_1080_17474124_2025_2483406
crossref_primary_10_1146_annurev_pharmtox_032023_121106
crossref_primary_10_1016_j_ygeno_2024_110977
crossref_primary_10_1016_j_molmed_2023_09_004
crossref_primary_10_1016_j_gene_2024_148295
crossref_primary_10_1093_bib_bbad304
crossref_primary_10_1016_j_cca_2024_119686
crossref_primary_10_1016_j_semnephrol_2025_151584
crossref_primary_10_3390_ijms252011154
crossref_primary_10_3390_ijms23031237
crossref_primary_10_1002_qub2_70002
crossref_primary_10_1016_j_apsb_2025_07_030
crossref_primary_10_1007_s11010_024_05139_1
crossref_primary_10_3389_fmicb_2022_1058772
crossref_primary_10_3389_fmed_2022_911977
crossref_primary_10_1016_j_atherosclerosis_2025_120414
crossref_primary_10_3390_ijms25031655
crossref_primary_10_1002_btm2_10641
crossref_primary_10_1016_j_inffus_2024_102361
crossref_primary_10_2478_ijssis_2025_0037
crossref_primary_10_4236_health_2024_163015
crossref_primary_10_1093_oxfimm_iqaf006
crossref_primary_10_1109_JBHI_2024_3439713
crossref_primary_10_1007_s11692_025_09655_w
crossref_primary_10_1186_s13040_024_00406_9
crossref_primary_10_3390_cancers14133215
crossref_primary_10_1016_j_engappai_2025_111607
crossref_primary_10_1109_JBHI_2024_3415641
crossref_primary_10_1038_s41408_023_00914_7
crossref_primary_10_1038_s41467_024_46888_3
crossref_primary_10_1016_j_csbj_2024_01_002
crossref_primary_10_3389_fdsfr_2024_1356405
crossref_primary_10_1016_j_eswa_2024_125932
crossref_primary_10_1093_bib_bbae300
crossref_primary_10_3390_proteomes12030025
crossref_primary_10_1053_j_gastro_2025_02_035
crossref_primary_10_1186_s12951_025_03429_4
crossref_primary_10_1002_pmic_202200275
crossref_primary_10_1186_s13326_025_00325_6
crossref_primary_10_1371_journal_pone_0307482
crossref_primary_10_3389_fmicb_2024_1516667
crossref_primary_10_3389_fendo_2023_1266557
crossref_primary_10_1016_j_biotechadv_2022_108069
crossref_primary_10_3390_biom12121839
crossref_primary_10_1016_j_tcb_2024_02_001
crossref_primary_10_1016_j_csbj_2024_12_027
crossref_primary_10_1016_j_procs_2025_04_515
crossref_primary_10_1016_j_cmpb_2023_107377
crossref_primary_10_1038_s41531_022_00409_5
crossref_primary_10_1016_j_imu_2025_101679
crossref_primary_10_1093_gigascience_giaf057
crossref_primary_10_1002_ejhf_3268
crossref_primary_10_1007_s00500_024_10302_3
crossref_primary_10_1371_journal_pone_0263940
crossref_primary_10_3389_fonc_2022_998222
crossref_primary_10_3389_frai_2023_1098308
crossref_primary_10_3389_fams_2024_1380996
crossref_primary_10_3390_biomedicines13092171
crossref_primary_10_1186_s40364_025_00798_8
crossref_primary_10_3390_metabo15060362
crossref_primary_10_1016_j_compbiomed_2024_108588
crossref_primary_10_1007_s12033_024_01133_6
crossref_primary_10_3389_fmicb_2025_1618177
crossref_primary_10_1016_j_prp_2025_156083
crossref_primary_10_1016_j_compbiolchem_2024_108254
crossref_primary_10_1016_j_heliyon_2024_e29322
crossref_primary_10_32628_IJSRST2411596
crossref_primary_10_3389_fmolb_2022_962799
crossref_primary_10_3390_pathogens11010027
crossref_primary_10_1136_bmjsem_2024_002410
crossref_primary_10_1080_19490976_2023_2297860
crossref_primary_10_1186_s12864_024_11112_5
crossref_primary_10_1007_s00122_025_04948_2
crossref_primary_10_3390_metabo14120708
crossref_primary_10_1016_j_semnephrol_2025_151663
crossref_primary_10_1016_j_trac_2024_117852
crossref_primary_10_1002_wcms_1585
crossref_primary_10_1016_j_tplants_2022_02_001
crossref_primary_10_1038_s41596_023_00950_4
crossref_primary_10_31083_j_fbl2902075
crossref_primary_10_3389_fgene_2022_1090394
crossref_primary_10_3389_fgene_2022_929736
crossref_primary_10_1016_j_imu_2024_101507
crossref_primary_10_3389_fgene_2022_1032768
crossref_primary_10_1038_s41390_025_04021_0
crossref_primary_10_3390_v16121828
crossref_primary_10_1016_j_trac_2024_117860
crossref_primary_10_1109_ACCESS_2024_3362647
crossref_primary_10_1186_s40104_025_01234_5
crossref_primary_10_3389_fped_2024_1483940
crossref_primary_10_1080_17435390_2024_2368005
crossref_primary_10_1161_CIRCRESAHA_123_321999
crossref_primary_10_1016_j_ebiom_2024_105247
crossref_primary_10_1016_j_scitotenv_2024_172310
crossref_primary_10_3390_metabo15060384
crossref_primary_10_1111_all_16526
crossref_primary_10_1016_j_chemolab_2023_104999
crossref_primary_10_1016_j_molp_2022_09_001
crossref_primary_10_3892_ol_2025_14989
crossref_primary_10_1093_bib_bbaf150
crossref_primary_10_3390_diagnostics13040664
crossref_primary_10_1016_j_biotechadv_2024_108506
crossref_primary_10_1186_s13073_024_01350_3
crossref_primary_10_1371_journal_pcbi_1011842
crossref_primary_10_1177_10998004241256031
crossref_primary_10_1016_j_compbiomed_2023_107425
crossref_primary_10_1016_j_compbiomed_2023_107303
crossref_primary_10_1093_femsec_fiae058
crossref_primary_10_1186_s12967_025_06425_2
crossref_primary_10_1016_j_foodres_2025_116034
crossref_primary_10_1101_gr_280041_124
crossref_primary_10_1002_tox_24284
crossref_primary_10_1186_s40246_025_00718_9
crossref_primary_10_1002_agj2_21393
crossref_primary_10_1161_CIRCRESAHA_123_321765
crossref_primary_10_1186_s11689_025_09601_z
crossref_primary_10_3390_biom15040484
crossref_primary_10_1016_j_cmpb_2025_109024
crossref_primary_10_3390_microorganisms11082116
crossref_primary_10_31083_j_fbl2912404
crossref_primary_10_3390_biomedicines12030550
crossref_primary_10_1016_j_joca_2023_11_019
crossref_primary_10_1360_TB_2024_0416
crossref_primary_10_1093_bib_bbae606
crossref_primary_10_1016_j_nbt_2023_06_002
crossref_primary_10_1038_s41386_024_01938_8
crossref_primary_10_1093_gpbjnl_qzaf072
crossref_primary_10_3390_biomedicines12102389
crossref_primary_10_1093_bioadv_vbae005
crossref_primary_10_1371_journal_pone_0298623
crossref_primary_10_1016_j_neuroscience_2025_06_048
crossref_primary_10_1186_s12911_024_02521_3
crossref_primary_10_1016_j_molp_2024_04_005
crossref_primary_10_1002_pmic_202200335
crossref_primary_10_1186_s12859_025_06089_1
crossref_primary_10_1161_ATVBAHA_122_318892
crossref_primary_10_1016_j_bbcan_2025_189425
crossref_primary_10_1371_journal_pcbi_1011224
crossref_primary_10_1016_j_livsci_2025_105716
crossref_primary_10_1038_s43856_025_00984_7
crossref_primary_10_3390_ai5030078
crossref_primary_10_1016_j_tifs_2025_105145
crossref_primary_10_1016_j_compbiomed_2022_106192
crossref_primary_10_1186_s12911_024_02642_9
crossref_primary_10_1016_j_csbj_2024_11_022
crossref_primary_10_1016_j_jbi_2024_104629
crossref_primary_10_1371_journal_pone_0295361
crossref_primary_10_2174_1573412919666230406100948
crossref_primary_10_1016_j_pbi_2024_102657
crossref_primary_10_1186_s12859_024_05719_4
crossref_primary_10_3389_fgene_2022_921775
crossref_primary_10_3389_fpsyt_2025_1594313
crossref_primary_10_1016_j_csbj_2024_06_012
crossref_primary_10_3390_bioengineering10050621
crossref_primary_10_1016_j_cofs_2023_101049
crossref_primary_10_1016_j_crmeth_2025_101026
crossref_primary_10_1038_s42256_023_00633_5
crossref_primary_10_1007_s41870_022_00928_7
crossref_primary_10_1136_bmjopen_2021_053674
crossref_primary_10_3390_biology13110848
crossref_primary_10_1016_j_jaci_2025_06_036
crossref_primary_10_1038_s41597_025_05235_x
crossref_primary_10_3390_metabo13070855
crossref_primary_10_1016_j_nutres_2024_09_010
crossref_primary_10_1007_s12672_025_02734_6
crossref_primary_10_1038_s41598_024_76093_7
crossref_primary_10_1093_bioadv_vbad172
crossref_primary_10_3390_app14135660
crossref_primary_10_1186_s12864_023_09833_0
crossref_primary_10_1093_bib_bbaf355
crossref_primary_10_1093_bib_bbaf116
crossref_primary_10_1155_2022_2009545
crossref_primary_10_1007_s10096_025_05152_2
crossref_primary_10_3390_biology14030223
crossref_primary_10_1016_j_bbi_2023_07_022
crossref_primary_10_3389_fpubh_2022_899638
crossref_primary_10_1089_cmb_2024_0927
crossref_primary_10_3389_fimmu_2025_1648987
crossref_primary_10_1007_s00253_024_13384_z
crossref_primary_10_3389_fcell_2024_1376639
crossref_primary_10_1002_cpz1_70168
crossref_primary_10_1016_j_copbio_2024_103115
crossref_primary_10_1128_msystems_00707_25
crossref_primary_10_1038_s44222_024_00163_8
crossref_primary_10_3389_fmolb_2025_1665390
crossref_primary_10_3892_ijmm_2024_5479
crossref_primary_10_1016_j_critrevonc_2025_104948
crossref_primary_10_1016_j_mce_2023_112046
crossref_primary_10_1038_s41598_023_36438_0
crossref_primary_10_1016_j_insi_2025_100062
crossref_primary_10_1016_j_artmed_2024_102962
crossref_primary_10_1186_s13059_022_02749_0
crossref_primary_10_1016_j_procs_2025_05_047
crossref_primary_10_1186_s12859_025_06248_4
crossref_primary_10_1038_s41598_025_96695_z
crossref_primary_10_1016_j_pneurobio_2023_102480
crossref_primary_10_1016_j_taap_2023_116597
crossref_primary_10_1016_j_ijbiomac_2023_127808
crossref_primary_10_1093_qjmed_hcaf108
crossref_primary_10_1016_j_cmpb_2024_108478
crossref_primary_10_7554_eLife_87133
crossref_primary_10_1016_j_biosystems_2023_105095
crossref_primary_10_1016_j_stress_2024_100704
crossref_primary_10_3389_fmolb_2022_962644
crossref_primary_10_1039_D4NP00003J
crossref_primary_10_3390_antibiotics12081250
crossref_primary_10_1016_j_tifs_2024_104481
crossref_primary_10_1080_0954898X_2024_2348726
crossref_primary_10_1016_j_trac_2023_117063
crossref_primary_10_1016_j_xplc_2025_101416
crossref_primary_10_1016_j_chmed_2025_05_003
crossref_primary_10_1093_bioadv_vbae164
crossref_primary_10_3389_fpls_2021_777028
crossref_primary_10_3390_ijms24108884
crossref_primary_10_3390_cancers17020287
crossref_primary_10_3390_ijms24076445
crossref_primary_10_1109_RBME_2023_3324264
crossref_primary_10_1038_s41416_024_02706_7
crossref_primary_10_1016_j_crbiot_2025_100334
crossref_primary_10_1038_s41598_023_42365_x
crossref_primary_10_1038_s41390_022_02181_x
crossref_primary_10_1371_journal_pone_0309921
crossref_primary_10_3390_biomedicines9101481
crossref_primary_10_3390_plants11223067
crossref_primary_10_1016_j_heliyon_2024_e25369
crossref_primary_10_1186_s12859_023_05262_8
crossref_primary_10_3389_fgene_2022_824451
crossref_primary_10_1080_87559129_2024_2432924
crossref_primary_10_1038_s41598_024_67104_8
crossref_primary_10_1038_s41570_022_00439_w
crossref_primary_10_1016_j_biortech_2024_131380
crossref_primary_10_1016_j_csbj_2023_07_002
crossref_primary_10_1186_s12967_025_06446_x
crossref_primary_10_3390_app15073650
crossref_primary_10_1038_s41587_022_01520_x
crossref_primary_10_1186_s13040_025_00452_x
crossref_primary_10_3390_jpm14090931
crossref_primary_10_37349_edht_2025_101153
crossref_primary_10_1016_j_csbj_2025_06_035
crossref_primary_10_1016_j_isci_2024_109859
crossref_primary_10_3390_ijms241914912
crossref_primary_10_1158_2767_9764_CRC_24_0285
crossref_primary_10_3389_fgene_2022_1004912
crossref_primary_10_3390_cells13060504
crossref_primary_10_1016_j_heliyon_2024_e27411
crossref_primary_10_3390_computation9120146
crossref_primary_10_1007_s11432_024_4461_0
crossref_primary_10_1186_s12967_025_06495_2
crossref_primary_10_1093_bioadv_vbac042
crossref_primary_10_3389_fgene_2024_1378809
crossref_primary_10_1038_s41576_024_00768_0
crossref_primary_10_3390_biomedicines12030492
crossref_primary_10_1038_s41698_025_00917_6
crossref_primary_10_1007_s12035_022_02930_3
crossref_primary_10_1186_s12944_025_02605_7
crossref_primary_10_1186_s12967_024_05085_y
crossref_primary_10_1093_bib_bbaf315
crossref_primary_10_1038_s43856_024_00637_1
crossref_primary_10_1016_j_csbj_2024_10_006
crossref_primary_10_1186_s12931_023_02431_4
crossref_primary_10_5599_admet_2772
crossref_primary_10_3390_jpm14070694
crossref_primary_10_1016_j_tifs_2025_104994
crossref_primary_10_3390_cancers17172799
crossref_primary_10_1016_j_csbj_2022_11_008
crossref_primary_10_7554_eLife_87133_3
crossref_primary_10_1016_j_nanoen_2023_108656
crossref_primary_10_1093_gigascience_giaf028
crossref_primary_10_3389_fimmu_2025_1548735
crossref_primary_10_3389_fmolb_2021_768106
crossref_primary_10_3390_ijms232314744
crossref_primary_10_3389_fmicb_2023_1250806
crossref_primary_10_3390_ijms252111406
crossref_primary_10_3389_fdgth_2022_799341
crossref_primary_10_1016_j_csbr_2025_100051
crossref_primary_10_1093_bib_bbae331
crossref_primary_10_3390_biom14040409
crossref_primary_10_1093_nar_gkaf844
crossref_primary_10_1016_j_inffus_2023_101950
crossref_primary_10_1016_j_anireprosci_2024_107538
crossref_primary_10_3389_fcvm_2022_961991
crossref_primary_10_1007_s00521_025_11386_0
crossref_primary_10_1186_s12931_023_02368_8
crossref_primary_10_1016_j_compbiomed_2023_106988
crossref_primary_10_1016_j_biotechadv_2024_108477
crossref_primary_10_1016_j_heliyon_2023_e14749
crossref_primary_10_1038_s41526_022_00224_5
crossref_primary_10_3390_biomedicines10102387
crossref_primary_10_3389_fphar_2025_1591696
crossref_primary_10_1039_D3MO00266G
crossref_primary_10_3390_genes13050764
Cites_doi 10.1093/bib/bbz015
10.1007/s10994-010-5222-7
10.1073/pnas.1208949110
10.1002/prca.201800137
10.3389/fgene.2020.570255
10.1093/bioinformatics/bty637
10.1038/s41467-020-20430-7
10.15252/msb.20178124
10.1007/s00204-020-02656-y
10.3389/fcvm.2019.00091
10.1002/cem.759
10.3390/genes10030200
10.1038/s41598-018-28066-w
10.1162/089976698300017467
10.1016/bs.adgen.2015.11.004
10.1002/gepi.22066
10.1093/bib/bbz070
10.1186/s12920-019-0624-2
10.1093/biostatistics/kxx017
10.3389/fgene.2020.00008
10.1093/bib/bbz138
10.1101/317982
10.1186/s13148-021-01064-y
10.1007/s11336-017-9573-x
10.1186/s12859-021-04029-3
10.21203/rs.3.rs-92731/v1
10.1101/2020.05.20.107458
10.1089/omi.2015.0020
10.1093/bioinformatics/btp543
10.1002/pmic.201900282
10.1093/bib/bbv090
10.1093/bioinformatics/btv268
10.1214/12-AOAS597
10.1093/bioinformatics/btv244
10.1145/3270323.3270326
10.1371/journal.pcbi.1003068
10.1038/s41598-020-74921-0
10.3389/fgene.2018.00477
10.1038/nrg3868
10.1504/IJDMB.2017.087178
10.1093/bib/bby115
10.1109/TPAMI.2005.159
10.1101/794503
10.3390/genes10030240
10.1007/s11606-017-4149-0
10.1155/2018/2520706
10.3390/ijms20184414
10.1016/j.compbiomed.2020.103692
10.1002/pmic.201900312
10.1101/415950
10.1016/j.csbj.2021.01.009
10.1080/10618600.2014.900500
10.1093/bioinformatics/btaa437
10.1021/acs.jcim.0c00331
10.1038/s41540-019-0086-3
10.1016/j.jmva.2018.06.009
10.1093/bioinformatics/btz418
10.1186/s13059-020-02015-1
10.18632/aging.202556
10.1093/bioinformatics/btz318
10.1038/s41467-017-00680-8
10.1038/44565
10.3389/fonc.2020.01065
10.1002/wics.1246
10.1007/s10994-011-5252-9
10.21203/rs.3.rs-56433/v1
10.1186/s12859-015-0857-9
10.1093/bib/bbaa122
10.1093/toxsci/kfn001
10.1038/s41467-018-06921-8
10.3390/ht8010004
10.1101/2020.07.22.163949
10.1186/s12885-021-07888-4
10.1016/j.ymeth.2018.05.020
10.1023/B:AMAI.0000018580.96245.c6
10.1038/s42003-020-01491-2
10.3389/fpls.2020.00944
10.3389/fmolb.2020.590842
10.1002/cem.1180070606
10.1198/106186006X113430
10.1038/srep37646
10.1093/bioinformatics/btaa655
10.1093/bioinformatics/bty440
10.1016/j.csbj.2020.08.005
10.3390/genes11080888
10.1093/bioinformatics/btab109
10.1109/TNNLS.2020.2978386
10.1007/978-1-4615-0907-3_3
10.3390/cancers12030603
10.1101/139287
10.1016/j.inffus.2018.09.012
10.3390/ijms20051175
10.1186/s40246-020-00287-z
10.1371/journal.pcbi.1008182
10.1093/bib/bbaa257
10.3390/cancers13092013
10.1093/nar/gky889
10.1007/3-540-57868-4_57
10.1089/omi.2015.0185
10.1158/1078-0432.CCR-17-0853
10.3390/genes10020087
10.1038/s41598-017-17031-8
10.1145/2347736.2347755
10.1016/j.jmva.2018.03.008
10.1111/biom.13108
10.3389/fgene.2019.01381
10.1097/MEG.0b013e3282f198a0
10.3389/fgene.2019.00459
10.1093/bib/bbx167
10.3389/fgene.2019.00381
10.1007/978-3-319-16706-0_9
10.1038/nbt0308-303
10.1186/s12859-019-3116-7
10.3389/fgene.2020.632901
10.1186/s13059-017-1215-1
10.1186/s13062-019-0239-8
10.3389/fgene.2017.00084
10.1093/bioinformatics/bts655
10.1021/acsinfecdis.9b00080
10.1093/bioinformatics/btt373
10.1093/bib/bbv108
10.3389/fnins.2020.577755
10.1186/1471-2105-15-162
10.3389/fgene.2019.00535
10.3390/ijms17091555
10.1109/TCBB.2016.2551745
10.1101/2020.07.02.184705
10.1093/bioinformatics/bty294
10.1093/biostatistics/kxw010
10.1111/j.1751-5823.2004.tb00236.x
10.3390/ijms21218202
10.1186/1471-2164-10-32
10.1093/bioinformatics/bty591
10.1016/j.neucom.2011.09.024
10.1038/nmeth.2810
10.1101/2020.07.08.192930
10.1016/j.compbiomed.2020.103625
10.1371/journal.pone.0176278
10.1109/TCBB.2018.2806438
10.20944/preprints201804.0352.v1
10.1038/nmeth.4207
10.1186/s13195-021-00814-7
10.3390/metabo10050202
10.1038/227561a0
10.1016/j.csda.2013.02.022
10.1093/nar/gks725
10.1109/BIBE.2014.71
10.3389/fonc.2020.01030
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.csbj.2021.06.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 3746
ExternalDocumentID oai_doaj_org_article_63d6bbc42bb848208cc7a4543a64694f
PMC8258788
10_1016_j_csbj_2021_06_030
S2001037021002683
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4460-be6cabd52f934f57cdca27786c81cac5f833aafd15b2361c082a0fa46b0d5d5c3
IEDL.DBID DOA
ISSN 2001-0370
IngestDate Fri Oct 03 12:28:08 EDT 2025
Tue Nov 04 01:53:21 EST 2025
Fri Jul 11 16:25:30 EDT 2025
Thu Jul 10 19:19:19 EDT 2025
Tue Nov 18 22:09:42 EST 2025
Sat Nov 29 05:55:08 EST 2025
Sat Aug 31 16:00:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Multi-view
Integration strategy
Multi-omics
Machine learning
Network
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4460-be6cabd52f934f57cdca27786c81cac5f833aafd15b2361c082a0fa46b0d5d5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9843-504X
0000-0002-2466-2012
OpenAccessLink https://doaj.org/article/63d6bbc42bb848208cc7a4543a64694f
PMID 34285775
PQID 2553817386
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_63d6bbc42bb848208cc7a4543a64694f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8258788
proquest_miscellaneous_2636384943
proquest_miscellaneous_2553817386
crossref_primary_10_1016_j_csbj_2021_06_030
crossref_citationtrail_10_1016_j_csbj_2021_06_030
elsevier_sciencedirect_doi_10_1016_j_csbj_2021_06_030
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Computational and structural biotechnology journal
PublicationYear 2021
Publisher Elsevier B.V
Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Sun, Wang, Li (b0775) 2019; 16
Kim D-C et al. Integration of DNA Methylation, Copy Number Variation, and Gene Expression for Gene Regulatory Network Inference and Application to Psychiatric Disorders. in 2014 IEEE International Conference on Bioinformatics and Bioengineering 238–242 (2014).
Fellinghauer, Bühlmann, Ryffel, von Rhein, Reinhardt (b0385) 2013; 64
Suzuki, Tomioka (b0445) 2011; 85
Xie (b0275) 1993; 7
Morello, Salomone, D’Agata, Conforti, Cavallaro (b0195) 2020; 14
EL-Manzalawy Y, Hsieh T-Y, Shivakumar M, Kim D, Honavar V. Min-Redundancy and Max-Relevance Multi-view Feature Selection for Predicting Ovarian Cancer Survival using Multi-omics Data. doi:10.1101/317982.
Joachims T. Support Vector Machines. Learning to Classify Text Using Support Vector Machines 35–44 (2002) doi: 10.1007/978-1-4615-0907-3_3.
Zhang, Li, Peng, Wang (b0455) 2016; 13
Liu Q, Hu Z, Jiang R, Zhou M. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. doi:10.1101/2020.07.08.192930.
Vinga (b0255) 2021; 22
Herrmann, Probst, Hornung, Jurinovic, Boulesteix (b0840) 2020
Kaplan, Lock (b0765) 2017; 16
Murodzhon A, Alberto A, Montemanni R, Francesco B, Ivo K. OmicsNet: Integration of Multi-Omics Data using Path Analysis in Multilayer Networks. (2017).
Yue (b0550) 2019
Mo, Li, Adeegbe, Peng, Chan (b0750) 2020; 3
Luo, Tao, Ramamohanarao, Xu, Wen (b0680) 2016
Lee, Zhang, Poleksic, Xie (b0145) 2019; 10
Zitnik (b0085) 2019; 50
Zhu (b0425) 2017; 7
Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. (1999).
Xuan (b0565) 2019; 10
Raileanu, Stoffel (b0240) 2004; 41
Kim SY, Choe EK, Shivakumar M, Kim D, Sohn K-A. Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer. doi: 10.1101/2020.07.22.163949.
Mariette J, Villa-Vialaneix N. Unsupervised multiple kernel learning for heterogeneous data integration. doi: 10.1101/139287.
Ahmed (b0010) 2020; 14
Schölkopf, Smola, Müller (b0265) 1998; 10
Hardoon, Shawe-Taylor (b0295) 2011; 83
Tepeli, Ünal, Akdemir, Tastan (b0590) 2021; 36
Nicora, Vitali, Dagliati, Geifman, Bellazzi (b0105) 2020; 10
Deng (b0365) 2020; 60
Chai (b0795) 2017; 41
Mirza (b0205) 2019; 10
Yang, Cao, He, Wang, Cui (b0420) 2018
Mo (b0735) 2018; 19
Lock, Hoadley, Marron, Nobel (b0755) 2013; 7
Lanckriet GRG. Learning the kernel matrix with semideønite programming. https://www.jmlr.org/papers/volume5/lanckriet04a/lanckriet04a.pdf (2004).
Zhang (b0660) 2012; 40
Nounou, Bakshi, Goel, Shen (b0270) 2002; 16
Lee, Hastie (b0375) 2015; 24
Mo (b0730) 2013; 110
Dahal, Yurkovich, Xu, Palsson, Yang (b0045) 2020; 20
Grossi, Buscema (b0340) 2007; 19
Zarayeneh (b0055) 2017; 18
Peng, Long, Ding (b0245) 2005; 27
Luo (b0555) 2017; 8
Nelson (b0545) 2019; 10
Burney, Lakhtakia (b0015) 2017; 17
Meng (b0120) 2016; 17
Xie (b0345) 2019; 10
Zeng (b0575) 2019; 35
Wei, Zhang, Weng, Chen, Cai (b0850) 2020
Wang, Zhu, Pierson, Ramazzotti, Batzoglou (b0465) 2017; 14
Balluff (b0820) 2019; 13
Cavill, Jennen, Kleinjans, Briedé (b0150) 2016; 17
Chierici (b0510) 2020; 10
Cai, Bazerque, Giannakis (b0810) 2013; 9
Canzler (b0165) 2020; 94
Wosiak, Zakrzewska (b0230) 2018; 2018
Ponzi E, Thoresen M, Nøst, TH, Møllersen K. Integrative analyses of multi-omics data improves model predictions: an application to lung cancer. bioRxiv 2020.10.02.299834 (2020) doi: 10.1101/2020.10.02.299834.
Gligorijević, Barot, Bonneau (b0570) 2018; 34
Wang T. et al. MORONET: Multi-omics Integration via Graph Convolutional Networks for Biomedical Data Classification. doi: 10.1101/2020.07.02.184705.
Mantini, Pham, Piersma, Jimenez (b0160) 2021; 21
Higdon (b0080) 2015; 19
Spicker, Brunak, Frederiksen, Toft (b0330) 2008; 102
Petralia, Wang, Yang, Tu (b0395) 2015; 31
Shang, Liu (b0520) 2020; 119
Gönen, Alpaydın (b0430) 2011; 12
Chen Y, de Rijke M. A Collective Variational Autoencoder for Top-N Recommendation with Side Information. in Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems 3–9 (Association for Computing Machinery, 2018).
Zitnik, Agrawal, Leskovec (b0610) 2018; 34
Ringnér (b0260) 2008; 26
Leon-Mimila, Wang, Huertas-Vazquez (b0185) 2019; 6
Yang, Chen, Li, Wang (b0645) 2021
Peharz, Pernkopf (b0300) 2012; 80
Wu (b0115) 2019; 8
Culibrk, Croft, Tebbutt (b0170) 2016; 20
Paul D, Chakraborty S, Das S, Xu J. Kernel k-Means, By All Means: Algorithms and Strong Consistency. arXiv [stat.ML] (2020).
Wu, Zhang, Jiang, Ma (b0800) 2018; 168
Tini, Marchetti, Priami, Scott-Boyer (b0070) 2019; 20
Tang TM, Allen GI. Integrated Principal Components Analysis. arXiv [stat.ME] (2018).
De Tayrac, Lê, Aubry, Mosser, Husson (b0315) 2009; 10
Meng, Kuster, Culhane, Gholami (b0690) 2014; 15
Fujita, Mizuarai, Murakami, Nakai (b0700) 2018; 8
Wang, Zhou, Arnold (b0600) 2020; 36
Argelaguet (b0710) 2020; 21
Zierer (b0220) 2016; 6
Ritchie, Holzinger, Li, Pendergrass, Kim (b0110) 2015; 16
Zhu, Xie, Han, Guo (b0860) 2020; 12
Cho, Berger, Peng (b0560) 2015; 9029
Yan, Risacher, Shen, Saykin (b0050) 2018; 19
Tenenhaus, Tenenhaus, Groenen (b0685) 2017; 82
Menyhárt, Győrffy (b0030) 2021; 19
Khan (b0175) 2019; 5
Tao (b0450) 2019; 10
Wani N, Raza K. Integrative Approaches to Reconstruct Regulatory Networks From Multi-Omics Data: A Review of State-of-the-Art Methods. doi:10.20944/preprints201804.0352.v1.
Chalise, Ni, Fridley (b0695) 2020; 118
Martorell-Marugán J. et al. Deep Learning in Omics Data Analysis and Precision Medicine. in Computational Biology (ed. Husi, H.) (Codon Publications, 2019).
Wen (b0500) 2021; 22
Rappoport, Safra, Shamir (b0060) 2020; 16
Liu R, Niang N, Saporta G, Wang H. Sparse Correspondence Analysis for Contingency Tables. arXiv [stat.ME] (2020).
Hawe, Theis, Heinig (b0405) 2019; 10
Kim, Jeong, Kim, Moon, Sohn (b0535) 2019; 14
Zhang (b0625) 2018; 9
Zhao, Gao, Xu, Zhou, Wang (b0745) 2021; 21
Ma, Ren, Fenyö (b0825) 2016; 2016
Pierre-Jean, Deleuze, Le Floch, Mauger (b0845) 2020; 21
Crick (b0215) 1970; 227
Zhu (b0835) 2020; 10
Labory (b0190) 2020; 7
Argelaguet (b0705) 2018; 14
Jarada T, Rokne J, Alhajj R. SNF-NN: Computational Method To Predict Drug-Disease Interactions Using Similarity Network Fusion and Neural Networks. doi:10.21203/rs.3.rs-56433/v1.
Ma (b0740) 2021; 13
Valdeolivas (b0515) 2019; 35
Bersanelli (b0090) 2016; 17
Wang (b0785) 2013; 29
McCabe, Lin, Love (b0855) 2020; 21
Talukder, Barham, Li, Hu (b0355) 2020
Manatakis, Raghu, Benos (b0390) 2018; 34
Jaccard, Cornuz, Waeber, Guessous (b0020) 2018; 33
Rakotomamonjy, Bach, Canu, Grandvalet (b0440) 2008; 9
Kononenko I. Estimating attributes: Analysis and extensions of RELIEF. in Machine Learning: ECML-94 171–182 (Springer Berlin Heidelberg, 1994).
Sompairac (b0285) 2019; 20
Feng, Jiang, Hannig, Marron (b0760) 2018; 166
Palou-Márquez, Subirana, Nonell, Fernández-Sanlés, Elosua (b0720) 2021; 13
Chauvel, Novoloaca, Veyre, Reynier, Becker (b0135) 2020; 21
Islam (b0640) 2020; 18
Chaudhary, Poirion, Lu, Garmire (b0350) 2018; 24
Tebani, Afonso, Marret, Bekri (b0025) 2016; 17
Sun, Hu (b0040) 2016; 93
Altenbuchinger, Weihs, Quackenbush, Grabe, Zacharias (b0380) 2020; 1863
Huang, Chaudhary, Garmire (b0095) 2017; 8
Li, Wu, Ngom (b0100) 2018; 19
Domingos (b0210) 2012; 55
Hall MA. Correlation-based feature selection for machine learning. http://www.cs.waikato.ac.nz/~ml/publications/1999/99MH-Thesis.pdf.
Gaynanova, Li (b0650) 2019; 75
Zhong (b0400) 2020; 11
Shen, Olshen, Ladanyi (b0725) 2009; 25
Xu (b0630) 2019; 20
Hasin, Seldin, Lusis (b0035) 2017; 18
Manica, Cadow, Mathis, Martínez (b0585) 2019; 5
Ma, Zhang (b0495) 2018; 145
Lee, Seung (b0655) 1999; 401
Fortelny N, Bock C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. doi:10.1101/794503.
Liu (b0530) 2013; 29
Clark, Dayon, Masoodi, Bowman, Popp (b0715) 2021; 13
Zhu, Zhao, Zhao, Ma (b0790) 2016; 17
Rappoport, Shamir (b0130) 2018; 46
Zou, Hastie, Tibshirani (b0290) 2006; 15
Franco (b0125) 2021; 13
Hao, Kim, Mallavarapu, Oh, Kang (b0370) 2019; 12
Wang (b0490) 2014; 11
Cantini (b0675) 2021; 12
Wilson CM, Li K, Kuan P-F, Wang X. Multiple-kernel learning for genomic data mining and prediction. doi: 10.1101/415950.
Song (b0200) 2020; 11
Misra, Langefeld, Olivier, Cox (b0005) 2018
He, Zhang, Yuan, Zhang (b0460) 2021; 11
Beh (b0280) 2007; 72
Park, Kim, Moon, Park (b0310) 2020; 21
Singha, M. et al. GraphGR: A graph neural network to predict the effect of pharmacotherapy on the cancer cell growth. doi: 10.1101/2020.05.20.107458.
Sharifi-Noghabi, Zolotareva, Collins, Ester (b0065) 2019; 35
Lin, Zhang, Cao, Li, Du (b0635) 2020; 11
Ramazzotti, Lal, Wang, Batzoglou, Sidow (b0470) 2018; 9
Muzio, O’Bray, Borgwardt (b0620) 2021; 22
Chalise, Fridley (b0670) 2017; 12
Eicher (b0155) 2020; 10
Wu (b0595) 2021; 32
Jamil (b0180) 2020; 11
Scornet E. Trees, forests, and impurity-based variable importance. arXiv [math.ST] (2020).
Speicher, Pfeifer (b0480) 2015; 31
McDonald (b0830) 2019; 20
Abdi, Williams, Valentin (b0335) 2013; 5
Yang, Michailidis (b0665) 2015; btv544
Zierer (10.1016/j.csbj.2021.06.030_b0220) 2016; 6
Rakotomamonjy (10.1016/j.csbj.2021.06.030_b0440) 2008; 9
Clark (10.1016/j.csbj.2021.06.030_b0715) 2021; 13
Lin (10.1016/j.csbj.2021.06.030_b0635) 2020; 11
Jaccard (10.1016/j.csbj.2021.06.030_b0020) 2018; 33
Spicker (10.1016/j.csbj.2021.06.030_b0330) 2008; 102
Dahal (10.1016/j.csbj.2021.06.030_b0045) 2020; 20
Tao (10.1016/j.csbj.2021.06.030_b0450) 2019; 10
10.1016/j.csbj.2021.06.030_b0435
Gaynanova (10.1016/j.csbj.2021.06.030_b0650) 2019; 75
Bersanelli (10.1016/j.csbj.2021.06.030_b0090) 2016; 17
Manica (10.1016/j.csbj.2021.06.030_b0585) 2019; 5
Chierici (10.1016/j.csbj.2021.06.030_b0510) 2020; 10
Abdi (10.1016/j.csbj.2021.06.030_b0335) 2013; 5
Ma (10.1016/j.csbj.2021.06.030_b0740) 2021; 13
Ritchie (10.1016/j.csbj.2021.06.030_b0110) 2015; 16
Argelaguet (10.1016/j.csbj.2021.06.030_b0705) 2018; 14
10.1016/j.csbj.2021.06.030_b0540
Feng (10.1016/j.csbj.2021.06.030_b0760) 2018; 166
Mo (10.1016/j.csbj.2021.06.030_b0730) 2013; 110
10.1016/j.csbj.2021.06.030_b0140
Deng (10.1016/j.csbj.2021.06.030_b0365) 2020; 60
Yang (10.1016/j.csbj.2021.06.030_b0420) 2018
Song (10.1016/j.csbj.2021.06.030_b0200) 2020; 11
10.1016/j.csbj.2021.06.030_b0780
Park (10.1016/j.csbj.2021.06.030_b0310) 2020; 21
Argelaguet (10.1016/j.csbj.2021.06.030_b0710) 2020; 21
Wu (10.1016/j.csbj.2021.06.030_b0595) 2021; 32
Leon-Mimila (10.1016/j.csbj.2021.06.030_b0185) 2019; 6
10.1016/j.csbj.2021.06.030_b0305
Zhang (10.1016/j.csbj.2021.06.030_b0625) 2018; 9
Nounou (10.1016/j.csbj.2021.06.030_b0270) 2002; 16
Lock (10.1016/j.csbj.2021.06.030_b0755) 2013; 7
Ringnér (10.1016/j.csbj.2021.06.030_b0260) 2008; 26
Misra (10.1016/j.csbj.2021.06.030_b0005) 2018
Meng (10.1016/j.csbj.2021.06.030_b0120) 2016; 17
Chaudhary (10.1016/j.csbj.2021.06.030_b0350) 2018; 24
Zarayeneh (10.1016/j.csbj.2021.06.030_b0055) 2017; 18
10.1016/j.csbj.2021.06.030_b0410
Xie (10.1016/j.csbj.2021.06.030_b0275) 1993; 7
10.1016/j.csbj.2021.06.030_b0250
Grossi (10.1016/j.csbj.2021.06.030_b0340) 2007; 19
Zhang (10.1016/j.csbj.2021.06.030_b0660) 2012; 40
10.1016/j.csbj.2021.06.030_b0770
Chauvel (10.1016/j.csbj.2021.06.030_b0135) 2020; 21
Nicora (10.1016/j.csbj.2021.06.030_b0105) 2020; 10
10.1016/j.csbj.2021.06.030_b0815
Sompairac (10.1016/j.csbj.2021.06.030_b0285) 2019; 20
10.1016/j.csbj.2021.06.030_b0415
Burney (10.1016/j.csbj.2021.06.030_b0015) 2017; 17
Gligorijević (10.1016/j.csbj.2021.06.030_b0570) 2018; 34
De Tayrac (10.1016/j.csbj.2021.06.030_b0315) 2009; 10
Wen (10.1016/j.csbj.2021.06.030_b0500) 2021; 22
Suzuki (10.1016/j.csbj.2021.06.030_b0445) 2011; 85
Gönen (10.1016/j.csbj.2021.06.030_b0430) 2011; 12
Zhang (10.1016/j.csbj.2021.06.030_b0455) 2016; 13
Meng (10.1016/j.csbj.2021.06.030_b0690) 2014; 15
Zeng (10.1016/j.csbj.2021.06.030_b0575) 2019; 35
Rappoport (10.1016/j.csbj.2021.06.030_b0060) 2020; 16
Domingos (10.1016/j.csbj.2021.06.030_b0210) 2012; 55
Vinga (10.1016/j.csbj.2021.06.030_b0255) 2021; 22
10.1016/j.csbj.2021.06.030_b0485
Tenenhaus (10.1016/j.csbj.2021.06.030_b0685) 2017; 82
Franco (10.1016/j.csbj.2021.06.030_b0125) 2021; 13
10.1016/j.csbj.2021.06.030_b0360
Cho (10.1016/j.csbj.2021.06.030_b0560) 2015; 9029
Chai (10.1016/j.csbj.2021.06.030_b0795) 2017; 41
Sharifi-Noghabi (10.1016/j.csbj.2021.06.030_b0065) 2019; 35
He (10.1016/j.csbj.2021.06.030_b0460) 2021; 11
10.1016/j.csbj.2021.06.030_b0525
Shang (10.1016/j.csbj.2021.06.030_b0520) 2020; 119
Fujita (10.1016/j.csbj.2021.06.030_b0700) 2018; 8
Raileanu (10.1016/j.csbj.2021.06.030_b0240) 2004; 41
Balluff (10.1016/j.csbj.2021.06.030_b0820) 2019; 13
10.1016/j.csbj.2021.06.030_b0805
Yan (10.1016/j.csbj.2021.06.030_b0050) 2018; 19
Wosiak (10.1016/j.csbj.2021.06.030_b0230) 2018; 2018
10.1016/j.csbj.2021.06.030_b0475
Zitnik (10.1016/j.csbj.2021.06.030_b0610) 2018; 34
Eicher (10.1016/j.csbj.2021.06.030_b0155) 2020; 10
10.1016/j.csbj.2021.06.030_b0235
Beh (10.1016/j.csbj.2021.06.030_b0280) 2007; 72
10.1016/j.csbj.2021.06.030_b0075
Wang (10.1016/j.csbj.2021.06.030_b0490) 2014; 11
Wu (10.1016/j.csbj.2021.06.030_b0115) 2019; 8
Fellinghauer (10.1016/j.csbj.2021.06.030_b0385) 2013; 64
Khan (10.1016/j.csbj.2021.06.030_b0175) 2019; 5
Kim (10.1016/j.csbj.2021.06.030_b0535) 2019; 14
Tepeli (10.1016/j.csbj.2021.06.030_b0590) 2021; 36
Wei (10.1016/j.csbj.2021.06.030_b0850) 2020
Yang (10.1016/j.csbj.2021.06.030_b0645) 2021
Talukder (10.1016/j.csbj.2021.06.030_b0355) 2020
Sun (10.1016/j.csbj.2021.06.030_b0040) 2016; 93
Liu (10.1016/j.csbj.2021.06.030_b0530) 2013; 29
Nelson (10.1016/j.csbj.2021.06.030_b0545) 2019; 10
Muzio (10.1016/j.csbj.2021.06.030_b0620) 2021; 22
Menyhárt (10.1016/j.csbj.2021.06.030_b0030) 2021; 19
Morello (10.1016/j.csbj.2021.06.030_b0195) 2020; 14
Mantini (10.1016/j.csbj.2021.06.030_b0160) 2021; 21
Li (10.1016/j.csbj.2021.06.030_b0100) 2018; 19
Mo (10.1016/j.csbj.2021.06.030_b0750) 2020; 3
Zhu (10.1016/j.csbj.2021.06.030_b0425) 2017; 7
10.1016/j.csbj.2021.06.030_b0580
Huang (10.1016/j.csbj.2021.06.030_b0095) 2017; 8
Yang (10.1016/j.csbj.2021.06.030_b0665) 2015; btv544
Hawe (10.1016/j.csbj.2021.06.030_b0405) 2019; 10
10.1016/j.csbj.2021.06.030_b0505
Xu (10.1016/j.csbj.2021.06.030_b0630) 2019; 20
Herrmann (10.1016/j.csbj.2021.06.030_b0840) 2020
Rappoport (10.1016/j.csbj.2021.06.030_b0130) 2018; 46
Hardoon (10.1016/j.csbj.2021.06.030_b0295) 2011; 83
10.1016/j.csbj.2021.06.030_b0225
Yue (10.1016/j.csbj.2021.06.030_b0550) 2019
Shen (10.1016/j.csbj.2021.06.030_b0725) 2009; 25
Petralia (10.1016/j.csbj.2021.06.030_b0395) 2015; 31
Zhu (10.1016/j.csbj.2021.06.030_b0860) 2020; 12
Wu (10.1016/j.csbj.2021.06.030_b0800) 2018; 168
Zou (10.1016/j.csbj.2021.06.030_b0290) 2006; 15
Canzler (10.1016/j.csbj.2021.06.030_b0165) 2020; 94
Chalise (10.1016/j.csbj.2021.06.030_b0670) 2017; 12
Kaplan (10.1016/j.csbj.2021.06.030_b0765) 2017; 16
Chalise (10.1016/j.csbj.2021.06.030_b0695) 2020; 118
Xie (10.1016/j.csbj.2021.06.030_b0345) 2019; 10
Zhong (10.1016/j.csbj.2021.06.030_b0400) 2020; 11
Peharz (10.1016/j.csbj.2021.06.030_b0300) 2012; 80
Ma (10.1016/j.csbj.2021.06.030_b0495) 2018; 145
Tebani (10.1016/j.csbj.2021.06.030_b0025) 2016; 17
Ahmed (10.1016/j.csbj.2021.06.030_b0010) 2020; 14
Higdon (10.1016/j.csbj.2021.06.030_b0080) 2015; 19
10.1016/j.csbj.2021.06.030_b0615
Jamil (10.1016/j.csbj.2021.06.030_b0180) 2020; 11
Ramazzotti (10.1016/j.csbj.2021.06.030_b0470) 2018; 9
Wang (10.1016/j.csbj.2021.06.030_b0600) 2020; 36
Xuan (10.1016/j.csbj.2021.06.030_b0565) 2019; 10
Schölkopf (10.1016/j.csbj.2021.06.030_b0265) 1998; 10
Altenbuchinger (10.1016/j.csbj.2021.06.030_b0380) 2020; 1863
Peng (10.1016/j.csbj.2021.06.030_b0245) 2005; 27
Luo (10.1016/j.csbj.2021.06.030_b0555) 2017; 8
Zhu (10.1016/j.csbj.2021.06.030_b0835) 2020; 10
Manatakis (10.1016/j.csbj.2021.06.030_b0390) 2018; 34
Cantini (10.1016/j.csbj.2021.06.030_b0675) 2021; 12
Wang (10.1016/j.csbj.2021.06.030_b0785) 2013; 29
Tini (10.1016/j.csbj.2021.06.030_b0070) 2019; 20
Lee (10.1016/j.csbj.2021.06.030_b0655) 1999; 401
Palou-Márquez (10.1016/j.csbj.2021.06.030_b0720) 2021; 13
Crick (10.1016/j.csbj.2021.06.030_b0215) 1970; 227
Zitnik (10.1016/j.csbj.2021.06.030_b0085) 2019; 50
Lee (10.1016/j.csbj.2021.06.030_b0145) 2019; 10
Islam (10.1016/j.csbj.2021.06.030_b0640) 2020; 18
Mirza (10.1016/j.csbj.2021.06.030_b0205) 2019; 10
10.1016/j.csbj.2021.06.030_b0320
Hasin (10.1016/j.csbj.2021.06.030_b0035) 2017; 18
Culibrk (10.1016/j.csbj.2021.06.030_b0170) 2016; 20
Zhu (10.1016/j.csbj.2021.06.030_b0790) 2016; 17
McDonald (10.1016/j.csbj.2021.06.030_b0830) 2019; 20
Sun (10.1016/j.csbj.2021.06.030_b0775) 2019; 16
Speicher (10.1016/j.csbj.2021.06.030_b0480) 2015; 31
McCabe (10.1016/j.csbj.2021.06.030_b0855) 2020; 21
Hao (10.1016/j.csbj.2021.06.030_b0370) 2019; 12
10.1016/j.csbj.2021.06.030_b0605
10.1016/j.csbj.2021.06.030_b0325
Pierre-Jean (10.1016/j.csbj.2021.06.030_b0845) 2020; 21
Lee (10.1016/j.csbj.2021.06.030_b0375) 2015; 24
Cai (10.1016/j.csbj.2021.06.030_b0810) 2013; 9
Mo (10.1016/j.csbj.2021.06.030_b0735) 2018; 19
Valdeolivas (10.1016/j.csbj.2021.06.030_b0515) 2019; 35
Zhao (10.1016/j.csbj.2021.06.030_b0745) 2021; 21
Cavill (10.1016/j.csbj.2021.06.030_b0150) 2016; 17
Wang (10.1016/j.csbj.2021.06.030_b0465) 2017; 14
Luo (10.1016/j.csbj.2021.06.030_b0680) 2016
Labory (10.1016/j.csbj.2021.06.030_b0190) 2020; 7
Ma (10.1016/j.csbj.2021.06.030_b0825) 2016; 2016
References_xml – volume: 21
  start-page: 541
  year: 2020
  end-page: 552
  ident: b0135
  article-title: Evaluation of integrative clustering methods for the analysis of multi-omics data
  publication-title: Brief. Bioinform.
– volume: 10
  year: 2019
  ident: b0345
  article-title: Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features
  publication-title: Genes
– volume: 9029
  start-page: 62
  year: 2015
  end-page: 64
  ident: b0560
  article-title: Diffusion component analysis: unraveling functional topology in biological networks
  publication-title: Res. Comput. Mol. Biol.
– volume: 10
  year: 2019
  ident: b0565
  article-title: Gradient boosting decision tree-based method for predicting interactions between target genes and drugs
  publication-title: Front Genet
– reference: Tang TM, Allen GI. Integrated Principal Components Analysis. arXiv [stat.ME] (2018).
– volume: 19
  start-page: 949
  year: 2021
  end-page: 960
  ident: b0030
  article-title: Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis
  publication-title: Comput Struct Biotechnol J
– volume: 10
  year: 2019
  ident: b0450
  article-title: Classifying breast cancer subtypes using multiple kernel learning based on omics data
  publication-title: Genes
– year: 2021
  ident: b0645
  article-title: Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data
  publication-title: Bioinformatics
– volume: 35
  start-page: 497
  year: 2019
  end-page: 505
  ident: b0515
  article-title: Random walk with restart on multiplex and heterogeneous biological networks
  publication-title: Bioinformatics
– volume: 26
  start-page: 303
  year: 2008
  end-page: 304
  ident: b0260
  article-title: What is principal component analysis?
  publication-title: Nat Biotechnol
– volume: 12
  year: 2019
  ident: b0370
  article-title: Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data
  publication-title: BMC Med Genomics
– volume: 35
  start-page: 5191
  year: 2019
  end-page: 5198
  ident: b0575
  article-title: deepDR: a network-based deep learning approach to in silico drug repositioning
  publication-title: Bioinformatics
– volume: 83
  start-page: 331
  year: 2011
  end-page: 353
  ident: b0295
  article-title: Sparse canonical correlation analysis
  publication-title: Mach. Learn.
– volume: 93
  start-page: 147
  year: 2016
  end-page: 190
  ident: b0040
  article-title: Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases
  publication-title: Adv Genet
– year: 2019
  ident: b0550
  article-title: Graph embedding on biomedical networks: methods, applications and evaluations
  publication-title: Bioinformatics
– volume: 11
  start-page: 888
  year: 2020
  ident: b0635
  article-title: Classifying breast cancer subtypes using deep neural networks based on multi-omics data
  publication-title: Genes
– volume: 3
  start-page: 784
  year: 2020
  ident: b0750
  article-title: Integrative multi-omics analysis of muscle-invasive bladder cancer identifies prognostic biomarkers for frontline chemotherapy and immunotherapy
  publication-title: Commun Biol
– volume: 17
  year: 2016
  ident: b0025
  article-title: Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations
  publication-title: Int J Mol Sci
– volume: 12
  year: 2017
  ident: b0670
  article-title: Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm
  publication-title: PLoS ONE
– volume: 5
  start-page: 493
  year: 2019
  end-page: 505
  ident: b0175
  article-title: Multi-omics strategies uncover host-pathogen interactions
  publication-title: ACS Infect Dis
– volume: 1863
  year: 2020
  ident: b0380
  article-title: Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools
  publication-title: Biochim Biophys Acta (BBA) – Gene Regulatory Mech
– year: 2016
  ident: b0680
  article-title: Tensor canonical correlation analysis for multi-view dimension reduction
  publication-title: 2016 IEEE 32nd International Conference on Data Engineering (ICDE)
– volume: 85
  start-page: 77
  year: 2011
  end-page: 108
  ident: b0445
  article-title: SpicyMKL: a fast algorithm for Multiple Kernel Learning with thousands of kernels
  publication-title: Mach. Learn.
– volume: 5
  year: 2019
  ident: b0585
  article-title: PIMKL: Pathway-induced multiple kernel learning
  publication-title: npj Syst Biol Appl
– volume: 14
  start-page: 414
  year: 2017
  end-page: 416
  ident: b0465
  article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
  publication-title: Nat Methods
– volume: 102
  start-page: 444
  year: 2008
  end-page: 454
  ident: b0330
  article-title: Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation
  publication-title: Toxicol Sci
– reference: Wilson CM, Li K, Kuan P-F, Wang X. Multiple-kernel learning for genomic data mining and prediction. doi: 10.1101/415950.
– volume: 11
  start-page: 333
  year: 2014
  end-page: 337
  ident: b0490
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
– reference: Ponzi E, Thoresen M, Nøst, TH, Møllersen K. Integrative analyses of multi-omics data improves model predictions: an application to lung cancer. bioRxiv 2020.10.02.299834 (2020) doi: 10.1101/2020.10.02.299834.
– volume: 16
  start-page: 85
  year: 2015
  end-page: 97
  ident: b0110
  article-title: Methods of integrating data to uncover genotype–phenotype interactions
  publication-title: Nat Rev Genet
– volume: 21
  start-page: 1277
  year: 2020
  end-page: 1284
  ident: b0855
  article-title: Consistency and overfitting of multi-omics methods on experimental data
  publication-title: Brief. Bioinform.
– reference: Liu R, Niang N, Saporta G, Wang H. Sparse Correspondence Analysis for Contingency Tables. arXiv [stat.ME] (2020).
– volume: 20
  start-page: 1269
  year: 2019
  end-page: 1279
  ident: b0070
  article-title: Multi-omics integration—a comparison of unsupervised clustering methodologies
  publication-title: Briefings Bioinf.
– volume: 60
  start-page: 4497
  year: 2020
  end-page: 4505
  ident: b0365
  article-title: Pathway-guided deep neural network toward interpretable and predictive modeling of drug sensitivity
  publication-title: J Chem Inf Model
– volume: 29
  start-page: 2169
  year: 2013
  end-page: 2177
  ident: b0530
  article-title: Topologically inferring risk-active pathways toward precise cancer classification by directed random walk
  publication-title: Bioinformatics
– volume: 9
  start-page: 477
  year: 2018
  ident: b0625
  article-title: Deep learning-based multi-omics data integration reveals two prognostic subtypes in high-risk neuroblastoma
  publication-title: Front Genet
– volume: 8
  start-page: 84
  year: 2017
  ident: b0095
  article-title: More is better: recent progress in multi-omics data integration methods
  publication-title: Front Genet
– volume: 12
  year: 2020
  ident: b0860
  article-title: The application of deep learning in cancer prognosis prediction
  publication-title: Cancers
– reference: Hall MA. Correlation-based feature selection for machine learning. http://www.cs.waikato.ac.nz/~ml/publications/1999/99MH-Thesis.pdf.
– volume: 18
  start-page: 223
  year: 2017
  ident: b0055
  article-title: Integration of multi-omics data for integrative gene regulatory network inference
  publication-title: Int. J. Data Mining Bioinformatics
– volume: 19
  start-page: 1370
  year: 2018
  end-page: 1381
  ident: b0050
  article-title: Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data
  publication-title: Brief. Bioinform.
– volume: 46
  start-page: 10546
  year: 2018
  end-page: 10562
  ident: b0130
  article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark
  publication-title: Nucl Acids Res
– volume: 40
  start-page: 9379
  year: 2012
  end-page: 9391
  ident: b0660
  article-title: Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
  publication-title: Nucl Acids Res
– reference: Paul D, Chakraborty S, Das S, Xu J. Kernel k-Means, By All Means: Algorithms and Strong Consistency. arXiv [stat.ML] (2020).
– volume: 10
  start-page: 1381
  year: 2019
  ident: b0145
  article-title: Heterogeneous multi-layered network model for omics data integration and analysis
  publication-title: Front Genet
– volume: 22
  start-page: 1515
  year: 2021
  end-page: 1530
  ident: b0620
  article-title: Biological network analysis with deep learning
  publication-title: Briefings Bioinf
– volume: 14
  year: 2018
  ident: b0705
  article-title: Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets
  publication-title: Mol Syst Biol
– volume: 11
  start-page: 944
  year: 2020
  ident: b0180
  article-title: Systematic multi-omics integration (MOI) approach in plant systems biology
  publication-title: Front Plant Sci
– volume: 75
  start-page: 1121
  year: 2019
  end-page: 1132
  ident: b0650
  article-title: Structural learning and integrative decomposition of multi-view data
  publication-title: Biometrics
– volume: 10
  year: 2020
  ident: b0155
  article-title: Metabolomics and multi-omics integration: a survey of computational methods and resources
  publication-title: Metabolites
– volume: 64
  start-page: 132
  year: 2013
  end-page: 152
  ident: b0385
  article-title: Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables
  publication-title: Comput Stat Data Anal
– volume: 10
  start-page: 1065
  year: 2020
  ident: b0510
  article-title: Integrative network fusion: a multi-omics approach in molecular profiling
  publication-title: Front Oncol
– reference: Wani N, Raza K. Integrative Approaches to Reconstruct Regulatory Networks From Multi-Omics Data: A Review of State-of-the-Art Methods. doi:10.20944/preprints201804.0352.v1.
– reference: Murodzhon A, Alberto A, Montemanni R, Francesco B, Ivo K. OmicsNet: Integration of Multi-Omics Data using Path Analysis in Multilayer Networks. (2017).
– year: 2020
  ident: b0355
  article-title: Interpretation of deep learning in genomics and epigenomics
  publication-title: Briefings Bioinf
– volume: 118
  year: 2020
  ident: b0695
  article-title: Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization
  publication-title: Comput Biol Med
– reference: Kim D-C et al. Integration of DNA Methylation, Copy Number Variation, and Gene Expression for Gene Regulatory Network Inference and Application to Psychiatric Disorders. in 2014 IEEE International Conference on Bioinformatics and Bioengineering 238–242 (2014).
– volume: 10
  year: 2019
  ident: b0405
  article-title: Inferring interaction networks from multi-omics data
  publication-title: Front Genet
– volume: 22
  year: 2021
  ident: b0500
  article-title: Multi-dimensional data integration algorithm based on random walk with restart
  publication-title: BMC Bioinf
– volume: 6
  start-page: 91
  year: 2019
  ident: b0185
  article-title: Relevance of multi-omics studies in cardiovascular diseases
  publication-title: Front Cardiovasc Med
– volume: 22
  start-page: 77
  year: 2021
  end-page: 87
  ident: b0255
  article-title: Structured sparsity regularization for analyzing high-dimensional omics data
  publication-title: Brief. Bioinform.
– volume: 41
  start-page: 779
  year: 2017
  end-page: 789
  ident: b0795
  article-title: Analysis of cancer gene expression data with an assisted robust marker identification approach
  publication-title: Genet Epidemiol
– reference: Joachims T. Support Vector Machines. Learning to Classify Text Using Support Vector Machines 35–44 (2002) doi: 10.1007/978-1-4615-0907-3_3.
– volume: 24
  start-page: 1248
  year: 2018
  end-page: 1259
  ident: b0350
  article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin Cancer Res
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: b0655
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 2016
  start-page: 52
  year: 2016
  end-page: 59
  ident: b0825
  article-title: Breast cancer prognostics using multi-omics data
  publication-title: AMIA Jt Summits Transl Sci Proc
– reference: Martorell-Marugán J. et al. Deep Learning in Omics Data Analysis and Precision Medicine. in Computational Biology (ed. Husi, H.) (Codon Publications, 2019).
– volume: 21
  year: 2020
  ident: b0310
  article-title: integrative analysis of multi-omics data based on blockwise sparse principal components
  publication-title: Int J Mol Sci
– volume: 15
  start-page: 162
  year: 2014
  ident: b0690
  article-title: A multivariate approach to the integration of multi-omics datasets
  publication-title: BMC Bioinf
– volume: 8
  year: 2019
  ident: b0115
  article-title: A selective review of multi-level omics data integration using variable selection
  publication-title: High Throughput
– reference: EL-Manzalawy Y, Hsieh T-Y, Shivakumar M, Kim D, Honavar V. Min-Redundancy and Max-Relevance Multi-view Feature Selection for Predicting Ovarian Cancer Survival using Multi-omics Data. doi:10.1101/317982.
– volume: 13
  start-page: 825
  year: 2016
  end-page: 835
  ident: b0455
  article-title: Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
– volume: 13
  start-page: 71
  year: 2021
  ident: b0715
  article-title: An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer’s disease
  publication-title: Alzheimers. Res. Ther.
– volume: 19
  start-page: 325
  year: 2018
  end-page: 340
  ident: b0100
  article-title: A review on machine learning principles for multi-view biological data integration
  publication-title: Brief. Bioinform.
– volume: 34
  start-page: i848
  year: 2018
  end-page: i856
  ident: b0390
  article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks
  publication-title: Bioinformatics
– volume: 20
  year: 2019
  ident: b0630
  article-title: A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data
  publication-title: BMC Bioinf
– volume: 20
  year: 2020
  ident: b0045
  article-title: Synthesizing systems biology knowledge from omics using genome-scale models
  publication-title: Proteomics
– volume: 13
  start-page: 6999
  year: 2021
  end-page: 7019
  ident: b0740
  article-title: Integrative analysis of genomic, epigenomic and transcriptomic data identified molecular subtypes of esophageal carcinoma
  publication-title: Aging
– volume: 8
  year: 2017
  ident: b0555
  article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
  publication-title: Nat Commun
– volume: 10
  year: 2019
  ident: b0205
  article-title: Machine learning and integrative analysis of biomedical big data
  publication-title: Genes
– year: 2020
  ident: b0850
  article-title: Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets
  publication-title: Briefings Bioinf
– volume: 145
  start-page: 16
  year: 2018
  end-page: 24
  ident: b0495
  article-title: Affinity network fusion and semi-supervised learning for cancer patient clustering
  publication-title: Methods
– volume: 17
  start-page: 15
  year: 2016
  ident: b0090
  article-title: Methods for the integration of multi-omics data: mathematical aspects
  publication-title: BMC Bioinf
– reference: Wang T. et al. MORONET: Multi-omics Integration via Graph Convolutional Networks for Biomedical Data Classification. doi: 10.1101/2020.07.02.184705.
– volume: 15
  start-page: 265
  year: 2006
  end-page: 286
  ident: b0290
  article-title: Sparse principal component analysis
  publication-title: J. Comput. Graph. Stat.
– volume: 11
  year: 2020
  ident: b0400
  article-title: Inferring regulatory networks from mixed observational data using directed acyclic graphs
  publication-title: Front Genet
– volume: 32
  start-page: 4
  year: 2021
  end-page: 24
  ident: b0595
  article-title: A Comprehensive survey on graph neural networks
  publication-title: IEEE Trans Neural Networks Learn Syst
– volume: 29
  start-page: 149
  year: 2013
  end-page: 159
  ident: b0785
  article-title: iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data
  publication-title: Bioinformatics
– volume: 72
  start-page: 257
  year: 2007
  end-page: 284
  ident: b0280
  article-title: Simple correspondence analysis: a bibliographic review
  publication-title: Int. Stat. Rev.
– volume: 16
  year: 2017
  ident: b0765
  article-title: Prediction with dimension reduction of multiple molecular data sources for patient survival
  publication-title: Cancer Inf
– volume: 16
  start-page: 841
  year: 2019
  end-page: 850
  ident: b0775
  article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: b0265
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput
– volume: 17
  year: 2017
  ident: b0015
  article-title: Precision Medicine: Where have we reached and where are we headed?
  publication-title: Sultan Qaboos Univ. Med. J.
– volume: 6
  start-page: 37646
  year: 2016
  ident: b0220
  article-title: Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model
  publication-title: Sci Rep
– volume: 50
  start-page: 71
  year: 2019
  end-page: 91
  ident: b0085
  article-title: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities
  publication-title: Inf. Fusion
– volume: 16
  year: 2020
  ident: b0060
  article-title: MONET: Multi-omic module discovery by omic selection
  publication-title: PLoS Comput Biol
– volume: 7
  start-page: 527
  year: 1993
  end-page: 541
  ident: b0275
  article-title: Robust principal component analysis by projection pursuit
  publication-title: J Chemom
– volume: 20
  start-page: 127
  year: 2016
  end-page: 138
  ident: b0170
  article-title: Systems biology approaches for host-fungal interactions: an expanding multi-omics frontier
  publication-title: OMICS
– volume: 20
  year: 2019
  ident: b0830
  article-title: Molecular characterization of non-responders to chemotherapy in serous ovarian cancer
  publication-title: Int J Mol Sci
– volume: 18
  start-page: 2185
  year: 2020
  end-page: 2199
  ident: b0640
  article-title: An integrative deep learning framework for classifying molecular subtypes of breast cancer
  publication-title: Comput Struct Biotechnol J
– reference: Kim SY, Choe EK, Shivakumar M, Kim D, Sohn K-A. Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer. doi: 10.1101/2020.07.22.163949.
– volume: 82
  start-page: 737
  year: 2017
  end-page: 777
  ident: b0685
  article-title: Regularized generalized canonical correlation analysis: a framework for sequential multiblock component methods
  publication-title: Psychometrika
– volume: 13
  year: 2019
  ident: b0820
  article-title: Integrative clustering in mass spectrometry imaging for enhanced patient stratification
  publication-title: Proteomics Clin Appl
– volume: 166
  start-page: 241
  year: 2018
  end-page: 265
  ident: b0760
  article-title: Angle-based joint and individual variation explained
  publication-title: J Multivariate Anal
– volume: 10
  start-page: 1
  year: 2009
  end-page: 17
  ident: b0315
  article-title: Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach
  publication-title: BMC Genomics
– volume: 80
  start-page: 38
  year: 2012
  end-page: 46
  ident: b0300
  article-title: Sparse nonnegative matrix factorization with ℓ0-constraints
  publication-title: Neurocomputing
– volume: 21
  year: 2020
  ident: b0710
  article-title: MOFA: a statistical framework for comprehensive integration of multi-modal single-cell data
  publication-title: Genome Biol
– year: 2020
  ident: b0840
  article-title: Large-scale benchmark study of survival prediction methods using multi-omics data
  publication-title: Brief. Bioinform.
– volume: 21
  start-page: 2011
  year: 2020
  end-page: 2030
  ident: b0845
  article-title: Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration
  publication-title: Brief. Bioinform.
– volume: 19
  start-page: 1046
  year: 2007
  end-page: 1054
  ident: b0340
  article-title: Introduction to artificial neural networks
  publication-title: Eur J Gastroenterol Hepatol
– reference: Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. (1999).
– reference: Chen Y, de Rijke M. A Collective Variational Autoencoder for Top-N Recommendation with Side Information. in Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems 3–9 (Association for Computing Machinery, 2018).
– volume: 2018
  year: 2018
  ident: b0230
  article-title: Integrating correlation-based feature selection and clustering for improved cardiovascular disease diagnosis
  publication-title: Complexity
– reference: Liu Q, Hu Z, Jiang R, Zhou M. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response. doi:10.1101/2020.07.08.192930.
– volume: 10
  start-page: 1030
  year: 2020
  ident: b0105
  article-title: Integrated multi-omics analyses in oncology: a review of machine learning methods and tools
  publication-title: Front Oncol
– volume: 25
  start-page: 2906
  year: 2009
  end-page: 2912
  ident: b0725
  article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
  publication-title: Bioinformatics
– volume: 18
  start-page: 83
  year: 2017
  ident: b0035
  article-title: Multi-omics approaches to disease
  publication-title: Genome Biol
– volume: 7
  year: 2013
  ident: b0755
  article-title: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
  publication-title: Ann Appl Statistics
– reference: Kononenko I. Estimating attributes: Analysis and extensions of RELIEF. in Machine Learning: ECML-94 171–182 (Springer Berlin Heidelberg, 1994).
– reference: Singha, M. et al. GraphGR: A graph neural network to predict the effect of pharmacotherapy on the cancer cell growth. doi: 10.1101/2020.05.20.107458.
– reference: Scornet E. Trees, forests, and impurity-based variable importance. arXiv [math.ST] (2020).
– volume: 12
  start-page: 2211
  year: 2011
  end-page: 2268
  ident: b0430
  article-title: Multiple kernel learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 891
  year: 2016
  end-page: 901
  ident: b0150
  article-title: Transcriptomic and metabolomic data integration
  publication-title: Brief. Bioinform.
– volume: 94
  start-page: 371
  year: 2020
  end-page: 388
  ident: b0165
  article-title: Prospects and challenges of multi-omics data integration in toxicology
  publication-title: Arch Toxicol
– reference: Jarada T, Rokne J, Alhajj R. SNF-NN: Computational Method To Predict Drug-Disease Interactions Using Similarity Network Fusion and Neural Networks. doi:10.21203/rs.3.rs-56433/v1.
– volume: 34
  start-page: 3873
  year: 2018
  end-page: 3881
  ident: b0570
  article-title: deepNF: deep network fusion for protein function prediction
  publication-title: Bioinformatics
– reference: Fortelny N, Bock C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. doi:10.1101/794503.
– volume: 36
  start-page: 5237
  year: 2021
  end-page: 5246
  ident: b0590
  article-title: PAMOGK: a pathway graph kernel-based multiomics approach for patient clustering
  publication-title: Bioinformatics
– year: 2018
  ident: b0420
  article-title: Multilevel heterogeneous omics data integration with kernel fusion
  publication-title: Briefings Bioinf
– reference: Mariette J, Villa-Vialaneix N. Unsupervised multiple kernel learning for heterogeneous data integration. doi: 10.1101/139287.
– volume: 9
  year: 2013
  ident: b0810
  article-title: Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations
  publication-title: PLoS Comput Biol
– volume: 11
  year: 2021
  ident: b0460
  article-title: Integrating somatic mutations for breast cancer survival prediction using machine learning methods
  publication-title: Front Genet
– volume: 9
  year: 2018
  ident: b0470
  article-title: Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival
  publication-title: Nat Commun
– volume: 14
  year: 2020
  ident: b0010
  article-title: Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis
  publication-title: Hum. Genomics
– volume: 19
  start-page: 71
  year: 2018
  end-page: 86
  ident: b0735
  article-title: A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data
  publication-title: Biostatistics
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b0245
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 227
  start-page: 561
  year: 1970
  end-page: 563
  ident: b0215
  article-title: Central dogma of molecular biology
  publication-title: Nature
– volume: 34
  start-page: i457
  year: 2018
  end-page: i466
  ident: b0610
  article-title: Modeling polypharmacy side effects with graph convolutional networks
  publication-title: Bioinformatics
– volume: 10
  start-page: 18040
  year: 2020
  ident: b0835
  article-title: Ensemble transfer learning for the prediction of anti-cancer drug response
  publication-title: Sci Rep
– volume: 17
  start-page: 628
  year: 2016
  end-page: 641
  ident: b0120
  article-title: Dimension reduction techniques for the integrative analysis of multi-omics data
  publication-title: Brief. Bioinform.
– volume: btv544
  year: 2015
  ident: b0665
  article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data
– volume: 168
  start-page: 119
  year: 2018
  end-page: 130
  ident: b0800
  article-title: Robust network-based analysis of the associations between (epi)genetic measurements
  publication-title: J. Multivar. Anal.
– volume: 9
  start-page: 2491
  year: 2008
  end-page: 2521
  ident: b0440
  article-title: SimpleMKL
  publication-title: J. Mach. Learn. Res.
– volume: 8
  year: 2018
  ident: b0700
  article-title: Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses
  publication-title: Sci Rep
– volume: 110
  start-page: 4245
  year: 2013
  end-page: 4250
  ident: b0730
  article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 35
  start-page: i501
  year: 2019
  end-page: i509
  ident: b0065
  article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction
  publication-title: Bioinformatics
– volume: 13
  year: 2021
  ident: b0125
  article-title: Performance comparison of deep learning autoencoders for cancer subtype detection using multi-omics data
  publication-title: Cancers
– volume: 21
  year: 2021
  ident: b0160
  article-title: Computational analysis of phosphoproteomics data in multi-omics cancer studies
  publication-title: Proteomics
– volume: 41
  start-page: 77
  year: 2004
  end-page: 93
  ident: b0240
  article-title: Theoretical comparison between the Gini index and information gain criteria
  publication-title: Ann. Math. Artif. Intell.
– volume: 36
  start-page: i525
  year: 2020
  end-page: i533
  ident: b0600
  article-title: Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
  publication-title: Bioinformatics
– volume: 119
  year: 2020
  ident: b0520
  article-title: Network-based prioritization of cancer genes by integrative ranks from multi-omics data
  publication-title: Comput Biol Med
– volume: 31
  start-page: i197
  year: 2015
  end-page: i205
  ident: b0395
  article-title: Integrative random forest for gene regulatory network inference
  publication-title: Bioinformatics
– volume: 12
  year: 2021
  ident: b0675
  article-title: Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
  publication-title: Nat Commun
– volume: 10
  year: 2019
  ident: b0545
  article-title: To embed or not: network embedding as a paradigm in computational biology
  publication-title: Front Genet
– volume: 14
  year: 2020
  ident: b0195
  article-title: From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis
  publication-title: Front Neurosci
– volume: 17
  start-page: 605
  year: 2016
  end-page: 618
  ident: b0790
  article-title: Integrating multidimensional omics data for cancer outcome
  publication-title: Biostatistics
– volume: 7
  year: 2017
  ident: b0425
  article-title: Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers
  publication-title: Sci Rep
– volume: 55
  start-page: 78
  year: 2012
  end-page: 87
  ident: b0210
  article-title: A few useful things to know about machine learning
  publication-title: Commun ACM
– volume: 5
  start-page: 149
  year: 2013
  end-page: 179
  ident: b0335
  article-title: Multiple factor analysis: principal component analysis for multitable and multiblock data sets: Multiple factor analysis
  publication-title: Wiley Interdiscip Rev Comput Stat
– volume: 7
  year: 2020
  ident: b0190
  article-title: Multi-omics approaches to improve mitochondrial disease diagnosis: challenges, advances, and perspectives
  publication-title: Front Mol Biosci
– volume: 33
  year: 2018
  ident: b0020
  article-title: Evidence-based precision medicine is needed to move toward general internal precision medicine
  publication-title: J Gen Intern Med
– volume: 16
  start-page: 576
  year: 2002
  end-page: 595
  ident: b0270
  article-title: Bayesian principal component analysis
  publication-title: J Chemom
– volume: 31
  start-page: i268
  year: 2015
  end-page: i275
  ident: b0480
  article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
  publication-title: Bioinformatics
– volume: 11
  year: 2020
  ident: b0200
  article-title: A review of integrative imputation for multi-omics datasets
  publication-title: Front Genet
– volume: 14
  year: 2019
  ident: b0535
  article-title: Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies
  publication-title: Biol Direct
– volume: 21
  start-page: 257
  year: 2021
  ident: b0745
  article-title: Multi-omics analysis of genomics, epigenomics and transcriptomics for molecular subtypes and core genes for lung adenocarcinoma
  publication-title: BMC Cancer
– volume: 13
  start-page: 75
  year: 2021
  ident: b0720
  article-title: DNA methylation and gene expression integration in cardiovascular disease
  publication-title: Clin. Epigenetics
– year: 2018
  ident: b0005
  article-title: Integrated omics: tools, advances, and future approaches
  publication-title: J Mol Endocrinol
– volume: 24
  start-page: 230
  year: 2015
  end-page: 253
  ident: b0375
  article-title: Learning the structure of mixed graphical models
  publication-title: J Comput Graph Stat
– volume: 19
  start-page: 197
  year: 2015
  end-page: 208
  ident: b0080
  article-title: The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders
  publication-title: OMICS
– volume: 20
  year: 2019
  ident: b0285
  article-title: Independent component analysis for unraveling the complexity of cancer omics datasets
  publication-title: Int J Mol Sci
– reference: Lanckriet GRG. Learning the kernel matrix with semideønite programming. https://www.jmlr.org/papers/volume5/lanckriet04a/lanckriet04a.pdf (2004).
– volume: 21
  start-page: 541
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0135
  article-title: Evaluation of integrative clustering methods for the analysis of multi-omics data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz015
– volume: 83
  start-page: 331
  year: 2011
  ident: 10.1016/j.csbj.2021.06.030_b0295
  article-title: Sparse canonical correlation analysis
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-010-5222-7
– volume: 110
  start-page: 4245
  year: 2013
  ident: 10.1016/j.csbj.2021.06.030_b0730
  article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1208949110
– volume: 13
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0820
  article-title: Integrative clustering in mass spectrometry imaging for enhanced patient stratification
  publication-title: Proteomics Clin Appl
  doi: 10.1002/prca.201800137
– volume: 11
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0200
  article-title: A review of integrative imputation for multi-omics datasets
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.570255
– volume: 16
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0765
  article-title: Prediction with dimension reduction of multiple molecular data sources for patient survival
  publication-title: Cancer Inf
– volume: 35
  start-page: 497
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0515
  article-title: Random walk with restart on multiplex and heterogeneous biological networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty637
– volume: 12
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0675
  article-title: Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20430-7
– volume: 14
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0705
  article-title: Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20178124
– volume: 94
  start-page: 371
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0165
  article-title: Prospects and challenges of multi-omics data integration in toxicology
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-020-02656-y
– volume: 6
  start-page: 91
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0185
  article-title: Relevance of multi-omics studies in cardiovascular diseases
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2019.00091
– volume: 16
  start-page: 576
  year: 2002
  ident: 10.1016/j.csbj.2021.06.030_b0270
  article-title: Bayesian principal component analysis
  publication-title: J Chemom
  doi: 10.1002/cem.759
– volume: 10
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0450
  article-title: Classifying breast cancer subtypes using multiple kernel learning based on omics data
  publication-title: Genes
  doi: 10.3390/genes10030200
– volume: 8
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0700
  article-title: Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-28066-w
– volume: 10
  start-page: 1299
  year: 1998
  ident: 10.1016/j.csbj.2021.06.030_b0265
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput
  doi: 10.1162/089976698300017467
– volume: 93
  start-page: 147
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0040
  article-title: Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases
  publication-title: Adv Genet
  doi: 10.1016/bs.adgen.2015.11.004
– year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0355
  article-title: Interpretation of deep learning in genomics and epigenomics
  publication-title: Briefings Bioinf
– volume: 41
  start-page: 779
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0795
  article-title: Analysis of cancer gene expression data with an assisted robust marker identification approach
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.22066
– volume: 21
  start-page: 1277
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0855
  article-title: Consistency and overfitting of multi-omics methods on experimental data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz070
– volume: 12
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0370
  article-title: Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-019-0624-2
– volume: 19
  start-page: 71
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0735
  article-title: A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx017
– volume: 11
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0400
  article-title: Inferring regulatory networks from mixed observational data using directed acyclic graphs
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00008
– volume: 21
  start-page: 2011
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0845
  article-title: Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz138
– ident: 10.1016/j.csbj.2021.06.030_b0325
  doi: 10.1101/317982
– volume: 13
  start-page: 75
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0720
  article-title: DNA methylation and gene expression integration in cardiovascular disease
  publication-title: Clin. Epigenetics
  doi: 10.1186/s13148-021-01064-y
– volume: 82
  start-page: 737
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0685
  article-title: Regularized generalized canonical correlation analysis: a framework for sequential multiblock component methods
  publication-title: Psychometrika
  doi: 10.1007/s11336-017-9573-x
– ident: 10.1016/j.csbj.2021.06.030_b0410
– volume: 22
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0500
  article-title: Multi-dimensional data integration algorithm based on random walk with restart
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-021-04029-3
– ident: 10.1016/j.csbj.2021.06.030_b0770
  doi: 10.21203/rs.3.rs-92731/v1
– ident: 10.1016/j.csbj.2021.06.030_b0605
  doi: 10.1101/2020.05.20.107458
– volume: 9
  start-page: 2491
  year: 2008
  ident: 10.1016/j.csbj.2021.06.030_b0440
  article-title: SimpleMKL
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 197
  year: 2015
  ident: 10.1016/j.csbj.2021.06.030_b0080
  article-title: The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders
  publication-title: OMICS
  doi: 10.1089/omi.2015.0020
– volume: 25
  start-page: 2906
  year: 2009
  ident: 10.1016/j.csbj.2021.06.030_b0725
  article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp543
– volume: 20
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0045
  article-title: Synthesizing systems biology knowledge from omics using genome-scale models
  publication-title: Proteomics
  doi: 10.1002/pmic.201900282
– volume: 17
  start-page: 891
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0150
  article-title: Transcriptomic and metabolomic data integration
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbv090
– volume: 31
  start-page: i197
  year: 2015
  ident: 10.1016/j.csbj.2021.06.030_b0395
  article-title: Integrative random forest for gene regulatory network inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv268
– volume: 7
  year: 2013
  ident: 10.1016/j.csbj.2021.06.030_b0755
  article-title: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
  publication-title: Ann Appl Statistics
  doi: 10.1214/12-AOAS597
– volume: 31
  start-page: i268
  year: 2015
  ident: 10.1016/j.csbj.2021.06.030_b0480
  article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv244
– year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0850
  article-title: Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets
  publication-title: Briefings Bioinf
– ident: 10.1016/j.csbj.2021.06.030_b0580
  doi: 10.1145/3270323.3270326
– volume: 9
  year: 2013
  ident: 10.1016/j.csbj.2021.06.030_b0810
  article-title: Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003068
– volume: 10
  start-page: 18040
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0835
  article-title: Ensemble transfer learning for the prediction of anti-cancer drug response
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-74921-0
– volume: 9
  start-page: 477
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0625
  article-title: Deep learning-based multi-omics data integration reveals two prognostic subtypes in high-risk neuroblastoma
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00477
– volume: 16
  start-page: 85
  year: 2015
  ident: 10.1016/j.csbj.2021.06.030_b0110
  article-title: Methods of integrating data to uncover genotype–phenotype interactions
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3868
– volume: 18
  start-page: 223
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0055
  article-title: Integration of multi-omics data for integrative gene regulatory network inference
  publication-title: Int. J. Data Mining Bioinformatics
  doi: 10.1504/IJDMB.2017.087178
– year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0420
  article-title: Multilevel heterogeneous omics data integration with kernel fusion
  publication-title: Briefings Bioinf
  doi: 10.1093/bib/bby115
– volume: 27
  start-page: 1226
  year: 2005
  ident: 10.1016/j.csbj.2021.06.030_b0245
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– ident: 10.1016/j.csbj.2021.06.030_b0815
  doi: 10.1101/794503
– volume: 10
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0345
  article-title: Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features
  publication-title: Genes
  doi: 10.3390/genes10030240
– volume: 33
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0020
  article-title: Evidence-based precision medicine is needed to move toward general internal precision medicine
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-017-4149-0
– volume: 2018
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0230
  article-title: Integrating correlation-based feature selection and clustering for improved cardiovascular disease diagnosis
  publication-title: Complexity
  doi: 10.1155/2018/2520706
– ident: 10.1016/j.csbj.2021.06.030_b0250
– volume: 20
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0285
  article-title: Independent component analysis for unraveling the complexity of cancer omics datasets
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20184414
– volume: 119
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0520
  article-title: Network-based prioritization of cancer genes by integrative ranks from multi-omics data
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103692
– volume: 21
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0160
  article-title: Computational analysis of phosphoproteomics data in multi-omics cancer studies
  publication-title: Proteomics
  doi: 10.1002/pmic.201900312
– ident: 10.1016/j.csbj.2021.06.030_b0435
  doi: 10.1101/415950
– ident: 10.1016/j.csbj.2021.06.030_b0075
– volume: 19
  start-page: 1370
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0050
  article-title: Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data
  publication-title: Brief. Bioinform.
– volume: 19
  start-page: 949
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0030
  article-title: Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.01.009
– volume: 24
  start-page: 230
  year: 2015
  ident: 10.1016/j.csbj.2021.06.030_b0375
  article-title: Learning the structure of mixed graphical models
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2014.900500
– volume: 36
  start-page: i525
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0600
  article-title: Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa437
– volume: 60
  start-page: 4497
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0365
  article-title: Pathway-guided deep neural network toward interpretable and predictive modeling of drug sensitivity
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00331
– volume: 5
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0585
  article-title: PIMKL: Pathway-induced multiple kernel learning
  publication-title: npj Syst Biol Appl
  doi: 10.1038/s41540-019-0086-3
– volume: 168
  start-page: 119
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0800
  article-title: Robust network-based analysis of the associations between (epi)genetic measurements
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2018.06.009
– volume: 35
  start-page: 5191
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0575
  article-title: deepDR: a network-based deep learning approach to in silico drug repositioning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz418
– volume: 21
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0710
  article-title: MOFA: a statistical framework for comprehensive integration of multi-modal single-cell data
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02015-1
– volume: 13
  start-page: 6999
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0740
  article-title: Integrative analysis of genomic, epigenomic and transcriptomic data identified molecular subtypes of esophageal carcinoma
  publication-title: Aging
  doi: 10.18632/aging.202556
– volume: 35
  start-page: i501
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0065
  article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz318
– volume: 8
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0555
  article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00680-8
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.csbj.2021.06.030_b0655
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 10
  start-page: 1065
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0510
  article-title: Integrative network fusion: a multi-omics approach in molecular profiling
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.01065
– volume: btv544
  year: 2015
  ident: 10.1016/j.csbj.2021.06.030_b0665
  article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data
  publication-title: Bioinformatics
– volume: 5
  start-page: 149
  year: 2013
  ident: 10.1016/j.csbj.2021.06.030_b0335
  article-title: Multiple factor analysis: principal component analysis for multitable and multiblock data sets: Multiple factor analysis
  publication-title: Wiley Interdiscip Rev Comput Stat
  doi: 10.1002/wics.1246
– ident: 10.1016/j.csbj.2021.06.030_b0485
– volume: 85
  start-page: 77
  year: 2011
  ident: 10.1016/j.csbj.2021.06.030_b0445
  article-title: SpicyMKL: a fast algorithm for Multiple Kernel Learning with thousands of kernels
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5252-9
– ident: 10.1016/j.csbj.2021.06.030_b0505
  doi: 10.21203/rs.3.rs-56433/v1
– volume: 17
  start-page: 15
  issue: Suppl 2
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0090
  article-title: Methods for the integration of multi-omics data: mathematical aspects
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-015-0857-9
– volume: 22
  start-page: 77
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0255
  article-title: Structured sparsity regularization for analyzing high-dimensional omics data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa122
– volume: 102
  start-page: 444
  year: 2008
  ident: 10.1016/j.csbj.2021.06.030_b0330
  article-title: Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfn001
– volume: 9
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0470
  article-title: Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06921-8
– volume: 8
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0115
  article-title: A selective review of multi-level omics data integration using variable selection
  publication-title: High Throughput
  doi: 10.3390/ht8010004
– ident: 10.1016/j.csbj.2021.06.030_b0540
  doi: 10.1101/2020.07.22.163949
– ident: 10.1016/j.csbj.2021.06.030_b0525
– volume: 21
  start-page: 257
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0745
  article-title: Multi-omics analysis of genomics, epigenomics and transcriptomics for molecular subtypes and core genes for lung adenocarcinoma
  publication-title: BMC Cancer
  doi: 10.1186/s12885-021-07888-4
– volume: 145
  start-page: 16
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0495
  article-title: Affinity network fusion and semi-supervised learning for cancer patient clustering
  publication-title: Methods
  doi: 10.1016/j.ymeth.2018.05.020
– ident: 10.1016/j.csbj.2021.06.030_b0225
– volume: 41
  start-page: 77
  year: 2004
  ident: 10.1016/j.csbj.2021.06.030_b0240
  article-title: Theoretical comparison between the Gini index and information gain criteria
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1023/B:AMAI.0000018580.96245.c6
– volume: 3
  start-page: 784
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0750
  article-title: Integrative multi-omics analysis of muscle-invasive bladder cancer identifies prognostic biomarkers for frontline chemotherapy and immunotherapy
  publication-title: Commun Biol
  doi: 10.1038/s42003-020-01491-2
– volume: 11
  start-page: 944
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0180
  article-title: Systematic multi-omics integration (MOI) approach in plant systems biology
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.00944
– volume: 7
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0190
  article-title: Multi-omics approaches to improve mitochondrial disease diagnosis: challenges, advances, and perspectives
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2020.590842
– volume: 7
  start-page: 527
  year: 1993
  ident: 10.1016/j.csbj.2021.06.030_b0275
  article-title: Robust principal component analysis by projection pursuit
  publication-title: J Chemom
  doi: 10.1002/cem.1180070606
– volume: 15
  start-page: 265
  year: 2006
  ident: 10.1016/j.csbj.2021.06.030_b0290
  article-title: Sparse principal component analysis
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X113430
– volume: 6
  start-page: 37646
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0220
  article-title: Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model
  publication-title: Sci Rep
  doi: 10.1038/srep37646
– year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0005
  article-title: Integrated omics: tools, advances, and future approaches
  publication-title: J Mol Endocrinol
– volume: 36
  start-page: 5237
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0590
  article-title: PAMOGK: a pathway graph kernel-based multiomics approach for patient clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa655
– volume: 34
  start-page: 3873
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0570
  article-title: deepNF: deep network fusion for protein function prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty440
– volume: 18
  start-page: 2185
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0640
  article-title: An integrative deep learning framework for classifying molecular subtypes of breast cancer
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.08.005
– volume: 17
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0015
  article-title: Precision Medicine: Where have we reached and where are we headed?
  publication-title: Sultan Qaboos Univ. Med. J.
– volume: 11
  start-page: 888
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0635
  article-title: Classifying breast cancer subtypes using deep neural networks based on multi-omics data
  publication-title: Genes
  doi: 10.3390/genes11080888
– year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0645
  article-title: Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab109
– volume: 32
  start-page: 4
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0595
  article-title: A Comprehensive survey on graph neural networks
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2020.2978386
– ident: 10.1016/j.csbj.2021.06.030_b0415
  doi: 10.1007/978-1-4615-0907-3_3
– year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0550
  article-title: Graph embedding on biomedical networks: methods, applications and evaluations
  publication-title: Bioinformatics
– volume: 12
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0860
  article-title: The application of deep learning in cancer prognosis prediction
  publication-title: Cancers
  doi: 10.3390/cancers12030603
– ident: 10.1016/j.csbj.2021.06.030_b0320
– ident: 10.1016/j.csbj.2021.06.030_b0475
  doi: 10.1101/139287
– volume: 50
  start-page: 71
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0085
  article-title: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.012
– volume: 20
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0830
  article-title: Molecular characterization of non-responders to chemotherapy in serous ovarian cancer
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20051175
– ident: 10.1016/j.csbj.2021.06.030_b0305
– volume: 14
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0010
  article-title: Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis
  publication-title: Hum. Genomics
  doi: 10.1186/s40246-020-00287-z
– year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0680
  article-title: Tensor canonical correlation analysis for multi-view dimension reduction
– volume: 19
  start-page: 325
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0100
  article-title: A review on machine learning principles for multi-view biological data integration
  publication-title: Brief. Bioinform.
– volume: 16
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0060
  article-title: MONET: Multi-omic module discovery by omic selection
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008182
– volume: 22
  start-page: 1515
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0620
  article-title: Biological network analysis with deep learning
  publication-title: Briefings Bioinf
  doi: 10.1093/bib/bbaa257
– volume: 13
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0125
  article-title: Performance comparison of deep learning autoencoders for cancer subtype detection using multi-omics data
  publication-title: Cancers
  doi: 10.3390/cancers13092013
– volume: 46
  start-page: 10546
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0130
  article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gky889
– ident: 10.1016/j.csbj.2021.06.030_b0235
  doi: 10.1007/3-540-57868-4_57
– volume: 20
  start-page: 127
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0170
  article-title: Systems biology approaches for host-fungal interactions: an expanding multi-omics frontier
  publication-title: OMICS
  doi: 10.1089/omi.2015.0185
– volume: 24
  start-page: 1248
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0350
  article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-0853
– volume: 10
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0205
  article-title: Machine learning and integrative analysis of biomedical big data
  publication-title: Genes
  doi: 10.3390/genes10020087
– volume: 7
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0425
  article-title: Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17031-8
– volume: 55
  start-page: 78
  year: 2012
  ident: 10.1016/j.csbj.2021.06.030_b0210
  article-title: A few useful things to know about machine learning
  publication-title: Commun ACM
  doi: 10.1145/2347736.2347755
– volume: 166
  start-page: 241
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0760
  article-title: Angle-based joint and individual variation explained
  publication-title: J Multivariate Anal
  doi: 10.1016/j.jmva.2018.03.008
– volume: 75
  start-page: 1121
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0650
  article-title: Structural learning and integrative decomposition of multi-view data
  publication-title: Biometrics
  doi: 10.1111/biom.13108
– volume: 10
  start-page: 1381
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0145
  article-title: Heterogeneous multi-layered network model for omics data integration and analysis
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.01381
– volume: 19
  start-page: 1046
  year: 2007
  ident: 10.1016/j.csbj.2021.06.030_b0340
  article-title: Introduction to artificial neural networks
  publication-title: Eur J Gastroenterol Hepatol
  doi: 10.1097/MEG.0b013e3282f198a0
– volume: 12
  start-page: 2211
  year: 2011
  ident: 10.1016/j.csbj.2021.06.030_b0430
  article-title: Multiple kernel learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 10
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0565
  article-title: Gradient boosting decision tree-based method for predicting interactions between target genes and drugs
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00459
– volume: 20
  start-page: 1269
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0070
  article-title: Multi-omics integration—a comparison of unsupervised clustering methodologies
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbx167
– volume: 10
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0545
  article-title: To embed or not: network embedding as a paradigm in computational biology
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00381
– volume: 9029
  start-page: 62
  year: 2015
  ident: 10.1016/j.csbj.2021.06.030_b0560
  article-title: Diffusion component analysis: unraveling functional topology in biological networks
  publication-title: Res. Comput. Mol. Biol.
  doi: 10.1007/978-3-319-16706-0_9
– volume: 26
  start-page: 303
  year: 2008
  ident: 10.1016/j.csbj.2021.06.030_b0260
  article-title: What is principal component analysis?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0308-303
– volume: 20
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0630
  article-title: A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-019-3116-7
– volume: 11
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0460
  article-title: Integrating somatic mutations for breast cancer survival prediction using machine learning methods
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.632901
– volume: 18
  start-page: 83
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0035
  article-title: Multi-omics approaches to disease
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1215-1
– volume: 14
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0535
  article-title: Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies
  publication-title: Biol Direct
  doi: 10.1186/s13062-019-0239-8
– volume: 8
  start-page: 84
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0095
  article-title: More is better: recent progress in multi-omics data integration methods
  publication-title: Front Genet
  doi: 10.3389/fgene.2017.00084
– volume: 29
  start-page: 149
  year: 2013
  ident: 10.1016/j.csbj.2021.06.030_b0785
  article-title: iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts655
– volume: 5
  start-page: 493
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0175
  article-title: Multi-omics strategies uncover host-pathogen interactions
  publication-title: ACS Infect Dis
  doi: 10.1021/acsinfecdis.9b00080
– volume: 29
  start-page: 2169
  year: 2013
  ident: 10.1016/j.csbj.2021.06.030_b0530
  article-title: Topologically inferring risk-active pathways toward precise cancer classification by directed random walk
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt373
– volume: 17
  start-page: 628
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0120
  article-title: Dimension reduction techniques for the integrative analysis of multi-omics data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbv108
– volume: 14
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0195
  article-title: From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.577755
– volume: 15
  start-page: 162
  year: 2014
  ident: 10.1016/j.csbj.2021.06.030_b0690
  article-title: A multivariate approach to the integration of multi-omics datasets
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-15-162
– volume: 10
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0405
  article-title: Inferring interaction networks from multi-omics data
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00535
– ident: 10.1016/j.csbj.2021.06.030_b0360
– volume: 17
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0025
  article-title: Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17091555
– volume: 13
  start-page: 825
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0455
  article-title: Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2016.2551745
– ident: 10.1016/j.csbj.2021.06.030_b0780
  doi: 10.1101/2020.07.02.184705
– volume: 34
  start-page: i457
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0610
  article-title: Modeling polypharmacy side effects with graph convolutional networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty294
– volume: 2016
  start-page: 52
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0825
  article-title: Breast cancer prognostics using multi-omics data
  publication-title: AMIA Jt Summits Transl Sci Proc
– volume: 17
  start-page: 605
  year: 2016
  ident: 10.1016/j.csbj.2021.06.030_b0790
  article-title: Integrating multidimensional omics data for cancer outcome
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxw010
– volume: 72
  start-page: 257
  year: 2007
  ident: 10.1016/j.csbj.2021.06.030_b0280
  article-title: Simple correspondence analysis: a bibliographic review
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2004.tb00236.x
– volume: 21
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0310
  article-title: integrative analysis of multi-omics data based on blockwise sparse principal components
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21218202
– volume: 10
  start-page: 1
  year: 2009
  ident: 10.1016/j.csbj.2021.06.030_b0315
  article-title: Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-32
– volume: 34
  start-page: i848
  year: 2018
  ident: 10.1016/j.csbj.2021.06.030_b0390
  article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty591
– volume: 1863
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0380
  article-title: Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools
  publication-title: Biochim Biophys Acta (BBA) – Gene Regulatory Mech
– volume: 80
  start-page: 38
  year: 2012
  ident: 10.1016/j.csbj.2021.06.030_b0300
  article-title: Sparse nonnegative matrix factorization with ℓ0-constraints
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.09.024
– volume: 11
  start-page: 333
  year: 2014
  ident: 10.1016/j.csbj.2021.06.030_b0490
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– ident: 10.1016/j.csbj.2021.06.030_b0615
  doi: 10.1101/2020.07.08.192930
– volume: 118
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0695
  article-title: Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103625
– volume: 12
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0670
  article-title: Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0176278
– volume: 16
  start-page: 841
  year: 2019
  ident: 10.1016/j.csbj.2021.06.030_b0775
  article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2018.2806438
– ident: 10.1016/j.csbj.2021.06.030_b0140
  doi: 10.20944/preprints201804.0352.v1
– volume: 14
  start-page: 414
  year: 2017
  ident: 10.1016/j.csbj.2021.06.030_b0465
  article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4207
– volume: 13
  start-page: 71
  year: 2021
  ident: 10.1016/j.csbj.2021.06.030_b0715
  article-title: An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer’s disease
  publication-title: Alzheimers. Res. Ther.
  doi: 10.1186/s13195-021-00814-7
– volume: 10
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0155
  article-title: Metabolomics and multi-omics integration: a survey of computational methods and resources
  publication-title: Metabolites
  doi: 10.3390/metabo10050202
– volume: 227
  start-page: 561
  year: 1970
  ident: 10.1016/j.csbj.2021.06.030_b0215
  article-title: Central dogma of molecular biology
  publication-title: Nature
  doi: 10.1038/227561a0
– volume: 64
  start-page: 132
  year: 2013
  ident: 10.1016/j.csbj.2021.06.030_b0385
  article-title: Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.02.022
– volume: 40
  start-page: 9379
  year: 2012
  ident: 10.1016/j.csbj.2021.06.030_b0660
  article-title: Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gks725
– ident: 10.1016/j.csbj.2021.06.030_b0805
  doi: 10.1109/BIBE.2014.71
– volume: 10
  start-page: 1030
  year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0105
  article-title: Integrated multi-omics analyses in oncology: a review of machine learning methods and tools
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.01030
– year: 2020
  ident: 10.1016/j.csbj.2021.06.030_b0840
  article-title: Large-scale benchmark study of survival prediction methods using multi-omics data
  publication-title: Brief. Bioinform.
SSID ssj0000816930
Score 2.642233
SecondaryResourceType review_article
Snippet Schematic representation of the main strategies for multi-omics datasets integration. A) Early integration concatenates all omics datasets into a single matrix...
Increased availability of high-throughput technologies has generated an ever-growing number of omics data that seek to portray many different but complementary...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3735
SubjectTerms biomarkers
biotechnology
Deep learning
epigenetics
genomics
Integration strategy
Machine learning
metabolomics
Multi-omics
Multi-view
multiomics
Network
proteomics
Review
transcriptomics
Title Integration strategies of multi-omics data for machine learning analysis
URI https://dx.doi.org/10.1016/j.csbj.2021.06.030
https://www.proquest.com/docview/2553817386
https://www.proquest.com/docview/2636384943
https://pubmed.ncbi.nlm.nih.gov/PMC8258788
https://doaj.org/article/63d6bbc42bb848208cc7a4543a64694f
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbgRAEF4imWx8lIdCgiiZ9bArrTUXCiAGk7y57YsCfIni57lPx2ZhznlDRLQ5MicR6eGXtmnM_fMPYmtWQVEiprdaxk0E2FcbOqML21qVOgTSdzsQlzfm43m_WXWakvwoSN9MCj4N5p0ekQQLYhWInuygIYL5UUXmNmJxPNvrVZz5KpPAdbIhmhBZaCGTJ12TEzgrtgCBeYHLZNJu8kCPTMK2Xy_oVzmgWfS-jkzBedPmD3SxDJ348f_5Ddiv0jdm9GLfiYnX0qPBAodz7sJ0IIvks8Ywgr2o08cAKIcoxb-a8Mqoy8VJH4zn1hK3nCvp2efP14VpWqCRVgaldXIWrwoVNtWguZlIEOfEsscWAb8KCSFcL71DUqEPEKYAzg6-SlDnWnUDviKTvqd318xrhWJlryYwoaGRvtiZw-dbJGxWOcFVasmaTmoFCKU2WLn27Cjl04krQjSTsC0Il6xd7e3HM5EmocbP2BlHHTksiw8wk0EVdMxP3LRFZMTap0Ja4Y4wV81Pbgy19Penc46OhPiu_j7npwmIcRs6Gw-kAbLXBuk2spVswsjGbRm-WVfvsjU3xj3o6DxT7_H91_we5Sp8Z1o5fsaH91HV-xO_B7vx2ujtlts7HHefTg8fOfk7_FnR5V
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+strategies+of+multi-omics+data+for+machine+learning+analysis&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Picard%2C+Milan&rft.au=Scott-Boyer%2C+Marie-Pier&rft.au=Bodein%2C+Antoine&rft.au=P%C3%A9rin%2C+Olivier&rft.date=2021-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=19+p.3735-3746&rft.spage=3735&rft.epage=3746&rft_id=info:doi/10.1016%2Fj.csbj.2021.06.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon