Guidance for estimating the blast load from vapour cloud explosions in traffic environments using the multi-energy method
The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the explosion, potentially damaging nearby structures. The TNO Multi-Energy Method is commonly used for a simplified estimate of the blast load...
Saved in:
| Published in: | Journal of Safety Science and Resilience = An quan ke xue yu ren xing (Ying wen) Vol. 7; no. 1; p. 100222 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.03.2026
KeAi Communications Co., Ltd |
| Subjects: | |
| ISSN: | 2666-4496, 2096-7527, 2666-4496 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the explosion, potentially damaging nearby structures. The TNO Multi-Energy Method is commonly used for a simplified estimate of the blast load resulting from a VCE. The method characterises the severity and duration of the blast wave using a case-specific strength class and combustion energy (which the method relates to the gas volume of the equivalent blast source). However, no specific guidelines for estimating the strength class in urban roads or related settings (such as carparks) are currently available in the literature. This makes implementing the method in such scenarios challenging and imprecise. The authors’ work used computational fluid dynamics (CFD) to evaluate multiple gas explosion scenarios and proposed recommendations for determining the strength class and gas volume at the blast source. These scenarios comprised a group of vehicles engulfed by a stoichiometric propane-air cloud. It was concluded that the strength class could be reasonably estimated based on the number of vehicles in the transverse direction. Furthermore, the guidance for estimating the gas volume at the equivalent blast source was based on the critical gas volume, after which no further enhancement of overpressure was obtained. The recommendations were implemented in several scenarios and compared with corresponding CFD analyses. The results showed very good agreement for predicting impulse. Predicting overpressure was affected by the inherent asymmetry of the scenarios, although it was possible to achieve acceptable and conservative results. |
|---|---|
| AbstractList | The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the explosion, potentially damaging nearby structures. The TNO Multi-Energy Method is commonly used for a simplified estimate of the blast load resulting from a VCE. The method characterises the severity and duration of the blast wave using a case-specific strength class and combustion energy (which the method relates to the gas volume of the equivalent blast source). However, no specific guidelines for estimating the strength class in urban roads or related settings (such as carparks) are currently available in the literature. This makes implementing the method in such scenarios challenging and imprecise. The authors’ work used computational fluid dynamics to evaluate multiple gas explosion scenarios and proposed recommendations for determining the strength class and gas volume at the blast source. These scenarios comprised a group of vehicles engulfed by a stoichiometric propane-air cloud. It was concluded that the strength class could be reasonably estimated based on the number of vehicles in the transverse direction. Furthermore, the guidance for estimating the gas volume at the equivalent blast source was based on the critical gas volume, after which no further enhancement of overpressure was obtained. The recommendations were implemented in several scenarios and compared with corresponding CFD analyses. The results showed very good agreement for predicting impulse. Predicting overpressure was affected by the inherent asymmetry of the scenarios, although it was possible to achieve acceptable and conservative results. The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the explosion, potentially damaging nearby structures. The TNO Multi-Energy Method is commonly used for a simplified estimate of the blast load resulting from a VCE. The method characterises the severity and duration of the blast wave using a case-specific strength class and combustion energy (which the method relates to the gas volume of the equivalent blast source). However, no specific guidelines for estimating the strength class in urban roads or related settings (such as carparks) are currently available in the literature. This makes implementing the method in such scenarios challenging and imprecise. The authors’ work used computational fluid dynamics (CFD) to evaluate multiple gas explosion scenarios and proposed recommendations for determining the strength class and gas volume at the blast source. These scenarios comprised a group of vehicles engulfed by a stoichiometric propane-air cloud. It was concluded that the strength class could be reasonably estimated based on the number of vehicles in the transverse direction. Furthermore, the guidance for estimating the gas volume at the equivalent blast source was based on the critical gas volume, after which no further enhancement of overpressure was obtained. The recommendations were implemented in several scenarios and compared with corresponding CFD analyses. The results showed very good agreement for predicting impulse. Predicting overpressure was affected by the inherent asymmetry of the scenarios, although it was possible to achieve acceptable and conservative results. |
| ArticleNumber | 100222 |
| Author | Johansson, Morgan Lozano, Fabio Leppänen, Joosef Plos, Mario |
| Author_xml | – sequence: 1 givenname: Fabio orcidid: 0000-0002-3935-4223 surname: Lozano fullname: Lozano, Fabio email: fabio.lozano@chalmers.se organization: Division of Structural Engineering, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden – sequence: 2 givenname: Morgan orcidid: 0000-0003-0020-0646 surname: Johansson fullname: Johansson, Morgan organization: Division of Structural Engineering, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden – sequence: 3 givenname: Joosef surname: Leppänen fullname: Leppänen, Joosef organization: Division of Structural Engineering, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden – sequence: 4 givenname: Mario surname: Plos fullname: Plos, Mario organization: Swedish Transport Administration, Gothenburg, SE, 41104, Sweden |
| BackLink | https://research.chalmers.se/publication/548147$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNp9kc9u1DAQhyNUJErpG3DwC2SxHceOL0iogrZSpR6As-U_411Hib2ynYV9e9IGULlwmtFofp80871tLmKK0DTvCd4RTPiHcTfGqZS8o5j26whTSl81l5Rz3jIm-cWL_k1zXcqI152BkI7iy-Z8uwSnowXkU0ZQaph1DXGP6gGQmXSpaEraIZ_TjE76mJaM7JQWh-DncUolpFhQiKhm7X2wCOIp5BRniLWgpfwhzctUQwsR8v6MZqiH5N41r72eClz_rlfN9y-fv93ctQ-Pt_c3nx5ay1hfW885aOKw586Ac7ITQhhGDddWEg6WE64xx4K6gWFphBkwY9o6N0hhMPHdVXO_cV3Sozrm9cB8VkkH9TxIea90rsFOoMAaB4Psie8dEwORllsseEc9kQN9Zn3dWOUHHBfzDy1DAZ3tQdmDnmbIRRVQQhrtNB1U50SvGB86JfveKdFj7YfOOSH1SmUb1ea0igT_l0uwenKsRrU5Vk-O1eZ4jX3cYrB-7xQgq2IDrCpdyGDrel74P-AXq3a2QA |
| Cites_doi | 10.1016/j.jlp.2018.01.009 10.1016/0304-3894(93)85004-X 10.1016/j.oceaneng.2020.107146 10.1016/S0950-4230(98)00062-X 10.1016/j.jlp.2018.01.004 10.1016/j.jlp.2021.104495 10.1016/j.jlp.2014.04.010 10.1016/0960-1686(90)90331-G 10.1016/j.jlp.2017.10.014 10.1016/j.jlp.2021.104622 10.1016/j.jlp.2020.104252 10.1016/j.jlp.2023.105004 10.1016/j.jlp.2023.105228 10.1016/j.ijhydene.2016.05.189 10.1016/j.jlp.2014.05.013 10.1016/j.tust.2020.103649 10.1016/j.psep.2018.08.004 10.1016/0045-7825(74)90029-2 10.1016/j.psep.2017.04.025 10.1016/0304-3894(85)80022-4 10.1002/prs.680150211 10.1016/j.jlp.2016.01.020 10.1016/j.jlp.2014.11.005 10.4173/mic.1984.4.3 10.1016/j.ijhydene.2010.02.020 10.1016/j.jhazmat.2010.08.085 10.1016/j.jlp.2023.105008 10.1016/j.jlp.2022.104904 10.1016/j.jlp.2013.08.003 10.1016/j.ijhydene.2018.07.195 10.1016/j.psep.2022.11.090 10.1007/s00703-003-0070-7 10.1016/j.jlp.2016.07.007 10.1002/prs.680180412 10.1080/17445302.2017.1347978 10.1016/j.psep.2020.07.038 10.1002/prs.12278 10.1016/j.psep.2021.10.022 10.1016/j.firesaf.2019.102871 10.1016/j.ijhydene.2008.12.067 10.1016/j.psep.2021.03.034 10.1016/j.jlp.2017.08.002 10.1016/j.jhazmat.2006.09.056 10.1016/j.jlp.2010.07.005 10.1016/j.ijhydene.2023.09.210 10.1016/j.jlp.2008.10.006 10.1016/j.ijhydene.2009.06.055 10.1016/j.jlp.2021.104681 10.1016/S0950-4230(99)00057-1 10.1016/j.ijhydene.2014.03.232 10.1016/j.ijhydene.2018.06.191 10.1016/j.ijhydene.2019.02.213 10.1016/j.ijimpeng.2007.09.001 10.1016/S0950-4230(02)00112-2 10.1016/j.psep.2025.106940 10.1016/j.ijhydene.2017.04.201 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC DOA |
| DOI | 10.1016/j.jnlssr.2025.100222 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2666-4496 |
| ExternalDocumentID | oai_doaj_org_article_ecbde8951f5d47819c6c07632f19821f oai_research_chalmers_se_79bada28_3d75_4683_955d_750af83dd79a 10_1016_j_jnlssr_2025_100222 S2666449625000568 |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ADVLN AEXQZ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ OK1 AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
| ID | FETCH-LOGICAL-c445t-f66ea1d0f6dbedd93777b42b6ac916ec616a06072d8409b7b8044acdd897b01f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001565443900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2666-4496 2096-7527 |
| IngestDate | Fri Oct 03 12:17:21 EDT 2025 Wed Nov 05 04:21:06 EST 2025 Sat Nov 29 07:35:22 EST 2025 Sat Oct 04 17:01:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | TNO Multi-Energy Method Vapour cloud explosions Blast strength Computational fluid dynamics Traffic environments |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c445t-f66ea1d0f6dbedd93777b42b6ac916ec616a06072d8409b7b8044acdd897b01f3 |
| ORCID | 0000-0003-0020-0646 0000-0002-3935-4223 |
| OpenAccessLink | https://doaj.org/article/ecbde8951f5d47819c6c07632f19821f |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ecbde8951f5d47819c6c07632f19821f swepub_primary_oai_research_chalmers_se_79bada28_3d75_4683_955d_750af83dd79a crossref_primary_10_1016_j_jnlssr_2025_100222 elsevier_sciencedirect_doi_10_1016_j_jnlssr_2025_100222 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-03-01 |
| PublicationDateYYYYMMDD | 2026-03-01 |
| PublicationDate_xml | – month: 03 year: 2026 text: 2026-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Safety Science and Resilience = An quan ke xue yu ren xing (Ying wen) |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | Li, Abdel-jawad, Ma (bib0056) 2014; 31 Dahlén (bib0061) 2019 Khan, Abbasi (bib0001) 1999; 12 Johansson, Ansell, Hallgren, Leppänen (bib0058) 2020 Vyazmina, Jallais, Krumenacker, Tripathi, Mahon, Commanay, Kudriakov, Studer, Vuillez, Rosset (bib0028) 2019; 44 Li (bib0034) 2019; 110 Mishra, Mishra (bib0019) 2021; 149 Bubbico, Ferrari, Mazzarotta (bib0010) 2000; 13 Li, Abbassi, Chen, Wang (bib0022) 2020; 201 Makarov, Verbecke, Molkov, Roe, Skotenne, Kotchourko, Lelyakin, Yanez, Hansen, Middha, Ledin, Baraldi, Heitsch, Efimenko, Gavrikov (bib0039) 2009; 34 Li, Zhang, Ma, Shen, Chen, Ren (bib0023) 2016; 43 Tolias, Venetsanos, Markatos, Kiranoudis (bib0037) 2014; 39 Hansen, Hinze, Engel, Davis (bib0030) 2010; 23 Kang, Wu, Ma, Zhao, Li (bib0004) 2023; 82 Sari, Sayin (bib0014) 2022; 41 van den Berg, Versloot (bib0079) 2003; 16 Momferatos, Giannissi, Tolias, Venetsanos, Vlyssides, Markatos (bib0015) 2022; 75 Chen, Wu, Li, Liao (bib0049) 2023; 82 Kinsella (bib0053) 1993 Papanikolaou, Venetsanos, Heitsch, Baraldi, Huser, Pujol, Garcia, Markatos (bib0068) 2010; 35 Stewart, Phylaktou, Andrews, Burns (bib0069) 2021; 71 van Wingerden (bib0074) 1984 (bib0073) 2005 To, Chow, Cheng (bib0036) 2021; 107 Pitblado, Alderman, Thomas (bib0055) 2014; 30 Zhou, Yang, Chen, Li (bib0040) 2024; 54 Li, Hernandez, Hao, Fang, Xiang, Li, Zhang, Chen (bib0050) 2017; 109 Mukhim, Abbasi, Tauseef, Abbasi (bib0047) 2018; 52 Gexcon (bib0059) 2022 Baker, Tang, Scheier, Silva (bib0043) 1996; 15 Lyu, Zhang, Huang, Peng, Li (bib0005) 2022; 157 Casal (bib0011) 2017 Puttock (bib0071) 2001 Cates (bib0072) 1991 Hansen, Johnson (bib0031) 2015; 35 Shi, Xie, Li, Ding (bib0057) 2021; 73 Abbasi, Abbasi (bib0002) 2007; 141 Bjerketvedt, Bakke, van Wingerden (bib0012) 1992 Taylor, Hirst (bib0076) 1988 Yang, Li, Zhou, Zhang, Huang, Bi (bib0003) 2010; 184 Hu, Qian, Shen, Zhang, Ma, Pang, Liang, Feng, Yuan (bib0020) 2022; 80 Baraldi, Kotchourko, Lelyakin, Yanez, Middha, Hansen, Gavrikov, Efimenko, Verbecke, Makarov, Molkov (bib0033) 2009; 34 Arntzen (bib0064) 1998 Li, Liu, Zhao, Li, Li (bib0046) 2025; 197 van den Berg, Mos (bib0078) 2005 Vyazmina, Jallais (bib0029) 2016; 41 van den Berg (bib0042) 1985; 12 Li, Hao (bib0051) 2018; 119 Hjertager (bib0063) 1993; 34 Launder, Spalding (bib0065) 1974; 3 Sinha, Wen (bib0052) 2019; 44 Bae, Paik (bib0021) 2018; 13 Yang, Sun, Fang, Yang, Xia, Bao (bib0048) 2022; 3 Li, Hao (bib0032) 2017; 49 Na’inna, Phylaktou, Andrews (bib0070) 2013; 26 Yang, Peng, Zheng, Xie, Wang, Xu, Li (bib0006) 2024; 87 Johansson (bib0080) 2017 Cox, Tikvart (bib0067) 1990; 24 Alvarsson, Jansson (bib0060) 2016 Chang, Hanna (bib0066) 2004; 87 Bariha, Mishra, Srivastava (bib0007) 2016; 40 Cocchi (bib0009) 2022 Yan (bib0018) 2023; 4 Eggen (bib0054) 1998 Puttock (bib0045) 1995 Shen, Jiao, Parker, Sun, Wang (bib0017) 2020; 67 Baker, Cox, Kulesz, Strehlow, Westine (bib0077) 1983 Li, Hao (bib0008) 2021; 145 Abg Shamsuddin, Mohd Fekeri, Muchtar, Khan, Khor, Lim, Rosli, Takriff (bib0016) 2023; 170 Tang, Baker (bib0044) 1999; 18 Tolias, Stewart, Newton, Keenan, Makarov, Hoyes, Molkov, Venetsanos (bib0027) 2018; 52 Zhang, Li (bib0075) 2017; 42 Lozano (bib0041) 2023 Li, Shen, Huang, Mao, Hu, Ma (bib0038) 2024; 97 Hjertager (bib0062) 1984; 5 Skjold, Hisken, Lakshmipathy, Atanga, Carcassi, Schiavetti, Stewart, Newton, Hoyes, Tolias, Venetsanos, Hansen, Geng, Huser, Helland, Jambut, Ren, Kotchourko, Jordan, Daubech, Lecocq, Hanssen, Kumar, Krumenacker, Jallais, Miller, Bauwens (bib0026) 2019; 44 Shi, Hao, Li (bib0013) 2008; 35 Li, Ma, Abdel-jawad, Hao (bib0024) 2014; 29 Zhang, Zhang (bib0025) 2018; 52 Middha, Hansen (bib0035) 2009; 22 van den Berg (10.1016/j.jnlssr.2025.100222_bib0078) 2005 Kinsella (10.1016/j.jnlssr.2025.100222_bib0053) 1993 Li (10.1016/j.jnlssr.2025.100222_bib0034) 2019; 110 Lyu (10.1016/j.jnlssr.2025.100222_bib0005) 2022; 157 Middha (10.1016/j.jnlssr.2025.100222_bib0035) 2009; 22 Makarov (10.1016/j.jnlssr.2025.100222_bib0039) 2009; 34 Khan (10.1016/j.jnlssr.2025.100222_bib0001) 1999; 12 van den Berg (10.1016/j.jnlssr.2025.100222_bib0042) 1985; 12 Li (10.1016/j.jnlssr.2025.100222_bib0056) 2014; 31 Chang (10.1016/j.jnlssr.2025.100222_bib0066) 2004; 87 Zhang (10.1016/j.jnlssr.2025.100222_bib0025) 2018; 52 Yang (10.1016/j.jnlssr.2025.100222_bib0006) 2024; 87 Li (10.1016/j.jnlssr.2025.100222_bib0038) 2024; 97 Bjerketvedt (10.1016/j.jnlssr.2025.100222_bib0012) 1992 Hansen (10.1016/j.jnlssr.2025.100222_bib0030) 2010; 23 van Wingerden (10.1016/j.jnlssr.2025.100222_bib0074) 1984 Bariha (10.1016/j.jnlssr.2025.100222_bib0007) 2016; 40 Li (10.1016/j.jnlssr.2025.100222_bib0051) 2018; 119 Mishra (10.1016/j.jnlssr.2025.100222_bib0019) 2021; 149 Zhou (10.1016/j.jnlssr.2025.100222_bib0040) 2024; 54 Eggen (10.1016/j.jnlssr.2025.100222_bib0054) 1998 Cocchi (10.1016/j.jnlssr.2025.100222_bib0009) 2022 Sinha (10.1016/j.jnlssr.2025.100222_bib0052) 2019; 44 Tolias (10.1016/j.jnlssr.2025.100222_bib0027) 2018; 52 Vyazmina (10.1016/j.jnlssr.2025.100222_bib0029) 2016; 41 Cates (10.1016/j.jnlssr.2025.100222_bib0072) 1991 Mukhim (10.1016/j.jnlssr.2025.100222_bib0047) 2018; 52 Li (10.1016/j.jnlssr.2025.100222_bib0008) 2021; 145 Kang (10.1016/j.jnlssr.2025.100222_bib0004) 2023; 82 Puttock (10.1016/j.jnlssr.2025.100222_bib0045) 1995 Shi (10.1016/j.jnlssr.2025.100222_bib0013) 2008; 35 (10.1016/j.jnlssr.2025.100222_bib0073) 2005 Baker (10.1016/j.jnlssr.2025.100222_bib0043) 1996; 15 Bae (10.1016/j.jnlssr.2025.100222_bib0021) 2018; 13 Yan (10.1016/j.jnlssr.2025.100222_bib0018) 2023; 4 Abbasi (10.1016/j.jnlssr.2025.100222_bib0002) 2007; 141 Yang (10.1016/j.jnlssr.2025.100222_bib0003) 2010; 184 Arntzen (10.1016/j.jnlssr.2025.100222_bib0064) 1998 Pitblado (10.1016/j.jnlssr.2025.100222_bib0055) 2014; 30 Bubbico (10.1016/j.jnlssr.2025.100222_bib0010) 2000; 13 Gexcon (10.1016/j.jnlssr.2025.100222_bib0059) 2022 Taylor (10.1016/j.jnlssr.2025.100222_bib0076) 1988 Li (10.1016/j.jnlssr.2025.100222_bib0022) 2020; 201 Shi (10.1016/j.jnlssr.2025.100222_bib0057) 2021; 73 Li (10.1016/j.jnlssr.2025.100222_bib0024) 2014; 29 Sari (10.1016/j.jnlssr.2025.100222_bib0014) 2022; 41 Tolias (10.1016/j.jnlssr.2025.100222_bib0037) 2014; 39 Abg Shamsuddin (10.1016/j.jnlssr.2025.100222_bib0016) 2023; 170 Baker (10.1016/j.jnlssr.2025.100222_bib0077) 1983 To (10.1016/j.jnlssr.2025.100222_bib0036) 2021; 107 Cox (10.1016/j.jnlssr.2025.100222_bib0067) 1990; 24 Papanikolaou (10.1016/j.jnlssr.2025.100222_bib0068) 2010; 35 Hjertager (10.1016/j.jnlssr.2025.100222_bib0063) 1993; 34 Hjertager (10.1016/j.jnlssr.2025.100222_bib0062) 1984; 5 Tang (10.1016/j.jnlssr.2025.100222_bib0044) 1999; 18 Puttock (10.1016/j.jnlssr.2025.100222_bib0071) 2001 Li (10.1016/j.jnlssr.2025.100222_bib0032) 2017; 49 Dahlén (10.1016/j.jnlssr.2025.100222_bib0061) 2019 Launder (10.1016/j.jnlssr.2025.100222_bib0065) 1974; 3 Hu (10.1016/j.jnlssr.2025.100222_bib0020) 2022; 80 Chen (10.1016/j.jnlssr.2025.100222_bib0049) 2023; 82 Casal (10.1016/j.jnlssr.2025.100222_bib0011) 2017 Stewart (10.1016/j.jnlssr.2025.100222_bib0069) 2021; 71 Skjold (10.1016/j.jnlssr.2025.100222_bib0026) 2019; 44 Na’inna (10.1016/j.jnlssr.2025.100222_bib0070) 2013; 26 Johansson (10.1016/j.jnlssr.2025.100222_bib0058) 2020 Vyazmina (10.1016/j.jnlssr.2025.100222_bib0028) 2019; 44 Li (10.1016/j.jnlssr.2025.100222_bib0050) 2017; 109 Li (10.1016/j.jnlssr.2025.100222_bib0023) 2016; 43 Zhang (10.1016/j.jnlssr.2025.100222_bib0075) 2017; 42 van den Berg (10.1016/j.jnlssr.2025.100222_bib0079) 2003; 16 Shen (10.1016/j.jnlssr.2025.100222_bib0017) 2020; 67 Alvarsson (10.1016/j.jnlssr.2025.100222_bib0060) 2016 Lozano (10.1016/j.jnlssr.2025.100222_bib0041) 2023 Baraldi (10.1016/j.jnlssr.2025.100222_bib0033) 2009; 34 Momferatos (10.1016/j.jnlssr.2025.100222_bib0015) 2022; 75 Johansson (10.1016/j.jnlssr.2025.100222_bib0080) 2017 Li (10.1016/j.jnlssr.2025.100222_bib0046) 2025; 197 Yang (10.1016/j.jnlssr.2025.100222_bib0048) 2022; 3 Hansen (10.1016/j.jnlssr.2025.100222_bib0031) 2015; 35 |
| References_xml | – volume: 149 start-page: 967 year: 2021 end-page: 976 ident: bib0019 article-title: Numerical study of large-scale LNG vapour cloud explosion in an unconfined space publication-title: Process Saf. Environ. Prot. – volume: 12 start-page: 1 year: 1985 end-page: 10 ident: bib0042 article-title: The multi-energy method: a framework for vapour cloud explosion blast prediction publication-title: J. Hazard. Mater. – volume: 87 year: 2024 ident: bib0006 article-title: Consequences analysis of the LPG tank truck traffic accident: a case study of the Wenling explosion accident publication-title: J. Loss Prev. Process Ind. – volume: 197 year: 2025 ident: bib0046 article-title: Flame propagation and overpressure characteristics of methane-hydrogen-mixed cloud explosion in unconfined area: experimental and model study publication-title: Process Saf. Environ. Prot. – volume: 3 start-page: 269 year: 1974 end-page: 289 ident: bib0065 article-title: The numerical computation of turbulent flow computer methods publication-title: Comput. Methods Appl. Mech. Eng. – volume: 107 year: 2021 ident: bib0036 article-title: Numerical studies on explosion hazards of vehicles using clean fuel in short vehicular tunnels publication-title: Tunn. Undergr. Space Technol. – year: 1983 ident: bib0077 publication-title: Explosion Hazards and Evaluation (Fundamental Studies in Engineering) – volume: 157 start-page: 493 year: 2022 end-page: 508 ident: bib0005 article-title: Investigation and modeling of the LPG tank truck accident in Wenling, China publication-title: Process Saf. Environ. Prot. – volume: 31 start-page: 16 year: 2014 end-page: 25 ident: bib0056 article-title: New correlation for vapor cloud explosion overpressure calculation at congested configurations publication-title: J. Loss Prev. Process Ind. – year: 2022 ident: bib0059 article-title: FLACS-CFD v22.1 User’s Manual – volume: 39 start-page: 20538 year: 2014 end-page: 20546 ident: bib0037 article-title: CFD modeling of hydrogen deflagration in a tunnel publication-title: Int. J. Hydrog. Energy – volume: 34 start-page: 2800 year: 2009 end-page: 2814 ident: bib0039 article-title: An inter-comparison exercise on CFD model capabilities to predict a hydrogen explosion in a simulated vehicle refuelling environment publication-title: Int. J. Hydrog. Energy – volume: 44 start-page: 22719 year: 2019 end-page: 22732 ident: bib0052 article-title: A simple model for calculating peak pressure in vented explosions of hydrogen and hydrocarbons publication-title: Int. J. Hydrog. Energy – volume: 34 start-page: 7862 year: 2009 end-page: 7872 ident: bib0033 article-title: An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel publication-title: Int. J. Hydrog. Energy – volume: 73 year: 2021 ident: bib0057 article-title: A quantitative correlation of evaluating the flame speed for the BST method in vapor cloud explosions publication-title: J. Loss Prev. Process Ind. – volume: 41 start-page: 14 year: 2022 end-page: 24 ident: bib0014 article-title: Risk-based explosion hazard analysis and building upgrades in industrial facilities to prevent blast failures publication-title: Process Saf. Prog. – volume: 82 year: 2023 ident: bib0049 article-title: An overpressure-time history model of methane-air explosion in tunnel-shape space publication-title: J. Loss Prev. Process Ind. – volume: 87 year: 2004 ident: bib0066 article-title: Air quality model performance evaluation publication-title: Meteorol. Atmos. Phys. – year: 2017 ident: bib0011 article-title: Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants – volume: 3 start-page: 209 year: 2022 end-page: 221 ident: bib0048 article-title: Investigation of a practical load model for a natural gas explosion in an unconfined space publication-title: J. Saf. Sci. Resil. – volume: 34 start-page: 173 year: 1993 end-page: 197 ident: bib0063 article-title: Computer modelling of turbulent gas explosions in complex 2D and 3D geometries publication-title: J. Hazard. Mater. – volume: 145 start-page: 94 year: 2021 end-page: 109 ident: bib0008 article-title: Numerical simulation of medium to large scale BLEVE and the prediction of BLEVE’s blast wave in obstructed environment publication-title: Process Saf. Environ. Prot. – volume: 80 year: 2022 ident: bib0020 article-title: Investigations on vapor cloud explosion hazards and critical safe reserves of LPG tanks publication-title: J. Loss Prev. Process Ind. – volume: 29 year: 2014 ident: bib0024 article-title: Evaluation of gas explosion overpressures at configurations with irregularly arranged obstacles publication-title: J. Perform. Constr. Facil. – volume: 44 start-page: 8914 year: 2019 end-page: 8926 ident: bib0028 article-title: Vented explosion of hydrogen/air mixture: An intercomparison benchmark exercise publication-title: Int. J. Hydrog. Energy – year: 1988 ident: bib0076 article-title: The scaling of vapour cloud explosions: a fractal model for size and fuel type publication-title: 22nd International Symposium on Combustion – volume: 16 start-page: 111 year: 2003 end-page: 120 ident: bib0079 article-title: The multi-energy critical separation distance publication-title: J. Loss Prev. Process Ind. – volume: 41 year: 2016 ident: bib0029 article-title: Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: Effects of concentration, obstruction vent area and ignition position publication-title: Int. J. Hydrog. Energy – year: 2019 ident: bib0061 publication-title: Inventory of knowledge needs, with regard to explosion loading, in a densified urban environment, M.Sc. thesis – year: 2023 ident: bib0041 publication-title: Explosions in urban environments: Modelling of gas explosions and risk of premature shear failure in reinforced concrete structures, Lic. Thesis – year: 1995 ident: bib0045 publication-title: Fuel gas explosions guidelines: the congestion assessment method, in: 2nd European Conference on Major Hazards On- and Off-Shore – year: 2020 ident: bib0058 article-title: Inventering av kunskapsbehov i byggbranschen med hänsyn till explosioner i en förtätad stadsmiljö (Inventory of knowledge needs in the construction industry regarding explosions in densified urban environments. In Swedish) – volume: 15 start-page: 106 year: 1996 end-page: 109 ident: bib0043 article-title: Vapor cloud explosion analysis publication-title: Process Saf. Prog. – volume: 52 start-page: 125 year: 2018 end-page: 139 ident: bib0027 article-title: Numerical simulations of vented hydrogen deflagration in a medium-scale enclosure publication-title: J. Loss Prev. Process Ind. – year: 1984 ident: bib0074 article-title: Experimental Study of the Influence of Obstacles and Partial Confinement on Flame Propagation, Part II – year: 2016 ident: bib0060 article-title: Jämförelsestudie av riskbedömningar avseende vägtransport av farligt gods (Comparison study of risk analyses regarding road transport of hazardous materials. In Swedish), M.Sc. thesis – year: 2017 ident: bib0080 article-title: Beräkningsstöd: Gasexplosion i det fria (Gas explosions in the open. In Swedish) – volume: 201 year: 2020 ident: bib0022 article-title: Modeling and analysis of flammable gas dispersion and deflagration from offshore platform blowout publication-title: Ocean Eng. – volume: 71 year: 2021 ident: bib0069 article-title: Evaluation of CFD simulations of transient pool fire burning rates publication-title: J. Loss Prev. Process Ind. – year: 1993 ident: bib0053 publication-title: A rapid assessment methodology for the prediction of vapour cloud explosion overpressure, in: International Conference and Exhibition on Safety, Health and Loss Prevention in the Oil, Chemical and Process Industries – volume: 52 start-page: 29 year: 2018 end-page: 39 ident: bib0025 article-title: Influence of geometrical shapes on unconfined vapor cloud explosion publication-title: J. Loss Prev. Process Ind. – volume: 119 start-page: 360 year: 2018 end-page: 378 ident: bib0051 article-title: Far-field pressure prediction of a vented gas explosion from storage tanks by using new CFD simulation guidance publication-title: Process Saf. Environ. Prot. – volume: 18 start-page: 235 year: 1999 end-page: 240 ident: bib0044 article-title: A new set of blast curves from vapor cloud explosion publication-title: Process Saf. Prog. – volume: 13 start-page: 27 year: 2000 end-page: 31 ident: bib0010 article-title: Risk analysis of LPG transport by road and rail publication-title: J. Loss Prev. Process Ind. – volume: 75 year: 2022 ident: bib0015 article-title: Vapor cloud explosions in various types of confined environments: CFD analysis and model validation publication-title: J. Loss Prev. Process Ind. – volume: 43 start-page: 449 year: 2016 end-page: 456 ident: bib0023 article-title: Influence of built-in obstacles on unconfined vapor cloud explosion publication-title: J. Loss Prev. Process Ind. – year: 1998 ident: bib0054 article-title: GAME: Development of Guidance for the Application Of The Multi-Energy Method – year: 1998 ident: bib0064 publication-title: Modelling of turbulence and combustion for simulation of gas explosions in complex geometries, Ph.D. Thesis – volume: 109 start-page: 489 year: 2017 end-page: 508 ident: bib0050 article-title: Vented methane-air explosion overpressure calculation—A simplified approach based on CFD publication-title: Process Saf. Environ. Prot. – year: 1991 ident: bib0072 publication-title: Fuel gas explosion guidelines, in: Conference on Fire and Explosion Hazards – volume: 184 start-page: 647 year: 2010 end-page: 653 ident: bib0003 article-title: A survey on hazardous materials accidents during road transport in China from 2000 to 2008 publication-title: J. Hazard. Mater. – year: 2005 ident: bib0073 article-title: Committee for the Prevention of Disasters, Methods for the Calculation of Physical Effects [’Yellow Book’] – volume: 141 start-page: 489 year: 2007 end-page: 519 ident: bib0002 article-title: The boiling liquid expanding vapour explosion (BLEVE): Mechanism, consequence assessment, management publication-title: J. Hazard. Mater. – year: 1992 ident: bib0012 article-title: Gas Explosion Handbook – volume: 97 start-page: 387 year: 2024 end-page: 396 ident: bib0038 article-title: Study of leakage and explosion hazard characteristics of a compressed natural gas at a gas station publication-title: J. Eng. Phys. Thermophy. – volume: 30 start-page: 287 year: 2014 end-page: 295 ident: bib0055 article-title: Facilitating consistent siting hazard distance predictions using the TNO multi-energy model publication-title: J. Loss Prev. Process Ind. – volume: 44 start-page: 8997 year: 2019 end-page: 9008 ident: bib0026 article-title: Blind-prediction: Estimating the consequences of vented hydrogen deflagrations for homogeneous mixtures in 20-foot ISO containers publication-title: Int. J. Hydrog. Energy – volume: 26 start-page: 1597 year: 2013 end-page: 1603 ident: bib0070 article-title: The acceleration of flames in tube explosions with two obstacles as a function of the obstacle separation distance publication-title: J. Loss Prev. Process Ind. – year: 2005 ident: bib0078 article-title: Research to Improve Guidance on Separation Distance for the Multi-Energy Method (RIGOS) – volume: 5 start-page: 211 year: 1984 end-page: 236 ident: bib0062 article-title: Computer simulation of turbulent reactive gas dynamics publication-title: MIC – volume: 82 year: 2023 ident: bib0004 article-title: CFD-based assessment and visualization of the failure consequences of LPG tankers publication-title: J. Loss Prev. Process Ind. – volume: 4 start-page: 203 year: 2023 end-page: 219 ident: bib0018 article-title: Development in comprehensive CFD simulation of fire and explosion publication-title: J. Saf. Sci. Resil. – volume: 23 start-page: 885 year: 2010 end-page: 906 ident: bib0030 article-title: Using computational fluid dynamics (CFD) for blast wave predictions publication-title: J. Loss Prev. Process Ind. – volume: 35 start-page: 1213 year: 2008 end-page: 1227 ident: bib0013 article-title: Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads publication-title: Int. J. Impact Eng. – volume: 13 start-page: 165 year: 2018 end-page: 180 ident: bib0021 article-title: Effects of structural congestion and surrounding obstacles on the overpressure loads in explosions: experiment and CFD simulations publication-title: Sh. Offshore Struct. – volume: 54 start-page: 817 year: 2024 end-page: 836 ident: bib0040 article-title: Optimizing hydrogen refueling station layout based on consequences of leakage and explosion accidents publication-title: Int. J. Hydrog. Energy – volume: 170 start-page: 112 year: 2023 end-page: 138 ident: bib0016 article-title: Computational fluid dynamics modelling approaches of gas explosion in the chemical process industry: a review publication-title: Process Saf. Environ. Prot. – year: 2022 ident: bib0009 article-title: The Bologna LPG BLEVE publication-title: Proceedings of the 28th International Colloquium on the Dynamics of Explosions and Reactive Systems – volume: 12 start-page: 361 year: 1999 end-page: 378 ident: bib0001 article-title: Major accidents in process industries and an analysis of causes and consequences publication-title: J. Loss Prev. Process Ind. – volume: 40 start-page: 449 year: 2016 end-page: 460 ident: bib0007 article-title: Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India publication-title: J. Loss Prev. Process Ind. – volume: 110 year: 2019 ident: bib0034 article-title: Study of fire and explosion hazards of alternative fuel vehicles in tunnels publication-title: Fire Saf. J. – start-page: 1107 year: 2001 end-page: 1133 ident: bib0071 article-title: T7-5 - developments in the congestion assessment method for the prediction of vapour-cloud explosions publication-title: Loss Prevention and Safety Promotion in the Process Industries – volume: 42 start-page: 14794 year: 2017 end-page: 14808 ident: bib0075 article-title: Comparison of the explosion characteristics of hydrogen, propane, and methane clouds at the stoichiometric concentrations publication-title: Int. J. Hydrog. Energy – volume: 49 start-page: 367 year: 2017 end-page: 381 ident: bib0032 article-title: Internal and external pressure prediction of vented gas explosion in large rooms by using analytical and CFD methods publication-title: J. Loss Prev. Process Ind. – volume: 24 start-page: 2387 year: 1990 end-page: 2395 ident: bib0067 article-title: A statistical procedure for determining the best performing air quality simulation model publication-title: Atmos. Environ. A. Gen. Top. – volume: 35 start-page: 293 year: 2015 end-page: 306 ident: bib0031 article-title: Improved far-field blast predictions from fast deflagrations, DDTs and detonations of vapour clouds using FLACS CFD publication-title: J. Loss Prev. Process Ind. – volume: 35 start-page: 4747 year: 2010 end-page: 4757 ident: bib0068 article-title: HySafe SBEP-V20: Numerical studies of release experiments inside a naturally ventilated residential garage publication-title: Int. J. Hydrog. Energy – volume: 22 start-page: 295 year: 2009 end-page: 302 ident: bib0035 article-title: Using computational fluid dynamics as a tool for hydrogen safety studies publication-title: J. Loss Prev. Process Ind. – volume: 52 start-page: 99 year: 2018 end-page: 107 ident: bib0047 article-title: A method for the estimation of overpressure generated by open air hydrogen explosions publication-title: J. Loss Prev. Process Ind. – volume: 67 year: 2020 ident: bib0017 article-title: Recent application of computational fluid dynamics (CFD) in process safety and loss prevention: a review publication-title: J. Loss Prev. Process Ind. – volume: 52 start-page: 99 year: 2018 ident: 10.1016/j.jnlssr.2025.100222_bib0047 article-title: A method for the estimation of overpressure generated by open air hydrogen explosions publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2018.01.009 – volume: 34 start-page: 173 year: 1993 ident: 10.1016/j.jnlssr.2025.100222_bib0063 article-title: Computer modelling of turbulent gas explosions in complex 2D and 3D geometries publication-title: J. Hazard. Mater. doi: 10.1016/0304-3894(93)85004-X – volume: 201 year: 2020 ident: 10.1016/j.jnlssr.2025.100222_bib0022 article-title: Modeling and analysis of flammable gas dispersion and deflagration from offshore platform blowout publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107146 – volume: 12 start-page: 361 year: 1999 ident: 10.1016/j.jnlssr.2025.100222_bib0001 article-title: Major accidents in process industries and an analysis of causes and consequences publication-title: J. Loss Prev. Process Ind. doi: 10.1016/S0950-4230(98)00062-X – year: 2005 ident: 10.1016/j.jnlssr.2025.100222_bib0078 – volume: 52 start-page: 29 year: 2018 ident: 10.1016/j.jnlssr.2025.100222_bib0025 article-title: Influence of geometrical shapes on unconfined vapor cloud explosion publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2018.01.004 – volume: 71 year: 2021 ident: 10.1016/j.jnlssr.2025.100222_bib0069 article-title: Evaluation of CFD simulations of transient pool fire burning rates publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2021.104495 – year: 2017 ident: 10.1016/j.jnlssr.2025.100222_bib0080 – volume: 30 start-page: 287 year: 2014 ident: 10.1016/j.jnlssr.2025.100222_bib0055 article-title: Facilitating consistent siting hazard distance predictions using the TNO multi-energy model publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2014.04.010 – start-page: 1107 year: 2001 ident: 10.1016/j.jnlssr.2025.100222_bib0071 article-title: T7-5 - developments in the congestion assessment method for the prediction of vapour-cloud explosions – volume: 97 start-page: 387 year: 2024 ident: 10.1016/j.jnlssr.2025.100222_bib0038 article-title: Study of leakage and explosion hazard characteristics of a compressed natural gas at a gas station publication-title: J. Eng. Phys. Thermophy. – volume: 24 start-page: 2387 year: 1990 ident: 10.1016/j.jnlssr.2025.100222_bib0067 article-title: A statistical procedure for determining the best performing air quality simulation model publication-title: Atmos. Environ. A. Gen. Top. doi: 10.1016/0960-1686(90)90331-G – year: 2017 ident: 10.1016/j.jnlssr.2025.100222_bib0011 – volume: 52 start-page: 125 year: 2018 ident: 10.1016/j.jnlssr.2025.100222_bib0027 article-title: Numerical simulations of vented hydrogen deflagration in a medium-scale enclosure publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2017.10.014 – year: 2019 ident: 10.1016/j.jnlssr.2025.100222_bib0061 – year: 1993 ident: 10.1016/j.jnlssr.2025.100222_bib0053 – volume: 73 year: 2021 ident: 10.1016/j.jnlssr.2025.100222_bib0057 article-title: A quantitative correlation of evaluating the flame speed for the BST method in vapor cloud explosions publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2021.104622 – volume: 67 year: 2020 ident: 10.1016/j.jnlssr.2025.100222_bib0017 article-title: Recent application of computational fluid dynamics (CFD) in process safety and loss prevention: a review publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2020.104252 – year: 1998 ident: 10.1016/j.jnlssr.2025.100222_bib0064 – volume: 82 year: 2023 ident: 10.1016/j.jnlssr.2025.100222_bib0049 article-title: An overpressure-time history model of methane-air explosion in tunnel-shape space publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2023.105004 – volume: 87 year: 2024 ident: 10.1016/j.jnlssr.2025.100222_bib0006 article-title: Consequences analysis of the LPG tank truck traffic accident: a case study of the Wenling explosion accident publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2023.105228 – volume: 41 year: 2016 ident: 10.1016/j.jnlssr.2025.100222_bib0029 article-title: Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: Effects of concentration, obstruction vent area and ignition position publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.05.189 – volume: 31 start-page: 16 year: 2014 ident: 10.1016/j.jnlssr.2025.100222_bib0056 article-title: New correlation for vapor cloud explosion overpressure calculation at congested configurations publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2014.05.013 – year: 2022 ident: 10.1016/j.jnlssr.2025.100222_bib0059 – volume: 107 year: 2021 ident: 10.1016/j.jnlssr.2025.100222_bib0036 article-title: Numerical studies on explosion hazards of vehicles using clean fuel in short vehicular tunnels publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103649 – volume: 119 start-page: 360 year: 2018 ident: 10.1016/j.jnlssr.2025.100222_bib0051 article-title: Far-field pressure prediction of a vented gas explosion from storage tanks by using new CFD simulation guidance publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2018.08.004 – volume: 3 start-page: 209 year: 2022 ident: 10.1016/j.jnlssr.2025.100222_bib0048 article-title: Investigation of a practical load model for a natural gas explosion in an unconfined space publication-title: J. Saf. Sci. Resil. – volume: 3 start-page: 269 year: 1974 ident: 10.1016/j.jnlssr.2025.100222_bib0065 article-title: The numerical computation of turbulent flow computer methods publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(74)90029-2 – volume: 109 start-page: 489 year: 2017 ident: 10.1016/j.jnlssr.2025.100222_bib0050 article-title: Vented methane-air explosion overpressure calculation—A simplified approach based on CFD publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2017.04.025 – volume: 12 start-page: 1 year: 1985 ident: 10.1016/j.jnlssr.2025.100222_bib0042 article-title: The multi-energy method: a framework for vapour cloud explosion blast prediction publication-title: J. Hazard. Mater. doi: 10.1016/0304-3894(85)80022-4 – year: 1998 ident: 10.1016/j.jnlssr.2025.100222_bib0054 – year: 2023 ident: 10.1016/j.jnlssr.2025.100222_bib0041 – volume: 15 start-page: 106 year: 1996 ident: 10.1016/j.jnlssr.2025.100222_bib0043 article-title: Vapor cloud explosion analysis publication-title: Process Saf. Prog. doi: 10.1002/prs.680150211 – volume: 40 start-page: 449 year: 2016 ident: 10.1016/j.jnlssr.2025.100222_bib0007 article-title: Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2016.01.020 – volume: 35 start-page: 293 year: 2015 ident: 10.1016/j.jnlssr.2025.100222_bib0031 article-title: Improved far-field blast predictions from fast deflagrations, DDTs and detonations of vapour clouds using FLACS CFD publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2014.11.005 – volume: 5 start-page: 211 year: 1984 ident: 10.1016/j.jnlssr.2025.100222_bib0062 article-title: Computer simulation of turbulent reactive gas dynamics publication-title: MIC doi: 10.4173/mic.1984.4.3 – volume: 35 start-page: 4747 year: 2010 ident: 10.1016/j.jnlssr.2025.100222_bib0068 article-title: HySafe SBEP-V20: Numerical studies of release experiments inside a naturally ventilated residential garage publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.02.020 – volume: 184 start-page: 647 year: 2010 ident: 10.1016/j.jnlssr.2025.100222_bib0003 article-title: A survey on hazardous materials accidents during road transport in China from 2000 to 2008 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.08.085 – volume: 82 year: 2023 ident: 10.1016/j.jnlssr.2025.100222_bib0004 article-title: CFD-based assessment and visualization of the failure consequences of LPG tankers publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2023.105008 – volume: 80 year: 2022 ident: 10.1016/j.jnlssr.2025.100222_bib0020 article-title: Investigations on vapor cloud explosion hazards and critical safe reserves of LPG tanks publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2022.104904 – volume: 26 start-page: 1597 year: 2013 ident: 10.1016/j.jnlssr.2025.100222_bib0070 article-title: The acceleration of flames in tube explosions with two obstacles as a function of the obstacle separation distance publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2013.08.003 – volume: 44 start-page: 8914 year: 2019 ident: 10.1016/j.jnlssr.2025.100222_bib0028 article-title: Vented explosion of hydrogen/air mixture: An intercomparison benchmark exercise publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.07.195 – year: 2022 ident: 10.1016/j.jnlssr.2025.100222_bib0009 article-title: The Bologna LPG BLEVE – volume: 170 start-page: 112 year: 2023 ident: 10.1016/j.jnlssr.2025.100222_bib0016 article-title: Computational fluid dynamics modelling approaches of gas explosion in the chemical process industry: a review publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.11.090 – volume: 87 year: 2004 ident: 10.1016/j.jnlssr.2025.100222_bib0066 article-title: Air quality model performance evaluation publication-title: Meteorol. Atmos. Phys. doi: 10.1007/s00703-003-0070-7 – volume: 43 start-page: 449 year: 2016 ident: 10.1016/j.jnlssr.2025.100222_bib0023 article-title: Influence of built-in obstacles on unconfined vapor cloud explosion publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2016.07.007 – volume: 18 start-page: 235 year: 1999 ident: 10.1016/j.jnlssr.2025.100222_bib0044 article-title: A new set of blast curves from vapor cloud explosion publication-title: Process Saf. Prog. doi: 10.1002/prs.680180412 – volume: 13 start-page: 165 year: 2018 ident: 10.1016/j.jnlssr.2025.100222_bib0021 article-title: Effects of structural congestion and surrounding obstacles on the overpressure loads in explosions: experiment and CFD simulations publication-title: Sh. Offshore Struct. doi: 10.1080/17445302.2017.1347978 – volume: 145 start-page: 94 year: 2021 ident: 10.1016/j.jnlssr.2025.100222_bib0008 article-title: Numerical simulation of medium to large scale BLEVE and the prediction of BLEVE’s blast wave in obstructed environment publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.07.038 – year: 2016 ident: 10.1016/j.jnlssr.2025.100222_bib0060 – volume: 41 start-page: 14 year: 2022 ident: 10.1016/j.jnlssr.2025.100222_bib0014 article-title: Risk-based explosion hazard analysis and building upgrades in industrial facilities to prevent blast failures publication-title: Process Saf. Prog. doi: 10.1002/prs.12278 – volume: 157 start-page: 493 year: 2022 ident: 10.1016/j.jnlssr.2025.100222_bib0005 article-title: Investigation and modeling of the LPG tank truck accident in Wenling, China publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.10.022 – volume: 110 year: 2019 ident: 10.1016/j.jnlssr.2025.100222_bib0034 article-title: Study of fire and explosion hazards of alternative fuel vehicles in tunnels publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2019.102871 – volume: 34 start-page: 2800 year: 2009 ident: 10.1016/j.jnlssr.2025.100222_bib0039 article-title: An inter-comparison exercise on CFD model capabilities to predict a hydrogen explosion in a simulated vehicle refuelling environment publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2008.12.067 – volume: 29 year: 2014 ident: 10.1016/j.jnlssr.2025.100222_bib0024 article-title: Evaluation of gas explosion overpressures at configurations with irregularly arranged obstacles publication-title: J. Perform. Constr. Facil. – year: 1991 ident: 10.1016/j.jnlssr.2025.100222_bib0072 – volume: 149 start-page: 967 year: 2021 ident: 10.1016/j.jnlssr.2025.100222_bib0019 article-title: Numerical study of large-scale LNG vapour cloud explosion in an unconfined space publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.03.034 – volume: 49 start-page: 367 year: 2017 ident: 10.1016/j.jnlssr.2025.100222_bib0032 article-title: Internal and external pressure prediction of vented gas explosion in large rooms by using analytical and CFD methods publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2017.08.002 – volume: 141 start-page: 489 year: 2007 ident: 10.1016/j.jnlssr.2025.100222_bib0002 article-title: The boiling liquid expanding vapour explosion (BLEVE): Mechanism, consequence assessment, management publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.09.056 – volume: 23 start-page: 885 year: 2010 ident: 10.1016/j.jnlssr.2025.100222_bib0030 article-title: Using computational fluid dynamics (CFD) for blast wave predictions publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2010.07.005 – volume: 54 start-page: 817 year: 2024 ident: 10.1016/j.jnlssr.2025.100222_bib0040 article-title: Optimizing hydrogen refueling station layout based on consequences of leakage and explosion accidents publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2023.09.210 – volume: 22 start-page: 295 year: 2009 ident: 10.1016/j.jnlssr.2025.100222_bib0035 article-title: Using computational fluid dynamics as a tool for hydrogen safety studies publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2008.10.006 – year: 1983 ident: 10.1016/j.jnlssr.2025.100222_bib0077 – volume: 34 start-page: 7862 year: 2009 ident: 10.1016/j.jnlssr.2025.100222_bib0033 article-title: An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2009.06.055 – volume: 75 year: 2022 ident: 10.1016/j.jnlssr.2025.100222_bib0015 article-title: Vapor cloud explosions in various types of confined environments: CFD analysis and model validation publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2021.104681 – year: 1995 ident: 10.1016/j.jnlssr.2025.100222_bib0045 – year: 1984 ident: 10.1016/j.jnlssr.2025.100222_bib0074 – volume: 13 start-page: 27 year: 2000 ident: 10.1016/j.jnlssr.2025.100222_bib0010 article-title: Risk analysis of LPG transport by road and rail publication-title: J. Loss Prev. Process Ind. doi: 10.1016/S0950-4230(99)00057-1 – year: 1992 ident: 10.1016/j.jnlssr.2025.100222_bib0012 – volume: 39 start-page: 20538 year: 2014 ident: 10.1016/j.jnlssr.2025.100222_bib0037 article-title: CFD modeling of hydrogen deflagration in a tunnel publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.03.232 – volume: 44 start-page: 8997 year: 2019 ident: 10.1016/j.jnlssr.2025.100222_bib0026 article-title: Blind-prediction: Estimating the consequences of vented hydrogen deflagrations for homogeneous mixtures in 20-foot ISO containers publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.06.191 – volume: 44 start-page: 22719 year: 2019 ident: 10.1016/j.jnlssr.2025.100222_bib0052 article-title: A simple model for calculating peak pressure in vented explosions of hydrogen and hydrocarbons publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.02.213 – volume: 4 start-page: 203 year: 2023 ident: 10.1016/j.jnlssr.2025.100222_bib0018 article-title: Development in comprehensive CFD simulation of fire and explosion publication-title: J. Saf. Sci. Resil. – volume: 35 start-page: 1213 year: 2008 ident: 10.1016/j.jnlssr.2025.100222_bib0013 article-title: Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2007.09.001 – volume: 16 start-page: 111 year: 2003 ident: 10.1016/j.jnlssr.2025.100222_bib0079 article-title: The multi-energy critical separation distance publication-title: J. Loss Prev. Process Ind. doi: 10.1016/S0950-4230(02)00112-2 – year: 2005 ident: 10.1016/j.jnlssr.2025.100222_bib0073 – year: 1988 ident: 10.1016/j.jnlssr.2025.100222_bib0076 article-title: The scaling of vapour cloud explosions: a fractal model for size and fuel type – volume: 197 year: 2025 ident: 10.1016/j.jnlssr.2025.100222_bib0046 article-title: Flame propagation and overpressure characteristics of methane-hydrogen-mixed cloud explosion in unconfined area: experimental and model study publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2025.106940 – volume: 42 start-page: 14794 year: 2017 ident: 10.1016/j.jnlssr.2025.100222_bib0075 article-title: Comparison of the explosion characteristics of hydrogen, propane, and methane clouds at the stoichiometric concentrations publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.04.201 – year: 2020 ident: 10.1016/j.jnlssr.2025.100222_bib0058 |
| SSID | ssj0002811320 ssib044745616 ssib053800448 |
| Score | 2.3193047 |
| Snippet | The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the... |
| SourceID | doaj swepub crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 100222 |
| SubjectTerms | Blast strength Computational fluid dynamics TNO Multi-Energy Method Traffic environments Vapour cloud explosions |
| Title | Guidance for estimating the blast load from vapour cloud explosions in traffic environments using the multi-energy method |
| URI | https://dx.doi.org/10.1016/j.jnlssr.2025.100222 https://research.chalmers.se/publication/548147 https://doaj.org/article/ecbde8951f5d47819c6c07632f19821f |
| Volume | 7 |
| WOSCitedRecordID | wos001565443900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2666-4496 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002811320 issn: 2666-4496 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-4496 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044745616 issn: 2096-7527 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECWKoEM7FPloUSdtwKGrUInil8a0SJqhDTI0QDaC5JGNjUAObDlAlv72HEm5kKcsHaRBICiKd9C9I969I-SLCsIK7XUVLbQVD4D_Qa54JXnE8RIEXrnZhLq60re33fWk1VfihBV54LJxX4N3EDTigCgglUV2XnrMvVsWMV1mTUx_X0Q9k2RqkY-MUgf1elsrlwldix7tmSRAmcjCo4ztxKIs2b8bkqbaoTneXOyTdyNQpGdlgQfkVegPyduJfOARefqxmUOyGkXkSZNcRoKf_R-KoI46hMUDvV9aoKmEhD7aB5yS-vvlBmhIzLt0Tram854OK5uEJOi06I0mQnyZKXMOq5CLBGnpOP2e3Fyc__5-WY2tFCrPuRiqKGWwDdRRggsAiEmUcpw5aT3iw-BlI20ta8UgJXxOOV1zbj2A7pSrm9h-IHv9sg8fCQXZeC0Y14j0OMdwZpWtYyuhaYWzLM5Itd1U81AUM8yWSrYwxQgmGcEUI8zIt7Tz_8Ymvev8AL3AjF5gXvKCGVFbu5kROhRIgFPNX3j9z2LmnQWMSkt3xt_lNjZrsw5Gdc6CZdq0oIThUremEwIMgi4bdQugOnv8P77mhLzBFcpCdftE9obVJnwmr_3jMF-vTrOn4_3X3_NnrrMHuQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+for+estimating+the+blast+load+from+vapour+cloud+explosions+in+traffic+environments+using+the+multi-energy+method&rft.jtitle=Journal+of+Safety+Science+and+Resilience+%3D+An+quan+ke+xue+yu+ren+xing+%28Ying+wen%29&rft.au=Lozano%2C+Fabio&rft.au=Johansson%2C+Morgan&rft.au=Lepp%C3%A4nen%2C+Joosef&rft.au=Plos%2C+Mario&rft.date=2026-03-01&rft.issn=2666-4496&rft.eissn=2666-4496&rft.volume=7&rft.issue=1&rft.spage=100222&rft_id=info:doi/10.1016%2Fj.jnlssr.2025.100222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnlssr_2025_100222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-4496&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-4496&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-4496&client=summon |