Guidance for estimating the blast load from vapour cloud explosions in traffic environments using the multi-energy method

The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the explosion, potentially damaging nearby structures. The TNO Multi-Energy Method is commonly used for a simplified estimate of the blast load...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Safety Science and Resilience = An quan ke xue yu ren xing (Ying wen) Ročník 7; číslo 1; s. 100222
Hlavní autori: Lozano, Fabio, Johansson, Morgan, Leppänen, Joosef, Plos, Mario
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2026
KeAi Communications Co., Ltd
Predmet:
ISSN:2666-4496, 2096-7527, 2666-4496
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the explosion, potentially damaging nearby structures. The TNO Multi-Energy Method is commonly used for a simplified estimate of the blast load resulting from a VCE. The method characterises the severity and duration of the blast wave using a case-specific strength class and combustion energy (which the method relates to the gas volume of the equivalent blast source). However, no specific guidelines for estimating the strength class in urban roads or related settings (such as carparks) are currently available in the literature. This makes implementing the method in such scenarios challenging and imprecise. The authors’ work used computational fluid dynamics (CFD) to evaluate multiple gas explosion scenarios and proposed recommendations for determining the strength class and gas volume at the blast source. These scenarios comprised a group of vehicles engulfed by a stoichiometric propane-air cloud. It was concluded that the strength class could be reasonably estimated based on the number of vehicles in the transverse direction. Furthermore, the guidance for estimating the gas volume at the equivalent blast source was based on the critical gas volume, after which no further enhancement of overpressure was obtained. The recommendations were implemented in several scenarios and compared with corresponding CFD analyses. The results showed very good agreement for predicting impulse. Predicting overpressure was affected by the inherent asymmetry of the scenarios, although it was possible to achieve acceptable and conservative results.
AbstractList The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the explosion, potentially damaging nearby structures. The TNO Multi-Energy Method is commonly used for a simplified estimate of the blast load resulting from a VCE. The method characterises the severity and duration of the blast wave using a case-specific strength class and combustion energy (which the method relates to the gas volume of the equivalent blast source). However, no specific guidelines for estimating the strength class in urban roads or related settings (such as carparks) are currently available in the literature. This makes implementing the method in such scenarios challenging and imprecise. The authors’ work used computational fluid dynamics to evaluate multiple gas explosion scenarios and proposed recommendations for determining the strength class and gas volume at the blast source. These scenarios comprised a group of vehicles engulfed by a stoichiometric propane-air cloud. It was concluded that the strength class could be reasonably estimated based on the number of vehicles in the transverse direction. Furthermore, the guidance for estimating the gas volume at the equivalent blast source was based on the critical gas volume, after which no further enhancement of overpressure was obtained. The recommendations were implemented in several scenarios and compared with corresponding CFD analyses. The results showed very good agreement for predicting impulse. Predicting overpressure was affected by the inherent asymmetry of the scenarios, although it was possible to achieve acceptable and conservative results.
The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the explosion, potentially damaging nearby structures. The TNO Multi-Energy Method is commonly used for a simplified estimate of the blast load resulting from a VCE. The method characterises the severity and duration of the blast wave using a case-specific strength class and combustion energy (which the method relates to the gas volume of the equivalent blast source). However, no specific guidelines for estimating the strength class in urban roads or related settings (such as carparks) are currently available in the literature. This makes implementing the method in such scenarios challenging and imprecise. The authors’ work used computational fluid dynamics (CFD) to evaluate multiple gas explosion scenarios and proposed recommendations for determining the strength class and gas volume at the blast source. These scenarios comprised a group of vehicles engulfed by a stoichiometric propane-air cloud. It was concluded that the strength class could be reasonably estimated based on the number of vehicles in the transverse direction. Furthermore, the guidance for estimating the gas volume at the equivalent blast source was based on the critical gas volume, after which no further enhancement of overpressure was obtained. The recommendations were implemented in several scenarios and compared with corresponding CFD analyses. The results showed very good agreement for predicting impulse. Predicting overpressure was affected by the inherent asymmetry of the scenarios, although it was possible to achieve acceptable and conservative results.
ArticleNumber 100222
Author Johansson, Morgan
Lozano, Fabio
Leppänen, Joosef
Plos, Mario
Author_xml – sequence: 1
  givenname: Fabio
  orcidid: 0000-0002-3935-4223
  surname: Lozano
  fullname: Lozano, Fabio
  email: fabio.lozano@chalmers.se
  organization: Division of Structural Engineering, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
– sequence: 2
  givenname: Morgan
  orcidid: 0000-0003-0020-0646
  surname: Johansson
  fullname: Johansson, Morgan
  organization: Division of Structural Engineering, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
– sequence: 3
  givenname: Joosef
  surname: Leppänen
  fullname: Leppänen, Joosef
  organization: Division of Structural Engineering, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
– sequence: 4
  givenname: Mario
  surname: Plos
  fullname: Plos, Mario
  organization: Swedish Transport Administration, Gothenburg, SE, 41104, Sweden
BackLink https://research.chalmers.se/publication/548147$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kc9u1DAQhyNUJErpG3DwC2SxHceOL0iogrZSpR6As-U_411Hib2ynYV9e9IGULlwmtFofp80871tLmKK0DTvCd4RTPiHcTfGqZS8o5j26whTSl81l5Rz3jIm-cWL_k1zXcqI152BkI7iy-Z8uwSnowXkU0ZQaph1DXGP6gGQmXSpaEraIZ_TjE76mJaM7JQWh-DncUolpFhQiKhm7X2wCOIp5BRniLWgpfwhzctUQwsR8v6MZqiH5N41r72eClz_rlfN9y-fv93ctQ-Pt_c3nx5ay1hfW885aOKw586Ac7ITQhhGDddWEg6WE64xx4K6gWFphBkwY9o6N0hhMPHdVXO_cV3Sozrm9cB8VkkH9TxIea90rsFOoMAaB4Psie8dEwORllsseEc9kQN9Zn3dWOUHHBfzDy1DAZ3tQdmDnmbIRRVQQhrtNB1U50SvGB86JfveKdFj7YfOOSH1SmUb1ea0igT_l0uwenKsRrU5Vk-O1eZ4jX3cYrB-7xQgq2IDrCpdyGDrel74P-AXq3a2QA
Cites_doi 10.1016/j.jlp.2018.01.009
10.1016/0304-3894(93)85004-X
10.1016/j.oceaneng.2020.107146
10.1016/S0950-4230(98)00062-X
10.1016/j.jlp.2018.01.004
10.1016/j.jlp.2021.104495
10.1016/j.jlp.2014.04.010
10.1016/0960-1686(90)90331-G
10.1016/j.jlp.2017.10.014
10.1016/j.jlp.2021.104622
10.1016/j.jlp.2020.104252
10.1016/j.jlp.2023.105004
10.1016/j.jlp.2023.105228
10.1016/j.ijhydene.2016.05.189
10.1016/j.jlp.2014.05.013
10.1016/j.tust.2020.103649
10.1016/j.psep.2018.08.004
10.1016/0045-7825(74)90029-2
10.1016/j.psep.2017.04.025
10.1016/0304-3894(85)80022-4
10.1002/prs.680150211
10.1016/j.jlp.2016.01.020
10.1016/j.jlp.2014.11.005
10.4173/mic.1984.4.3
10.1016/j.ijhydene.2010.02.020
10.1016/j.jhazmat.2010.08.085
10.1016/j.jlp.2023.105008
10.1016/j.jlp.2022.104904
10.1016/j.jlp.2013.08.003
10.1016/j.ijhydene.2018.07.195
10.1016/j.psep.2022.11.090
10.1007/s00703-003-0070-7
10.1016/j.jlp.2016.07.007
10.1002/prs.680180412
10.1080/17445302.2017.1347978
10.1016/j.psep.2020.07.038
10.1002/prs.12278
10.1016/j.psep.2021.10.022
10.1016/j.firesaf.2019.102871
10.1016/j.ijhydene.2008.12.067
10.1016/j.psep.2021.03.034
10.1016/j.jlp.2017.08.002
10.1016/j.jhazmat.2006.09.056
10.1016/j.jlp.2010.07.005
10.1016/j.ijhydene.2023.09.210
10.1016/j.jlp.2008.10.006
10.1016/j.ijhydene.2009.06.055
10.1016/j.jlp.2021.104681
10.1016/S0950-4230(99)00057-1
10.1016/j.ijhydene.2014.03.232
10.1016/j.ijhydene.2018.06.191
10.1016/j.ijhydene.2019.02.213
10.1016/j.ijimpeng.2007.09.001
10.1016/S0950-4230(02)00112-2
10.1016/j.psep.2025.106940
10.1016/j.ijhydene.2017.04.201
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOA
DOI 10.1016/j.jnlssr.2025.100222
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-4496
ExternalDocumentID oai_doaj_org_article_ecbde8951f5d47819c6c07632f19821f
oai_research_chalmers_se_79bada28_3d75_4683_955d_750af83dd79a
10_1016_j_jnlssr_2025_100222
S2666449625000568
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ADVLN
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
OK1
AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c445t-f66ea1d0f6dbedd93777b42b6ac916ec616a06072d8409b7b8044acdd897b01f3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001565443900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2666-4496
2096-7527
IngestDate Fri Oct 03 12:17:21 EDT 2025
Wed Nov 05 04:21:06 EST 2025
Sat Nov 29 07:35:22 EST 2025
Sat Oct 04 17:01:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords TNO Multi-Energy Method
Vapour cloud explosions
Blast strength
Computational fluid dynamics
Traffic environments
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-f66ea1d0f6dbedd93777b42b6ac916ec616a06072d8409b7b8044acdd897b01f3
ORCID 0000-0003-0020-0646
0000-0002-3935-4223
OpenAccessLink https://doaj.org/article/ecbde8951f5d47819c6c07632f19821f
ParticipantIDs doaj_primary_oai_doaj_org_article_ecbde8951f5d47819c6c07632f19821f
swepub_primary_oai_research_chalmers_se_79bada28_3d75_4683_955d_750af83dd79a
crossref_primary_10_1016_j_jnlssr_2025_100222
elsevier_sciencedirect_doi_10_1016_j_jnlssr_2025_100222
PublicationCentury 2000
PublicationDate 2026-03-01
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: 2026-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Safety Science and Resilience = An quan ke xue yu ren xing (Ying wen)
PublicationYear 2026
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Li, Abdel-jawad, Ma (bib0056) 2014; 31
Dahlén (bib0061) 2019
Khan, Abbasi (bib0001) 1999; 12
Johansson, Ansell, Hallgren, Leppänen (bib0058) 2020
Vyazmina, Jallais, Krumenacker, Tripathi, Mahon, Commanay, Kudriakov, Studer, Vuillez, Rosset (bib0028) 2019; 44
Li (bib0034) 2019; 110
Mishra, Mishra (bib0019) 2021; 149
Bubbico, Ferrari, Mazzarotta (bib0010) 2000; 13
Li, Abbassi, Chen, Wang (bib0022) 2020; 201
Makarov, Verbecke, Molkov, Roe, Skotenne, Kotchourko, Lelyakin, Yanez, Hansen, Middha, Ledin, Baraldi, Heitsch, Efimenko, Gavrikov (bib0039) 2009; 34
Li, Zhang, Ma, Shen, Chen, Ren (bib0023) 2016; 43
Tolias, Venetsanos, Markatos, Kiranoudis (bib0037) 2014; 39
Hansen, Hinze, Engel, Davis (bib0030) 2010; 23
Kang, Wu, Ma, Zhao, Li (bib0004) 2023; 82
Sari, Sayin (bib0014) 2022; 41
van den Berg, Versloot (bib0079) 2003; 16
Momferatos, Giannissi, Tolias, Venetsanos, Vlyssides, Markatos (bib0015) 2022; 75
Chen, Wu, Li, Liao (bib0049) 2023; 82
Kinsella (bib0053) 1993
Papanikolaou, Venetsanos, Heitsch, Baraldi, Huser, Pujol, Garcia, Markatos (bib0068) 2010; 35
Stewart, Phylaktou, Andrews, Burns (bib0069) 2021; 71
van Wingerden (bib0074) 1984
(bib0073) 2005
To, Chow, Cheng (bib0036) 2021; 107
Pitblado, Alderman, Thomas (bib0055) 2014; 30
Zhou, Yang, Chen, Li (bib0040) 2024; 54
Li, Hernandez, Hao, Fang, Xiang, Li, Zhang, Chen (bib0050) 2017; 109
Mukhim, Abbasi, Tauseef, Abbasi (bib0047) 2018; 52
Gexcon (bib0059) 2022
Baker, Tang, Scheier, Silva (bib0043) 1996; 15
Lyu, Zhang, Huang, Peng, Li (bib0005) 2022; 157
Casal (bib0011) 2017
Puttock (bib0071) 2001
Cates (bib0072) 1991
Hansen, Johnson (bib0031) 2015; 35
Shi, Xie, Li, Ding (bib0057) 2021; 73
Abbasi, Abbasi (bib0002) 2007; 141
Bjerketvedt, Bakke, van Wingerden (bib0012) 1992
Taylor, Hirst (bib0076) 1988
Yang, Li, Zhou, Zhang, Huang, Bi (bib0003) 2010; 184
Hu, Qian, Shen, Zhang, Ma, Pang, Liang, Feng, Yuan (bib0020) 2022; 80
Baraldi, Kotchourko, Lelyakin, Yanez, Middha, Hansen, Gavrikov, Efimenko, Verbecke, Makarov, Molkov (bib0033) 2009; 34
Arntzen (bib0064) 1998
Li, Liu, Zhao, Li, Li (bib0046) 2025; 197
van den Berg, Mos (bib0078) 2005
Vyazmina, Jallais (bib0029) 2016; 41
van den Berg (bib0042) 1985; 12
Li, Hao (bib0051) 2018; 119
Hjertager (bib0063) 1993; 34
Launder, Spalding (bib0065) 1974; 3
Sinha, Wen (bib0052) 2019; 44
Bae, Paik (bib0021) 2018; 13
Yang, Sun, Fang, Yang, Xia, Bao (bib0048) 2022; 3
Li, Hao (bib0032) 2017; 49
Na’inna, Phylaktou, Andrews (bib0070) 2013; 26
Yang, Peng, Zheng, Xie, Wang, Xu, Li (bib0006) 2024; 87
Johansson (bib0080) 2017
Cox, Tikvart (bib0067) 1990; 24
Alvarsson, Jansson (bib0060) 2016
Chang, Hanna (bib0066) 2004; 87
Bariha, Mishra, Srivastava (bib0007) 2016; 40
Cocchi (bib0009) 2022
Yan (bib0018) 2023; 4
Eggen (bib0054) 1998
Puttock (bib0045) 1995
Shen, Jiao, Parker, Sun, Wang (bib0017) 2020; 67
Baker, Cox, Kulesz, Strehlow, Westine (bib0077) 1983
Li, Hao (bib0008) 2021; 145
Abg Shamsuddin, Mohd Fekeri, Muchtar, Khan, Khor, Lim, Rosli, Takriff (bib0016) 2023; 170
Tang, Baker (bib0044) 1999; 18
Tolias, Stewart, Newton, Keenan, Makarov, Hoyes, Molkov, Venetsanos (bib0027) 2018; 52
Zhang, Li (bib0075) 2017; 42
Lozano (bib0041) 2023
Li, Shen, Huang, Mao, Hu, Ma (bib0038) 2024; 97
Hjertager (bib0062) 1984; 5
Skjold, Hisken, Lakshmipathy, Atanga, Carcassi, Schiavetti, Stewart, Newton, Hoyes, Tolias, Venetsanos, Hansen, Geng, Huser, Helland, Jambut, Ren, Kotchourko, Jordan, Daubech, Lecocq, Hanssen, Kumar, Krumenacker, Jallais, Miller, Bauwens (bib0026) 2019; 44
Shi, Hao, Li (bib0013) 2008; 35
Li, Ma, Abdel-jawad, Hao (bib0024) 2014; 29
Zhang, Zhang (bib0025) 2018; 52
Middha, Hansen (bib0035) 2009; 22
van den Berg (10.1016/j.jnlssr.2025.100222_bib0078) 2005
Kinsella (10.1016/j.jnlssr.2025.100222_bib0053) 1993
Li (10.1016/j.jnlssr.2025.100222_bib0034) 2019; 110
Lyu (10.1016/j.jnlssr.2025.100222_bib0005) 2022; 157
Middha (10.1016/j.jnlssr.2025.100222_bib0035) 2009; 22
Makarov (10.1016/j.jnlssr.2025.100222_bib0039) 2009; 34
Khan (10.1016/j.jnlssr.2025.100222_bib0001) 1999; 12
van den Berg (10.1016/j.jnlssr.2025.100222_bib0042) 1985; 12
Li (10.1016/j.jnlssr.2025.100222_bib0056) 2014; 31
Chang (10.1016/j.jnlssr.2025.100222_bib0066) 2004; 87
Zhang (10.1016/j.jnlssr.2025.100222_bib0025) 2018; 52
Yang (10.1016/j.jnlssr.2025.100222_bib0006) 2024; 87
Li (10.1016/j.jnlssr.2025.100222_bib0038) 2024; 97
Bjerketvedt (10.1016/j.jnlssr.2025.100222_bib0012) 1992
Hansen (10.1016/j.jnlssr.2025.100222_bib0030) 2010; 23
van Wingerden (10.1016/j.jnlssr.2025.100222_bib0074) 1984
Bariha (10.1016/j.jnlssr.2025.100222_bib0007) 2016; 40
Li (10.1016/j.jnlssr.2025.100222_bib0051) 2018; 119
Mishra (10.1016/j.jnlssr.2025.100222_bib0019) 2021; 149
Zhou (10.1016/j.jnlssr.2025.100222_bib0040) 2024; 54
Eggen (10.1016/j.jnlssr.2025.100222_bib0054) 1998
Cocchi (10.1016/j.jnlssr.2025.100222_bib0009) 2022
Sinha (10.1016/j.jnlssr.2025.100222_bib0052) 2019; 44
Tolias (10.1016/j.jnlssr.2025.100222_bib0027) 2018; 52
Vyazmina (10.1016/j.jnlssr.2025.100222_bib0029) 2016; 41
Cates (10.1016/j.jnlssr.2025.100222_bib0072) 1991
Mukhim (10.1016/j.jnlssr.2025.100222_bib0047) 2018; 52
Li (10.1016/j.jnlssr.2025.100222_bib0008) 2021; 145
Kang (10.1016/j.jnlssr.2025.100222_bib0004) 2023; 82
Puttock (10.1016/j.jnlssr.2025.100222_bib0045) 1995
Shi (10.1016/j.jnlssr.2025.100222_bib0013) 2008; 35
(10.1016/j.jnlssr.2025.100222_bib0073) 2005
Baker (10.1016/j.jnlssr.2025.100222_bib0043) 1996; 15
Bae (10.1016/j.jnlssr.2025.100222_bib0021) 2018; 13
Yan (10.1016/j.jnlssr.2025.100222_bib0018) 2023; 4
Abbasi (10.1016/j.jnlssr.2025.100222_bib0002) 2007; 141
Yang (10.1016/j.jnlssr.2025.100222_bib0003) 2010; 184
Arntzen (10.1016/j.jnlssr.2025.100222_bib0064) 1998
Pitblado (10.1016/j.jnlssr.2025.100222_bib0055) 2014; 30
Bubbico (10.1016/j.jnlssr.2025.100222_bib0010) 2000; 13
Gexcon (10.1016/j.jnlssr.2025.100222_bib0059) 2022
Taylor (10.1016/j.jnlssr.2025.100222_bib0076) 1988
Li (10.1016/j.jnlssr.2025.100222_bib0022) 2020; 201
Shi (10.1016/j.jnlssr.2025.100222_bib0057) 2021; 73
Li (10.1016/j.jnlssr.2025.100222_bib0024) 2014; 29
Sari (10.1016/j.jnlssr.2025.100222_bib0014) 2022; 41
Tolias (10.1016/j.jnlssr.2025.100222_bib0037) 2014; 39
Abg Shamsuddin (10.1016/j.jnlssr.2025.100222_bib0016) 2023; 170
Baker (10.1016/j.jnlssr.2025.100222_bib0077) 1983
To (10.1016/j.jnlssr.2025.100222_bib0036) 2021; 107
Cox (10.1016/j.jnlssr.2025.100222_bib0067) 1990; 24
Papanikolaou (10.1016/j.jnlssr.2025.100222_bib0068) 2010; 35
Hjertager (10.1016/j.jnlssr.2025.100222_bib0063) 1993; 34
Hjertager (10.1016/j.jnlssr.2025.100222_bib0062) 1984; 5
Tang (10.1016/j.jnlssr.2025.100222_bib0044) 1999; 18
Puttock (10.1016/j.jnlssr.2025.100222_bib0071) 2001
Li (10.1016/j.jnlssr.2025.100222_bib0032) 2017; 49
Dahlén (10.1016/j.jnlssr.2025.100222_bib0061) 2019
Launder (10.1016/j.jnlssr.2025.100222_bib0065) 1974; 3
Hu (10.1016/j.jnlssr.2025.100222_bib0020) 2022; 80
Chen (10.1016/j.jnlssr.2025.100222_bib0049) 2023; 82
Casal (10.1016/j.jnlssr.2025.100222_bib0011) 2017
Stewart (10.1016/j.jnlssr.2025.100222_bib0069) 2021; 71
Skjold (10.1016/j.jnlssr.2025.100222_bib0026) 2019; 44
Na’inna (10.1016/j.jnlssr.2025.100222_bib0070) 2013; 26
Johansson (10.1016/j.jnlssr.2025.100222_bib0058) 2020
Vyazmina (10.1016/j.jnlssr.2025.100222_bib0028) 2019; 44
Li (10.1016/j.jnlssr.2025.100222_bib0050) 2017; 109
Li (10.1016/j.jnlssr.2025.100222_bib0023) 2016; 43
Zhang (10.1016/j.jnlssr.2025.100222_bib0075) 2017; 42
van den Berg (10.1016/j.jnlssr.2025.100222_bib0079) 2003; 16
Shen (10.1016/j.jnlssr.2025.100222_bib0017) 2020; 67
Alvarsson (10.1016/j.jnlssr.2025.100222_bib0060) 2016
Lozano (10.1016/j.jnlssr.2025.100222_bib0041) 2023
Baraldi (10.1016/j.jnlssr.2025.100222_bib0033) 2009; 34
Momferatos (10.1016/j.jnlssr.2025.100222_bib0015) 2022; 75
Johansson (10.1016/j.jnlssr.2025.100222_bib0080) 2017
Li (10.1016/j.jnlssr.2025.100222_bib0046) 2025; 197
Yang (10.1016/j.jnlssr.2025.100222_bib0048) 2022; 3
Hansen (10.1016/j.jnlssr.2025.100222_bib0031) 2015; 35
References_xml – volume: 149
  start-page: 967
  year: 2021
  end-page: 976
  ident: bib0019
  article-title: Numerical study of large-scale LNG vapour cloud explosion in an unconfined space
  publication-title: Process Saf. Environ. Prot.
– volume: 12
  start-page: 1
  year: 1985
  end-page: 10
  ident: bib0042
  article-title: The multi-energy method: a framework for vapour cloud explosion blast prediction
  publication-title: J. Hazard. Mater.
– volume: 87
  year: 2024
  ident: bib0006
  article-title: Consequences analysis of the LPG tank truck traffic accident: a case study of the Wenling explosion accident
  publication-title: J. Loss Prev. Process Ind.
– volume: 197
  year: 2025
  ident: bib0046
  article-title: Flame propagation and overpressure characteristics of methane-hydrogen-mixed cloud explosion in unconfined area: experimental and model study
  publication-title: Process Saf. Environ. Prot.
– volume: 3
  start-page: 269
  year: 1974
  end-page: 289
  ident: bib0065
  article-title: The numerical computation of turbulent flow computer methods
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 107
  year: 2021
  ident: bib0036
  article-title: Numerical studies on explosion hazards of vehicles using clean fuel in short vehicular tunnels
  publication-title: Tunn. Undergr. Space Technol.
– year: 1983
  ident: bib0077
  publication-title: Explosion Hazards and Evaluation (Fundamental Studies in Engineering)
– volume: 157
  start-page: 493
  year: 2022
  end-page: 508
  ident: bib0005
  article-title: Investigation and modeling of the LPG tank truck accident in Wenling, China
  publication-title: Process Saf. Environ. Prot.
– volume: 31
  start-page: 16
  year: 2014
  end-page: 25
  ident: bib0056
  article-title: New correlation for vapor cloud explosion overpressure calculation at congested configurations
  publication-title: J. Loss Prev. Process Ind.
– year: 2022
  ident: bib0059
  article-title: FLACS-CFD v22.1 User’s Manual
– volume: 39
  start-page: 20538
  year: 2014
  end-page: 20546
  ident: bib0037
  article-title: CFD modeling of hydrogen deflagration in a tunnel
  publication-title: Int. J. Hydrog. Energy
– volume: 34
  start-page: 2800
  year: 2009
  end-page: 2814
  ident: bib0039
  article-title: An inter-comparison exercise on CFD model capabilities to predict a hydrogen explosion in a simulated vehicle refuelling environment
  publication-title: Int. J. Hydrog. Energy
– volume: 44
  start-page: 22719
  year: 2019
  end-page: 22732
  ident: bib0052
  article-title: A simple model for calculating peak pressure in vented explosions of hydrogen and hydrocarbons
  publication-title: Int. J. Hydrog. Energy
– volume: 34
  start-page: 7862
  year: 2009
  end-page: 7872
  ident: bib0033
  article-title: An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel
  publication-title: Int. J. Hydrog. Energy
– volume: 73
  year: 2021
  ident: bib0057
  article-title: A quantitative correlation of evaluating the flame speed for the BST method in vapor cloud explosions
  publication-title: J. Loss Prev. Process Ind.
– volume: 41
  start-page: 14
  year: 2022
  end-page: 24
  ident: bib0014
  article-title: Risk-based explosion hazard analysis and building upgrades in industrial facilities to prevent blast failures
  publication-title: Process Saf. Prog.
– volume: 82
  year: 2023
  ident: bib0049
  article-title: An overpressure-time history model of methane-air explosion in tunnel-shape space
  publication-title: J. Loss Prev. Process Ind.
– volume: 87
  year: 2004
  ident: bib0066
  article-title: Air quality model performance evaluation
  publication-title: Meteorol. Atmos. Phys.
– year: 2017
  ident: bib0011
  article-title: Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants
– volume: 3
  start-page: 209
  year: 2022
  end-page: 221
  ident: bib0048
  article-title: Investigation of a practical load model for a natural gas explosion in an unconfined space
  publication-title: J. Saf. Sci. Resil.
– volume: 34
  start-page: 173
  year: 1993
  end-page: 197
  ident: bib0063
  article-title: Computer modelling of turbulent gas explosions in complex 2D and 3D geometries
  publication-title: J. Hazard. Mater.
– volume: 145
  start-page: 94
  year: 2021
  end-page: 109
  ident: bib0008
  article-title: Numerical simulation of medium to large scale BLEVE and the prediction of BLEVE’s blast wave in obstructed environment
  publication-title: Process Saf. Environ. Prot.
– volume: 80
  year: 2022
  ident: bib0020
  article-title: Investigations on vapor cloud explosion hazards and critical safe reserves of LPG tanks
  publication-title: J. Loss Prev. Process Ind.
– volume: 29
  year: 2014
  ident: bib0024
  article-title: Evaluation of gas explosion overpressures at configurations with irregularly arranged obstacles
  publication-title: J. Perform. Constr. Facil.
– volume: 44
  start-page: 8914
  year: 2019
  end-page: 8926
  ident: bib0028
  article-title: Vented explosion of hydrogen/air mixture: An intercomparison benchmark exercise
  publication-title: Int. J. Hydrog. Energy
– year: 1988
  ident: bib0076
  article-title: The scaling of vapour cloud explosions: a fractal model for size and fuel type
  publication-title: 22nd International Symposium on Combustion
– volume: 16
  start-page: 111
  year: 2003
  end-page: 120
  ident: bib0079
  article-title: The multi-energy critical separation distance
  publication-title: J. Loss Prev. Process Ind.
– volume: 41
  year: 2016
  ident: bib0029
  article-title: Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: Effects of concentration, obstruction vent area and ignition position
  publication-title: Int. J. Hydrog. Energy
– year: 2019
  ident: bib0061
  publication-title: Inventory of knowledge needs, with regard to explosion loading, in a densified urban environment, M.Sc. thesis
– year: 2023
  ident: bib0041
  publication-title: Explosions in urban environments: Modelling of gas explosions and risk of premature shear failure in reinforced concrete structures, Lic. Thesis
– year: 1995
  ident: bib0045
  publication-title: Fuel gas explosions guidelines: the congestion assessment method, in: 2nd European Conference on Major Hazards On- and Off-Shore
– year: 2020
  ident: bib0058
  article-title: Inventering av kunskapsbehov i byggbranschen med hänsyn till explosioner i en förtätad stadsmiljö (Inventory of knowledge needs in the construction industry regarding explosions in densified urban environments. In Swedish)
– volume: 15
  start-page: 106
  year: 1996
  end-page: 109
  ident: bib0043
  article-title: Vapor cloud explosion analysis
  publication-title: Process Saf. Prog.
– volume: 52
  start-page: 125
  year: 2018
  end-page: 139
  ident: bib0027
  article-title: Numerical simulations of vented hydrogen deflagration in a medium-scale enclosure
  publication-title: J. Loss Prev. Process Ind.
– year: 1984
  ident: bib0074
  article-title: Experimental Study of the Influence of Obstacles and Partial Confinement on Flame Propagation, Part II
– year: 2016
  ident: bib0060
  article-title: Jämförelsestudie av riskbedömningar avseende vägtransport av farligt gods (Comparison study of risk analyses regarding road transport of hazardous materials. In Swedish), M.Sc. thesis
– year: 2017
  ident: bib0080
  article-title: Beräkningsstöd: Gasexplosion i det fria (Gas explosions in the open. In Swedish)
– volume: 201
  year: 2020
  ident: bib0022
  article-title: Modeling and analysis of flammable gas dispersion and deflagration from offshore platform blowout
  publication-title: Ocean Eng.
– volume: 71
  year: 2021
  ident: bib0069
  article-title: Evaluation of CFD simulations of transient pool fire burning rates
  publication-title: J. Loss Prev. Process Ind.
– year: 1993
  ident: bib0053
  publication-title: A rapid assessment methodology for the prediction of vapour cloud explosion overpressure, in: International Conference and Exhibition on Safety, Health and Loss Prevention in the Oil, Chemical and Process Industries
– volume: 52
  start-page: 29
  year: 2018
  end-page: 39
  ident: bib0025
  article-title: Influence of geometrical shapes on unconfined vapor cloud explosion
  publication-title: J. Loss Prev. Process Ind.
– volume: 119
  start-page: 360
  year: 2018
  end-page: 378
  ident: bib0051
  article-title: Far-field pressure prediction of a vented gas explosion from storage tanks by using new CFD simulation guidance
  publication-title: Process Saf. Environ. Prot.
– volume: 18
  start-page: 235
  year: 1999
  end-page: 240
  ident: bib0044
  article-title: A new set of blast curves from vapor cloud explosion
  publication-title: Process Saf. Prog.
– volume: 13
  start-page: 27
  year: 2000
  end-page: 31
  ident: bib0010
  article-title: Risk analysis of LPG transport by road and rail
  publication-title: J. Loss Prev. Process Ind.
– volume: 75
  year: 2022
  ident: bib0015
  article-title: Vapor cloud explosions in various types of confined environments: CFD analysis and model validation
  publication-title: J. Loss Prev. Process Ind.
– volume: 43
  start-page: 449
  year: 2016
  end-page: 456
  ident: bib0023
  article-title: Influence of built-in obstacles on unconfined vapor cloud explosion
  publication-title: J. Loss Prev. Process Ind.
– year: 1998
  ident: bib0054
  article-title: GAME: Development of Guidance for the Application Of The Multi-Energy Method
– year: 1998
  ident: bib0064
  publication-title: Modelling of turbulence and combustion for simulation of gas explosions in complex geometries, Ph.D. Thesis
– volume: 109
  start-page: 489
  year: 2017
  end-page: 508
  ident: bib0050
  article-title: Vented methane-air explosion overpressure calculation—A simplified approach based on CFD
  publication-title: Process Saf. Environ. Prot.
– year: 1991
  ident: bib0072
  publication-title: Fuel gas explosion guidelines, in: Conference on Fire and Explosion Hazards
– volume: 184
  start-page: 647
  year: 2010
  end-page: 653
  ident: bib0003
  article-title: A survey on hazardous materials accidents during road transport in China from 2000 to 2008
  publication-title: J. Hazard. Mater.
– year: 2005
  ident: bib0073
  article-title: Committee for the Prevention of Disasters, Methods for the Calculation of Physical Effects [’Yellow Book’]
– volume: 141
  start-page: 489
  year: 2007
  end-page: 519
  ident: bib0002
  article-title: The boiling liquid expanding vapour explosion (BLEVE): Mechanism, consequence assessment, management
  publication-title: J. Hazard. Mater.
– year: 1992
  ident: bib0012
  article-title: Gas Explosion Handbook
– volume: 97
  start-page: 387
  year: 2024
  end-page: 396
  ident: bib0038
  article-title: Study of leakage and explosion hazard characteristics of a compressed natural gas at a gas station
  publication-title: J. Eng. Phys. Thermophy.
– volume: 30
  start-page: 287
  year: 2014
  end-page: 295
  ident: bib0055
  article-title: Facilitating consistent siting hazard distance predictions using the TNO multi-energy model
  publication-title: J. Loss Prev. Process Ind.
– volume: 44
  start-page: 8997
  year: 2019
  end-page: 9008
  ident: bib0026
  article-title: Blind-prediction: Estimating the consequences of vented hydrogen deflagrations for homogeneous mixtures in 20-foot ISO containers
  publication-title: Int. J. Hydrog. Energy
– volume: 26
  start-page: 1597
  year: 2013
  end-page: 1603
  ident: bib0070
  article-title: The acceleration of flames in tube explosions with two obstacles as a function of the obstacle separation distance
  publication-title: J. Loss Prev. Process Ind.
– year: 2005
  ident: bib0078
  article-title: Research to Improve Guidance on Separation Distance for the Multi-Energy Method (RIGOS)
– volume: 5
  start-page: 211
  year: 1984
  end-page: 236
  ident: bib0062
  article-title: Computer simulation of turbulent reactive gas dynamics
  publication-title: MIC
– volume: 82
  year: 2023
  ident: bib0004
  article-title: CFD-based assessment and visualization of the failure consequences of LPG tankers
  publication-title: J. Loss Prev. Process Ind.
– volume: 4
  start-page: 203
  year: 2023
  end-page: 219
  ident: bib0018
  article-title: Development in comprehensive CFD simulation of fire and explosion
  publication-title: J. Saf. Sci. Resil.
– volume: 23
  start-page: 885
  year: 2010
  end-page: 906
  ident: bib0030
  article-title: Using computational fluid dynamics (CFD) for blast wave predictions
  publication-title: J. Loss Prev. Process Ind.
– volume: 35
  start-page: 1213
  year: 2008
  end-page: 1227
  ident: bib0013
  article-title: Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads
  publication-title: Int. J. Impact Eng.
– volume: 13
  start-page: 165
  year: 2018
  end-page: 180
  ident: bib0021
  article-title: Effects of structural congestion and surrounding obstacles on the overpressure loads in explosions: experiment and CFD simulations
  publication-title: Sh. Offshore Struct.
– volume: 54
  start-page: 817
  year: 2024
  end-page: 836
  ident: bib0040
  article-title: Optimizing hydrogen refueling station layout based on consequences of leakage and explosion accidents
  publication-title: Int. J. Hydrog. Energy
– volume: 170
  start-page: 112
  year: 2023
  end-page: 138
  ident: bib0016
  article-title: Computational fluid dynamics modelling approaches of gas explosion in the chemical process industry: a review
  publication-title: Process Saf. Environ. Prot.
– year: 2022
  ident: bib0009
  article-title: The Bologna LPG BLEVE
  publication-title: Proceedings of the 28th International Colloquium on the Dynamics of Explosions and Reactive Systems
– volume: 12
  start-page: 361
  year: 1999
  end-page: 378
  ident: bib0001
  article-title: Major accidents in process industries and an analysis of causes and consequences
  publication-title: J. Loss Prev. Process Ind.
– volume: 40
  start-page: 449
  year: 2016
  end-page: 460
  ident: bib0007
  article-title: Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India
  publication-title: J. Loss Prev. Process Ind.
– volume: 110
  year: 2019
  ident: bib0034
  article-title: Study of fire and explosion hazards of alternative fuel vehicles in tunnels
  publication-title: Fire Saf. J.
– start-page: 1107
  year: 2001
  end-page: 1133
  ident: bib0071
  article-title: T7-5 - developments in the congestion assessment method for the prediction of vapour-cloud explosions
  publication-title: Loss Prevention and Safety Promotion in the Process Industries
– volume: 42
  start-page: 14794
  year: 2017
  end-page: 14808
  ident: bib0075
  article-title: Comparison of the explosion characteristics of hydrogen, propane, and methane clouds at the stoichiometric concentrations
  publication-title: Int. J. Hydrog. Energy
– volume: 49
  start-page: 367
  year: 2017
  end-page: 381
  ident: bib0032
  article-title: Internal and external pressure prediction of vented gas explosion in large rooms by using analytical and CFD methods
  publication-title: J. Loss Prev. Process Ind.
– volume: 24
  start-page: 2387
  year: 1990
  end-page: 2395
  ident: bib0067
  article-title: A statistical procedure for determining the best performing air quality simulation model
  publication-title: Atmos. Environ. A. Gen. Top.
– volume: 35
  start-page: 293
  year: 2015
  end-page: 306
  ident: bib0031
  article-title: Improved far-field blast predictions from fast deflagrations, DDTs and detonations of vapour clouds using FLACS CFD
  publication-title: J. Loss Prev. Process Ind.
– volume: 35
  start-page: 4747
  year: 2010
  end-page: 4757
  ident: bib0068
  article-title: HySafe SBEP-V20: Numerical studies of release experiments inside a naturally ventilated residential garage
  publication-title: Int. J. Hydrog. Energy
– volume: 22
  start-page: 295
  year: 2009
  end-page: 302
  ident: bib0035
  article-title: Using computational fluid dynamics as a tool for hydrogen safety studies
  publication-title: J. Loss Prev. Process Ind.
– volume: 52
  start-page: 99
  year: 2018
  end-page: 107
  ident: bib0047
  article-title: A method for the estimation of overpressure generated by open air hydrogen explosions
  publication-title: J. Loss Prev. Process Ind.
– volume: 67
  year: 2020
  ident: bib0017
  article-title: Recent application of computational fluid dynamics (CFD) in process safety and loss prevention: a review
  publication-title: J. Loss Prev. Process Ind.
– volume: 52
  start-page: 99
  year: 2018
  ident: 10.1016/j.jnlssr.2025.100222_bib0047
  article-title: A method for the estimation of overpressure generated by open air hydrogen explosions
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2018.01.009
– volume: 34
  start-page: 173
  year: 1993
  ident: 10.1016/j.jnlssr.2025.100222_bib0063
  article-title: Computer modelling of turbulent gas explosions in complex 2D and 3D geometries
  publication-title: J. Hazard. Mater.
  doi: 10.1016/0304-3894(93)85004-X
– volume: 201
  year: 2020
  ident: 10.1016/j.jnlssr.2025.100222_bib0022
  article-title: Modeling and analysis of flammable gas dispersion and deflagration from offshore platform blowout
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107146
– volume: 12
  start-page: 361
  year: 1999
  ident: 10.1016/j.jnlssr.2025.100222_bib0001
  article-title: Major accidents in process industries and an analysis of causes and consequences
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/S0950-4230(98)00062-X
– year: 2005
  ident: 10.1016/j.jnlssr.2025.100222_bib0078
– volume: 52
  start-page: 29
  year: 2018
  ident: 10.1016/j.jnlssr.2025.100222_bib0025
  article-title: Influence of geometrical shapes on unconfined vapor cloud explosion
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2018.01.004
– volume: 71
  year: 2021
  ident: 10.1016/j.jnlssr.2025.100222_bib0069
  article-title: Evaluation of CFD simulations of transient pool fire burning rates
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2021.104495
– year: 2017
  ident: 10.1016/j.jnlssr.2025.100222_bib0080
– volume: 30
  start-page: 287
  year: 2014
  ident: 10.1016/j.jnlssr.2025.100222_bib0055
  article-title: Facilitating consistent siting hazard distance predictions using the TNO multi-energy model
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2014.04.010
– start-page: 1107
  year: 2001
  ident: 10.1016/j.jnlssr.2025.100222_bib0071
  article-title: T7-5 - developments in the congestion assessment method for the prediction of vapour-cloud explosions
– volume: 97
  start-page: 387
  year: 2024
  ident: 10.1016/j.jnlssr.2025.100222_bib0038
  article-title: Study of leakage and explosion hazard characteristics of a compressed natural gas at a gas station
  publication-title: J. Eng. Phys. Thermophy.
– volume: 24
  start-page: 2387
  year: 1990
  ident: 10.1016/j.jnlssr.2025.100222_bib0067
  article-title: A statistical procedure for determining the best performing air quality simulation model
  publication-title: Atmos. Environ. A. Gen. Top.
  doi: 10.1016/0960-1686(90)90331-G
– year: 2017
  ident: 10.1016/j.jnlssr.2025.100222_bib0011
– volume: 52
  start-page: 125
  year: 2018
  ident: 10.1016/j.jnlssr.2025.100222_bib0027
  article-title: Numerical simulations of vented hydrogen deflagration in a medium-scale enclosure
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2017.10.014
– year: 2019
  ident: 10.1016/j.jnlssr.2025.100222_bib0061
– year: 1993
  ident: 10.1016/j.jnlssr.2025.100222_bib0053
– volume: 73
  year: 2021
  ident: 10.1016/j.jnlssr.2025.100222_bib0057
  article-title: A quantitative correlation of evaluating the flame speed for the BST method in vapor cloud explosions
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2021.104622
– volume: 67
  year: 2020
  ident: 10.1016/j.jnlssr.2025.100222_bib0017
  article-title: Recent application of computational fluid dynamics (CFD) in process safety and loss prevention: a review
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2020.104252
– year: 1998
  ident: 10.1016/j.jnlssr.2025.100222_bib0064
– volume: 82
  year: 2023
  ident: 10.1016/j.jnlssr.2025.100222_bib0049
  article-title: An overpressure-time history model of methane-air explosion in tunnel-shape space
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2023.105004
– volume: 87
  year: 2024
  ident: 10.1016/j.jnlssr.2025.100222_bib0006
  article-title: Consequences analysis of the LPG tank truck traffic accident: a case study of the Wenling explosion accident
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2023.105228
– volume: 41
  year: 2016
  ident: 10.1016/j.jnlssr.2025.100222_bib0029
  article-title: Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: Effects of concentration, obstruction vent area and ignition position
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.05.189
– volume: 31
  start-page: 16
  year: 2014
  ident: 10.1016/j.jnlssr.2025.100222_bib0056
  article-title: New correlation for vapor cloud explosion overpressure calculation at congested configurations
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2014.05.013
– year: 2022
  ident: 10.1016/j.jnlssr.2025.100222_bib0059
– volume: 107
  year: 2021
  ident: 10.1016/j.jnlssr.2025.100222_bib0036
  article-title: Numerical studies on explosion hazards of vehicles using clean fuel in short vehicular tunnels
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103649
– volume: 119
  start-page: 360
  year: 2018
  ident: 10.1016/j.jnlssr.2025.100222_bib0051
  article-title: Far-field pressure prediction of a vented gas explosion from storage tanks by using new CFD simulation guidance
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2018.08.004
– volume: 3
  start-page: 209
  year: 2022
  ident: 10.1016/j.jnlssr.2025.100222_bib0048
  article-title: Investigation of a practical load model for a natural gas explosion in an unconfined space
  publication-title: J. Saf. Sci. Resil.
– volume: 3
  start-page: 269
  year: 1974
  ident: 10.1016/j.jnlssr.2025.100222_bib0065
  article-title: The numerical computation of turbulent flow computer methods
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(74)90029-2
– volume: 109
  start-page: 489
  year: 2017
  ident: 10.1016/j.jnlssr.2025.100222_bib0050
  article-title: Vented methane-air explosion overpressure calculation—A simplified approach based on CFD
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2017.04.025
– volume: 12
  start-page: 1
  year: 1985
  ident: 10.1016/j.jnlssr.2025.100222_bib0042
  article-title: The multi-energy method: a framework for vapour cloud explosion blast prediction
  publication-title: J. Hazard. Mater.
  doi: 10.1016/0304-3894(85)80022-4
– year: 1998
  ident: 10.1016/j.jnlssr.2025.100222_bib0054
– year: 2023
  ident: 10.1016/j.jnlssr.2025.100222_bib0041
– volume: 15
  start-page: 106
  year: 1996
  ident: 10.1016/j.jnlssr.2025.100222_bib0043
  article-title: Vapor cloud explosion analysis
  publication-title: Process Saf. Prog.
  doi: 10.1002/prs.680150211
– volume: 40
  start-page: 449
  year: 2016
  ident: 10.1016/j.jnlssr.2025.100222_bib0007
  article-title: Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2016.01.020
– volume: 35
  start-page: 293
  year: 2015
  ident: 10.1016/j.jnlssr.2025.100222_bib0031
  article-title: Improved far-field blast predictions from fast deflagrations, DDTs and detonations of vapour clouds using FLACS CFD
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2014.11.005
– volume: 5
  start-page: 211
  year: 1984
  ident: 10.1016/j.jnlssr.2025.100222_bib0062
  article-title: Computer simulation of turbulent reactive gas dynamics
  publication-title: MIC
  doi: 10.4173/mic.1984.4.3
– volume: 35
  start-page: 4747
  year: 2010
  ident: 10.1016/j.jnlssr.2025.100222_bib0068
  article-title: HySafe SBEP-V20: Numerical studies of release experiments inside a naturally ventilated residential garage
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.02.020
– volume: 184
  start-page: 647
  year: 2010
  ident: 10.1016/j.jnlssr.2025.100222_bib0003
  article-title: A survey on hazardous materials accidents during road transport in China from 2000 to 2008
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.08.085
– volume: 82
  year: 2023
  ident: 10.1016/j.jnlssr.2025.100222_bib0004
  article-title: CFD-based assessment and visualization of the failure consequences of LPG tankers
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2023.105008
– volume: 80
  year: 2022
  ident: 10.1016/j.jnlssr.2025.100222_bib0020
  article-title: Investigations on vapor cloud explosion hazards and critical safe reserves of LPG tanks
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2022.104904
– volume: 26
  start-page: 1597
  year: 2013
  ident: 10.1016/j.jnlssr.2025.100222_bib0070
  article-title: The acceleration of flames in tube explosions with two obstacles as a function of the obstacle separation distance
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2013.08.003
– volume: 44
  start-page: 8914
  year: 2019
  ident: 10.1016/j.jnlssr.2025.100222_bib0028
  article-title: Vented explosion of hydrogen/air mixture: An intercomparison benchmark exercise
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.07.195
– year: 2022
  ident: 10.1016/j.jnlssr.2025.100222_bib0009
  article-title: The Bologna LPG BLEVE
– volume: 170
  start-page: 112
  year: 2023
  ident: 10.1016/j.jnlssr.2025.100222_bib0016
  article-title: Computational fluid dynamics modelling approaches of gas explosion in the chemical process industry: a review
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.11.090
– volume: 87
  year: 2004
  ident: 10.1016/j.jnlssr.2025.100222_bib0066
  article-title: Air quality model performance evaluation
  publication-title: Meteorol. Atmos. Phys.
  doi: 10.1007/s00703-003-0070-7
– volume: 43
  start-page: 449
  year: 2016
  ident: 10.1016/j.jnlssr.2025.100222_bib0023
  article-title: Influence of built-in obstacles on unconfined vapor cloud explosion
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2016.07.007
– volume: 18
  start-page: 235
  year: 1999
  ident: 10.1016/j.jnlssr.2025.100222_bib0044
  article-title: A new set of blast curves from vapor cloud explosion
  publication-title: Process Saf. Prog.
  doi: 10.1002/prs.680180412
– volume: 13
  start-page: 165
  year: 2018
  ident: 10.1016/j.jnlssr.2025.100222_bib0021
  article-title: Effects of structural congestion and surrounding obstacles on the overpressure loads in explosions: experiment and CFD simulations
  publication-title: Sh. Offshore Struct.
  doi: 10.1080/17445302.2017.1347978
– volume: 145
  start-page: 94
  year: 2021
  ident: 10.1016/j.jnlssr.2025.100222_bib0008
  article-title: Numerical simulation of medium to large scale BLEVE and the prediction of BLEVE’s blast wave in obstructed environment
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.07.038
– year: 2016
  ident: 10.1016/j.jnlssr.2025.100222_bib0060
– volume: 41
  start-page: 14
  year: 2022
  ident: 10.1016/j.jnlssr.2025.100222_bib0014
  article-title: Risk-based explosion hazard analysis and building upgrades in industrial facilities to prevent blast failures
  publication-title: Process Saf. Prog.
  doi: 10.1002/prs.12278
– volume: 157
  start-page: 493
  year: 2022
  ident: 10.1016/j.jnlssr.2025.100222_bib0005
  article-title: Investigation and modeling of the LPG tank truck accident in Wenling, China
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.10.022
– volume: 110
  year: 2019
  ident: 10.1016/j.jnlssr.2025.100222_bib0034
  article-title: Study of fire and explosion hazards of alternative fuel vehicles in tunnels
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2019.102871
– volume: 34
  start-page: 2800
  year: 2009
  ident: 10.1016/j.jnlssr.2025.100222_bib0039
  article-title: An inter-comparison exercise on CFD model capabilities to predict a hydrogen explosion in a simulated vehicle refuelling environment
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2008.12.067
– volume: 29
  year: 2014
  ident: 10.1016/j.jnlssr.2025.100222_bib0024
  article-title: Evaluation of gas explosion overpressures at configurations with irregularly arranged obstacles
  publication-title: J. Perform. Constr. Facil.
– year: 1991
  ident: 10.1016/j.jnlssr.2025.100222_bib0072
– volume: 149
  start-page: 967
  year: 2021
  ident: 10.1016/j.jnlssr.2025.100222_bib0019
  article-title: Numerical study of large-scale LNG vapour cloud explosion in an unconfined space
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.03.034
– volume: 49
  start-page: 367
  year: 2017
  ident: 10.1016/j.jnlssr.2025.100222_bib0032
  article-title: Internal and external pressure prediction of vented gas explosion in large rooms by using analytical and CFD methods
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2017.08.002
– volume: 141
  start-page: 489
  year: 2007
  ident: 10.1016/j.jnlssr.2025.100222_bib0002
  article-title: The boiling liquid expanding vapour explosion (BLEVE): Mechanism, consequence assessment, management
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.09.056
– volume: 23
  start-page: 885
  year: 2010
  ident: 10.1016/j.jnlssr.2025.100222_bib0030
  article-title: Using computational fluid dynamics (CFD) for blast wave predictions
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2010.07.005
– volume: 54
  start-page: 817
  year: 2024
  ident: 10.1016/j.jnlssr.2025.100222_bib0040
  article-title: Optimizing hydrogen refueling station layout based on consequences of leakage and explosion accidents
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2023.09.210
– volume: 22
  start-page: 295
  year: 2009
  ident: 10.1016/j.jnlssr.2025.100222_bib0035
  article-title: Using computational fluid dynamics as a tool for hydrogen safety studies
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2008.10.006
– year: 1983
  ident: 10.1016/j.jnlssr.2025.100222_bib0077
– volume: 34
  start-page: 7862
  year: 2009
  ident: 10.1016/j.jnlssr.2025.100222_bib0033
  article-title: An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.06.055
– volume: 75
  year: 2022
  ident: 10.1016/j.jnlssr.2025.100222_bib0015
  article-title: Vapor cloud explosions in various types of confined environments: CFD analysis and model validation
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2021.104681
– year: 1995
  ident: 10.1016/j.jnlssr.2025.100222_bib0045
– year: 1984
  ident: 10.1016/j.jnlssr.2025.100222_bib0074
– volume: 13
  start-page: 27
  year: 2000
  ident: 10.1016/j.jnlssr.2025.100222_bib0010
  article-title: Risk analysis of LPG transport by road and rail
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/S0950-4230(99)00057-1
– year: 1992
  ident: 10.1016/j.jnlssr.2025.100222_bib0012
– volume: 39
  start-page: 20538
  year: 2014
  ident: 10.1016/j.jnlssr.2025.100222_bib0037
  article-title: CFD modeling of hydrogen deflagration in a tunnel
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.03.232
– volume: 44
  start-page: 8997
  year: 2019
  ident: 10.1016/j.jnlssr.2025.100222_bib0026
  article-title: Blind-prediction: Estimating the consequences of vented hydrogen deflagrations for homogeneous mixtures in 20-foot ISO containers
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.06.191
– volume: 44
  start-page: 22719
  year: 2019
  ident: 10.1016/j.jnlssr.2025.100222_bib0052
  article-title: A simple model for calculating peak pressure in vented explosions of hydrogen and hydrocarbons
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.02.213
– volume: 4
  start-page: 203
  year: 2023
  ident: 10.1016/j.jnlssr.2025.100222_bib0018
  article-title: Development in comprehensive CFD simulation of fire and explosion
  publication-title: J. Saf. Sci. Resil.
– volume: 35
  start-page: 1213
  year: 2008
  ident: 10.1016/j.jnlssr.2025.100222_bib0013
  article-title: Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2007.09.001
– volume: 16
  start-page: 111
  year: 2003
  ident: 10.1016/j.jnlssr.2025.100222_bib0079
  article-title: The multi-energy critical separation distance
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/S0950-4230(02)00112-2
– year: 2005
  ident: 10.1016/j.jnlssr.2025.100222_bib0073
– year: 1988
  ident: 10.1016/j.jnlssr.2025.100222_bib0076
  article-title: The scaling of vapour cloud explosions: a fractal model for size and fuel type
– volume: 197
  year: 2025
  ident: 10.1016/j.jnlssr.2025.100222_bib0046
  article-title: Flame propagation and overpressure characteristics of methane-hydrogen-mixed cloud explosion in unconfined area: experimental and model study
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2025.106940
– volume: 42
  start-page: 14794
  year: 2017
  ident: 10.1016/j.jnlssr.2025.100222_bib0075
  article-title: Comparison of the explosion characteristics of hydrogen, propane, and methane clouds at the stoichiometric concentrations
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.04.201
– year: 2020
  ident: 10.1016/j.jnlssr.2025.100222_bib0058
SSID ssj0002811320
ssib044745616
ssib053800448
Score 2.3193986
Snippet The accidental release of a flammable gas on a road can result in a vapour cloud explosion (VCE). Such VCEs generate a blast wave that propagates away from the...
SourceID doaj
swepub
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 100222
SubjectTerms Blast strength
Computational fluid dynamics
TNO Multi-Energy Method
Traffic environments
Vapour cloud explosions
Title Guidance for estimating the blast load from vapour cloud explosions in traffic environments using the multi-energy method
URI https://dx.doi.org/10.1016/j.jnlssr.2025.100222
https://research.chalmers.se/publication/548147
https://doaj.org/article/ecbde8951f5d47819c6c07632f19821f
Volume 7
WOSCitedRecordID wos001565443900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-4496
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811320
  issn: 2666-4496
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-4496
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044745616
  issn: 2096-7527
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiKfYUpAPXCPycPw4QtXCoVQcAPVmjT023VWVrXazlbjw2xnbWZQ99cIlByuaOP4mmc_WzDeMve9N1MEDVA3UUAmgPSs0Airf9D6Qv5iYeyz9vFCXl_rqynybtfpKOWFFHrgs3IfgHQZNPCD2mMoijZee9t5dS0Z028T09yXWM9tMrfKRUeqgXu9r5XJC12ogPJMEaNtn4dG2PYhFWbL_MCTNtUNzvDl_yp5MRJF_LBN8xh6E4Tl7PJMPfMF-f94tMaHGiXnyJJeR6OfwixOp445o8chv1oA8lZDwO7glk9zfrHfIQ8q8S-dkW74c-LiBJCTB50VvPCXEF0s557AKuUiQl47TL9mP87Pvp1-qqZVC5YXoxypKGaDBOkp0AZE4iVJOtE6CJ34YvGwkwVSrFtOGzymnayHAI2qjXN3E7hU7GtZDeM04feOEYqBB15FtYaKATrVBaoRAEXHBqv2i2tuimGH3qWQrW0CwCQRbQFiwT2nl_92b9K7zAHmBnbzA3ucFC6b2uNmJOhRKQKaW9zz-osB8MIFJaena-uvcxmZrt8Eq4wCh1bZD1VshdWdN36Ml0gVRd4jKwPH_eJs37BHNUJZUtxN2NG524S176O_G5XbzLns6Xb_-OfsLSmgHzw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+for+estimating+the+blast+load+from+vapour+cloud+explosions+in+traffic+environments+using+the+multi-energy+method&rft.jtitle=Journal+of+Safety+Science+and+Resilience+%3D+An+quan+ke+xue+yu+ren+xing+%28Ying+wen%29&rft.au=Lozano%2C+Fabio&rft.au=Johansson%2C+Morgan&rft.au=Lepp%C3%A4nen%2C+Joosef&rft.au=Plos%2C+Mario&rft.date=2026-03-01&rft.issn=2666-4496&rft.eissn=2666-4496&rft.volume=7&rft.issue=1&rft.spage=100222&rft_id=info:doi/10.1016%2Fj.jnlssr.2025.100222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnlssr_2025_100222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-4496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-4496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-4496&client=summon