Efficient assembly consensus algorithms for divergent contig sets
Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consen...
Saved in:
| Published in: | Computational biology and chemistry Vol. 93; p. 107516 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2021
Elsevier |
| Subjects: | |
| ISSN: | 1476-9271, 1476-928X, 1476-928X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consensus approach that takes the best parts of several contigs datasets produced by different methods, and combines them into a better assembly. This amounts to orienting and ordering sets of contigs, which can be viewed as an optimization problem where the aim is to find an alignment of two fragmented strings that maximizes an arbitrary scoring function between matched characters. In this work, we investigate the computational complexity of this problem. We first show that it is NP-hard, even in an alphabet with only two symbols and with all scores being either 0 or 1. On the positive side, we propose an efficient, quadratic time algorithm that achieves approximation factor 3. |
|---|---|
| AbstractList | Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consensus approach that takes the best parts of several contigs datasets produced by different methods, and combines them into a better assembly. This amounts to orienting and ordering sets of contigs, which can be viewed as an optimization problem where the aim is to find an alignment of two fragmented strings that maximizes an arbitrary scoring function between matched characters. In this work, we investigate the computational complexity of this problem. We first show that it is NP-hard, even in an alphabet with only two symbols and with all scores being either 0 or 1. On the positive side, we propose an efficient, quadratic time algorithm that achieves approximation factor 3. Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consensus approach that takes the best parts of several contigs datasets produced by different methods, and combines them into a better assembly. This amounts to orienting and ordering sets of contigs, which can be viewed as an optimization problem where the aim is to find an alignment of two fragmented strings that maximizes an arbitrary scoring function between matched characters. In this work, we investigate the computational complexity of this problem. We first show that it is NP-hard, even in an alphabet with only two symbols and with all scores being either 0 or 1. On the positive side, we propose an efficient, quadratic time algorithm that achieves approximation factor 3.Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consensus approach that takes the best parts of several contigs datasets produced by different methods, and combines them into a better assembly. This amounts to orienting and ordering sets of contigs, which can be viewed as an optimization problem where the aim is to find an alignment of two fragmented strings that maximizes an arbitrary scoring function between matched characters. In this work, we investigate the computational complexity of this problem. We first show that it is NP-hard, even in an alphabet with only two symbols and with all scores being either 0 or 1. On the positive side, we propose an efficient, quadratic time algorithm that achieves approximation factor 3. |
| ArticleNumber | 107516 |
| Author | Davot, Tom Chateau, Annie Lafond, Manuel |
| Author_xml | – sequence: 1 givenname: Annie surname: Chateau fullname: Chateau, Annie email: chateau@lirmm.fr organization: LIRMM – CNRS UMR 5506 Montpellier, France – sequence: 2 givenname: Tom orcidid: 0000-0003-4203-5140 surname: Davot fullname: Davot, Tom email: davot@lirmm.fr organization: LIRMM – CNRS UMR 5506 Montpellier, France – sequence: 3 givenname: Manuel orcidid: 0000-0002-5305-7372 surname: Lafond fullname: Lafond, Manuel email: manuel.lafond@USherbrooke.ca organization: Université de Sherbrooke, Canada |
| BackLink | https://hal-lirmm.ccsd.cnrs.fr/lirmm-03244191$$DView record in HAL |
| BookMark | eNqNkU2L2zAQQEVJofvR_2B6KpRk9WFLSU8NaXZTCOylC3sTsjxKFGQr1SiB_PvaeAmlpz2NYN68w9MtmXSxA0K-MDpjlMmHw8zG9lj7GOwe2hmnnPULVTH5gdywUsnpgs9fJ9e3Yp_ILeKBUi4orW7Icu2ctx66XBhEaOtwKWzsEDo8YWHCLiaf9y0WLqai8WdIu4Htkex3BULGe_LRmYDw-W3ekZfH9e_VZrp9fvq1Wm6ntiyrPHVcONPMFVe8NlQurARZSQ6qERUoJ-esZgthjKG1E0CFUI2TlBkualfziok78m307k3Qx-Rbky46Gq83y60OPrWtpoKXJVuw80B_Heljin9OgFm3Hi2EYDqIJ9S8EkoKKjnv0e8jalNETOCudkb1UFkf9L-V9VBZj5X74x__HVufTfZ9n2R8eJ_i56iAvt7ZQ9I4fIiFxiewWTfRv0fzF9p9pIw |
| CitedBy_id | crossref_primary_10_1016_j_isatra_2023_02_003 |
| Cites_doi | 10.1093/bioinformatics/bts174 10.1371/journal.pone.0060843 10.1101/gr.089532.108 10.1186/1471-2105-14-S15-S16 10.1101/gr.126953.111 10.1101/gr.223057.117 10.3389/fgene.2017.00023 10.1101/gr.213959.116 10.1016/S0166-218X(02)00289-5 10.1101/gr.072033.107 10.1093/bioinformatics/btv688 10.1186/gb-2012-13-12-r122 10.1371/journal.pone.0011147 10.1002/cpmb.59 10.1093/bioinformatics/btr588 10.1093/bioinformatics/btm542 10.1038/s41587-019-0072-8 10.1137/0204035 10.1016/j.ymeth.2016.02.020 10.1186/1471-2105-14-S7-S6 10.1093/bioinformatics/btl158 10.1145/2151171.2151177 10.1101/gr.074492.107 10.1101/gr.091777.109 10.1145/1041680.1041683 10.1145/28869.28874 10.1016/j.mimet.2018.06.007 10.2174/1568026613666131204110628 10.1093/nar/gks678 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 7X8 1XC VOOES |
| DOI | 10.1016/j.compbiolchem.2021.107516 |
| DatabaseName | CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology Computer Science |
| EISSN | 1476-928X |
| ExternalDocumentID | oai:HAL:lirmm-03244191v1 10_1016_j_compbiolchem_2021_107516 S1476927121000839 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO AAYFN ABBOA ABGSF ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADECG ADEWK ADEZE ADJOM ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AHPOS AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSU SSV SSZ T5K UHS ZMT ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c445t-f23fad87272ba069c6e6562e7d35e7f681b193aaa0bf3e0337df601a23bfb2513 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687401800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-9271 1476-928X |
| IngestDate | Tue Nov 18 06:20:58 EST 2025 Sun Sep 28 00:35:28 EDT 2025 Sat Nov 29 07:04:27 EST 2025 Tue Nov 18 21:37:41 EST 2025 Fri Feb 23 02:43:53 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | L.3.0.j. Molecular biology F.2 Analysis of algorithms and problem complexity B.2.4.a Algorithms F.2 Analysis of Algorithms and Problem Complexity L.3.0.j. Molecular biology 3 |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c445t-f23fad87272ba069c6e6562e7d35e7f681b193aaa0bf3e0337df601a23bfb2513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4203-5140 0000-0002-5305-7372 0000-0003-4760-8171 |
| OpenAccessLink | https://hal-lirmm.ccsd.cnrs.fr/lirmm-03244191 |
| PQID | 2537630622 |
| PQPubID | 23479 |
| ParticipantIDs | hal_primary_oai_HAL_lirmm_03244191v1 proquest_miscellaneous_2537630622 crossref_primary_10_1016_j_compbiolchem_2021_107516 crossref_citationtrail_10_1016_j_compbiolchem_2021_107516 elsevier_sciencedirect_doi_10_1016_j_compbiolchem_2021_107516 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 20210801 2021-08 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Computational biology and chemistry |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Garey, Johnson (bib0040) 1975; 4 Hernandez, François, Farinelli, Østerås, Schrenzel (bib0045) 2008; 18 Fredman, Tarjan (bib0035) 1987; 34 Li, Godzik (bib0055) 2006; 22 Soto-Jimenez, Estrada, Sanchez-Flores (bib0115) 2014; 14 Darling, Mau, Perna (bib0025) 2010; 5 Boisvert, Raymond, Godzaridis, Laviolette, Corbeil (bib0020) 2012; 13 Argueso, Carazzolle, Mieczkowski, Duarte, Netto, Missawa, Galzerani, Costa, Vidal, Noronha (bib0010) 2009; 19 Forouzan, Shariati, Mousavi Maleki, Karkhane, Yakhchali (bib0030) 2018 08; 151 Phillippy (bib0085) 2017 05; 27 Lin, Liao (bib0065) 2013; 8 Li, Luo, Liu, Leung, Ting, Sadakane, Yamashita, Lam (bib0060) 2016; 102 Slatko, Gardner, Ausubel (bib0110) 2018 04; 122 Soueidan, Maurier, Groppi, Sirand-Pugnet, Tardy, Citti, Dupuy, Nikolski (bib0120) 2013; 14 Ye, Borodin (bib0140) 2012; 8 Simpson, Durbin (bib0100) 2012; 22 Vicedomini, Vezzi, Scalabrin, Arvestad, Policriti (bib0130) 2013; 14 Roumpeka, Wallace, Escalettes, Fotheringham, Watson (bib0095) 2017; 8 Antipov, Korobeynikov, McLean, Pevzner (bib0005) 2016; 32 Namiki, Hachiya, Tanaka, Sakakibara (bib0070) 2012; 40 Bar-Yehuda, Bendel, Freund, Rawitz (bib0015) 2004; 36 Zimin, Smith, Sutton, Yorke (bib0150) 2008; 24 Kolmogorov, Yuan, Lin, Pevzner (bib0050) 2019 05; 37 Ramshaw, Tarjan (bib0090) 2012 Veeramachaneni, Berman, Miller (bib0125) 2003; 127 Nurk, Meleshko, Korobeynikov, Pevzner (bib0075) 2017 05; 27 Peng, Leung, Yiu, Chin (bib0080) 2012; 28 Yao, Ye, Gao, Minx, Warren, Weinstock (bib0135) 2012; 28 Zerbino, Birney (bib0145) 2008; 18 Simpson, Wong, Jackman, Schein, Jones, Birol (bib0105) 2009; 19 Forouzan (10.1016/j.compbiolchem.2021.107516_bib0030) 2018; 151 Phillippy (10.1016/j.compbiolchem.2021.107516_bib0085) 2017; 27 Zimin (10.1016/j.compbiolchem.2021.107516_bib0150) 2008; 24 Lin (10.1016/j.compbiolchem.2021.107516_bib0065) 2013; 8 Bar-Yehuda (10.1016/j.compbiolchem.2021.107516_bib0015) 2004; 36 Darling (10.1016/j.compbiolchem.2021.107516_bib0025) 2010; 5 Boisvert (10.1016/j.compbiolchem.2021.107516_bib0020) 2012; 13 Nurk (10.1016/j.compbiolchem.2021.107516_bib0075) 2017; 27 Kolmogorov (10.1016/j.compbiolchem.2021.107516_bib0050) 2019; 37 Zerbino (10.1016/j.compbiolchem.2021.107516_bib0145) 2008; 18 Simpson (10.1016/j.compbiolchem.2021.107516_bib0105) 2009; 19 Soueidan (10.1016/j.compbiolchem.2021.107516_bib0120) 2013; 14 Hernandez (10.1016/j.compbiolchem.2021.107516_bib0045) 2008; 18 Ye (10.1016/j.compbiolchem.2021.107516_bib0140) 2012; 8 Antipov (10.1016/j.compbiolchem.2021.107516_bib0005) 2016; 32 Ramshaw (10.1016/j.compbiolchem.2021.107516_bib0090) 2012 Fredman (10.1016/j.compbiolchem.2021.107516_bib0035) 1987; 34 Namiki (10.1016/j.compbiolchem.2021.107516_bib0070) 2012; 40 Li (10.1016/j.compbiolchem.2021.107516_bib0055) 2006; 22 Simpson (10.1016/j.compbiolchem.2021.107516_bib0100) 2012; 22 Slatko (10.1016/j.compbiolchem.2021.107516_bib0110) 2018; 122 Roumpeka (10.1016/j.compbiolchem.2021.107516_bib0095) 2017; 8 Vicedomini (10.1016/j.compbiolchem.2021.107516_bib0130) 2013; 14 Garey (10.1016/j.compbiolchem.2021.107516_bib0040) 1975; 4 Li (10.1016/j.compbiolchem.2021.107516_bib0060) 2016; 102 Soto-Jimenez (10.1016/j.compbiolchem.2021.107516_bib0115) 2014; 14 Veeramachaneni (10.1016/j.compbiolchem.2021.107516_bib0125) 2003; 127 Yao (10.1016/j.compbiolchem.2021.107516_bib0135) 2012; 28 Peng (10.1016/j.compbiolchem.2021.107516_bib0080) 2012; 28 Argueso (10.1016/j.compbiolchem.2021.107516_bib0010) 2009; 19 |
| References_xml | – volume: 36 start-page: 422 year: 2004 end-page: 463 ident: bib0015 article-title: Local ratio: a unified framework for approximation algorithms. in memoriam: Shimon even 1935–2004 publication-title: ACM Comput. Surv. (CSUR) – volume: 40 year: 2012 ident: bib0070 article-title: Metavelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads publication-title: Nucleic Acids Res. – volume: 32 start-page: 1009 year: 2016 end-page: 1015 ident: bib0005 article-title: hybridspades: an algorithm for hybrid assembly of short and long reads publication-title: Bioinformatics – year: 2012 ident: bib0090 article-title: On Minimum-Cost Assignments in Unbalanced Bipartite Graphs – volume: 18 start-page: 821 year: 2008 end-page: 829 ident: bib0145 article-title: Velvet: algorithms for de novo short read assembly using de bruijn graphs publication-title: Genome Res. – volume: 8 start-page: e60843 year: 2013 ident: bib0065 article-title: Cisa: contig integrator for sequence assembly of bacterial genomes publication-title: PLOS ONE – volume: 127 start-page: 119 year: 2003 end-page: 143 ident: bib0125 article-title: Aligning two fragmented sequences publication-title: Discrete Appl. Math. – volume: 37 start-page: 540 year: 2019 05 end-page: 546 ident: bib0050 article-title: Assembly of long, error-prone reads using repeat graphs publication-title: Nat. Biotechnol. – volume: 13 start-page: 1 year: 2012 end-page: 13 ident: bib0020 article-title: Ray meta: scalable de novo metagenome assembly and profiling publication-title: Genome Biol. – volume: 122 start-page: e59 year: 2018 04 ident: bib0110 article-title: Overview of next-generation sequencing technologies publication-title: Curr. Protoc. Mol. Biol. – volume: 19 start-page: 2258 year: 2009 end-page: 2270 ident: bib0010 article-title: Genome structure of a saccharomyces cerevisiae strain widely used in bioethanol production publication-title: Genome Res. – volume: 27 start-page: 824 year: 2017 05 end-page: 834 ident: bib0075 article-title: metaSPAdes: a new versatile metagenomic assembler publication-title: Genome Res. – volume: 22 start-page: 1658 year: 2006 end-page: 1659 ident: bib0055 article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics – volume: 8 start-page: 23 year: 2017 ident: bib0095 article-title: A review of bioinformatics tools for bio-prospecting from metagenomic sequence data publication-title: Front. Genet. – volume: 8 start-page: 1 year: 2012 end-page: 23 ident: bib0140 article-title: Elimination graphs publication-title: ACM Trans. Algorithms (TALG) – volume: 22 start-page: 549 year: 2012 end-page: 556 ident: bib0100 article-title: Efficient de novo assembly of large genomes using compressed data structures publication-title: Genome Res. – volume: 14 start-page: 418 year: 2014 ident: bib0115 article-title: Garm: genome assembly, reconciliation and merging pipeline publication-title: Curr. Top. Med. Chem. – volume: 19 start-page: 1117 year: 2009 end-page: 1123 ident: bib0105 article-title: Abyss: a parallel assembler for short read sequence data publication-title: Genome Res. – volume: 14 start-page: 1 year: 2013 end-page: 11 ident: bib0120 article-title: Finishing bacterial genome assemblies with mix publication-title: BMC Bioinform. – volume: 18 start-page: 802 year: 2008 end-page: 809 ident: bib0045 article-title: De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer publication-title: Genome Res. – volume: 27 start-page: xi year: 2017 05 end-page: xiii ident: bib0085 article-title: New advances in sequence assembly publication-title: Genome Res. – volume: 28 start-page: 1420 year: 2012 end-page: 1428 ident: bib0080 article-title: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth publication-title: Bioinformatics – volume: 24 start-page: 42 year: 2008 end-page: 45 ident: bib0150 article-title: Assembly reconciliation publication-title: Bioinformatics – volume: 102 start-page: 3 year: 2016 end-page: 11 ident: bib0060 article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices publication-title: Methods – volume: 5 start-page: e11147 year: 2010 ident: bib0025 article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement publication-title: PLoS ONE – volume: 34 start-page: 596 year: 1987 end-page: 615 ident: bib0035 article-title: Fibonacci heaps and their uses in improved network optimization algorithms publication-title: J. ACM (JACM) – volume: 28 start-page: 13 year: 2012 end-page: 16 ident: bib0135 article-title: Graph accordance of next-generation sequence assemblies publication-title: Bioinformatics – volume: 4 start-page: 397 year: 1975 end-page: 411 ident: bib0040 article-title: Complexity results for multiprocessor scheduling under resource constraints publication-title: SIAM J. Comput. – volume: 151 start-page: 99 year: 2018 08 end-page: 105 ident: bib0030 article-title: Practical evaluation of 11 de novo assemblers in metagenome assembly publication-title: J. Microbiol. Methods – volume: 14 start-page: S6 year: 2013 ident: bib0130 article-title: Gam-ngs: genomic assemblies merger for next generation sequencing publication-title: BMC Bioinform. – volume: 28 start-page: 1420 issue: June year: 2012 ident: 10.1016/j.compbiolchem.2021.107516_bib0080 article-title: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts174 – volume: 8 start-page: e60843 issue: 3 year: 2013 ident: 10.1016/j.compbiolchem.2021.107516_bib0065 article-title: Cisa: contig integrator for sequence assembly of bacterial genomes publication-title: PLOS ONE doi: 10.1371/journal.pone.0060843 – volume: 19 start-page: 1117 issue: 6 year: 2009 ident: 10.1016/j.compbiolchem.2021.107516_bib0105 article-title: Abyss: a parallel assembler for short read sequence data publication-title: Genome Res. doi: 10.1101/gr.089532.108 – volume: 14 start-page: 1 year: 2013 ident: 10.1016/j.compbiolchem.2021.107516_bib0120 article-title: Finishing bacterial genome assemblies with mix publication-title: BMC Bioinform. doi: 10.1186/1471-2105-14-S15-S16 – volume: 22 start-page: 549 issue: 3 year: 2012 ident: 10.1016/j.compbiolchem.2021.107516_bib0100 article-title: Efficient de novo assembly of large genomes using compressed data structures publication-title: Genome Res. doi: 10.1101/gr.126953.111 – volume: 27 start-page: xi year: 2017 ident: 10.1016/j.compbiolchem.2021.107516_bib0085 article-title: New advances in sequence assembly publication-title: Genome Res. doi: 10.1101/gr.223057.117 – volume: 8 start-page: 23 year: 2017 ident: 10.1016/j.compbiolchem.2021.107516_bib0095 article-title: A review of bioinformatics tools for bio-prospecting from metagenomic sequence data publication-title: Front. Genet. doi: 10.3389/fgene.2017.00023 – volume: 27 start-page: 824 year: 2017 ident: 10.1016/j.compbiolchem.2021.107516_bib0075 article-title: metaSPAdes: a new versatile metagenomic assembler publication-title: Genome Res. doi: 10.1101/gr.213959.116 – volume: 127 start-page: 119 issue: 1 year: 2003 ident: 10.1016/j.compbiolchem.2021.107516_bib0125 article-title: Aligning two fragmented sequences publication-title: Discrete Appl. Math. doi: 10.1016/S0166-218X(02)00289-5 – volume: 18 start-page: 802 issue: 5 year: 2008 ident: 10.1016/j.compbiolchem.2021.107516_bib0045 article-title: De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer publication-title: Genome Res. doi: 10.1101/gr.072033.107 – volume: 32 start-page: 1009 issue: 7 year: 2016 ident: 10.1016/j.compbiolchem.2021.107516_bib0005 article-title: hybridspades: an algorithm for hybrid assembly of short and long reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv688 – volume: 13 start-page: 1 issue: 12 year: 2012 ident: 10.1016/j.compbiolchem.2021.107516_bib0020 article-title: Ray meta: scalable de novo metagenome assembly and profiling publication-title: Genome Biol. doi: 10.1186/gb-2012-13-12-r122 – volume: 5 start-page: e11147 issue: June year: 2010 ident: 10.1016/j.compbiolchem.2021.107516_bib0025 article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement publication-title: PLoS ONE doi: 10.1371/journal.pone.0011147 – year: 2012 ident: 10.1016/j.compbiolchem.2021.107516_bib0090 – volume: 122 start-page: e59 year: 2018 ident: 10.1016/j.compbiolchem.2021.107516_bib0110 article-title: Overview of next-generation sequencing technologies publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/cpmb.59 – volume: 28 start-page: 13 issue: 1 year: 2012 ident: 10.1016/j.compbiolchem.2021.107516_bib0135 article-title: Graph accordance of next-generation sequence assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr588 – volume: 24 start-page: 42 issue: 1 year: 2008 ident: 10.1016/j.compbiolchem.2021.107516_bib0150 article-title: Assembly reconciliation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm542 – volume: 37 start-page: 540 year: 2019 ident: 10.1016/j.compbiolchem.2021.107516_bib0050 article-title: Assembly of long, error-prone reads using repeat graphs publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0072-8 – volume: 4 start-page: 397 issue: 4 year: 1975 ident: 10.1016/j.compbiolchem.2021.107516_bib0040 article-title: Complexity results for multiprocessor scheduling under resource constraints publication-title: SIAM J. Comput. doi: 10.1137/0204035 – volume: 102 start-page: 3 year: 2016 ident: 10.1016/j.compbiolchem.2021.107516_bib0060 article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices publication-title: Methods doi: 10.1016/j.ymeth.2016.02.020 – volume: 14 start-page: S6 issue: S7 year: 2013 ident: 10.1016/j.compbiolchem.2021.107516_bib0130 article-title: Gam-ngs: genomic assemblies merger for next generation sequencing publication-title: BMC Bioinform. doi: 10.1186/1471-2105-14-S7-S6 – volume: 22 start-page: 1658 issue: July year: 2006 ident: 10.1016/j.compbiolchem.2021.107516_bib0055 article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 8 start-page: 1 issue: 2 year: 2012 ident: 10.1016/j.compbiolchem.2021.107516_bib0140 article-title: Elimination graphs publication-title: ACM Trans. Algorithms (TALG) doi: 10.1145/2151171.2151177 – volume: 18 start-page: 821 issue: 5 year: 2008 ident: 10.1016/j.compbiolchem.2021.107516_bib0145 article-title: Velvet: algorithms for de novo short read assembly using de bruijn graphs publication-title: Genome Res. doi: 10.1101/gr.074492.107 – volume: 19 start-page: 2258 issue: 12 year: 2009 ident: 10.1016/j.compbiolchem.2021.107516_bib0010 article-title: Genome structure of a saccharomyces cerevisiae strain widely used in bioethanol production publication-title: Genome Res. doi: 10.1101/gr.091777.109 – volume: 36 start-page: 422 issue: 4 year: 2004 ident: 10.1016/j.compbiolchem.2021.107516_bib0015 article-title: Local ratio: a unified framework for approximation algorithms. in memoriam: Shimon even 1935–2004 publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/1041680.1041683 – volume: 34 start-page: 596 issue: 3 year: 1987 ident: 10.1016/j.compbiolchem.2021.107516_bib0035 article-title: Fibonacci heaps and their uses in improved network optimization algorithms publication-title: J. ACM (JACM) doi: 10.1145/28869.28874 – volume: 151 start-page: 99 year: 2018 ident: 10.1016/j.compbiolchem.2021.107516_bib0030 article-title: Practical evaluation of 11 de novo assemblers in metagenome assembly publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2018.06.007 – volume: 14 start-page: 418 issue: 3 year: 2014 ident: 10.1016/j.compbiolchem.2021.107516_bib0115 article-title: Garm: genome assembly, reconciliation and merging pipeline publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026613666131204110628 – volume: 40 issue: 20 year: 2012 ident: 10.1016/j.compbiolchem.2021.107516_bib0070 article-title: Metavelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks678 |
| SSID | ssj0023005 |
| Score | 2.2708466 |
| Snippet | Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107516 |
| SubjectTerms | B.2.4.a Algorithms Bioinformatics Computational Complexity Computer Science F.2 Analysis of algorithms and problem complexity L.3.0.j. Molecular biology |
| Title | Efficient assembly consensus algorithms for divergent contig sets |
| URI | https://dx.doi.org/10.1016/j.compbiolchem.2021.107516 https://www.proquest.com/docview/2537630622 https://hal-lirmm.ccsd.cnrs.fr/lirmm-03244191 |
| Volume | 93 |
| WOSCitedRecordID | wos000687401800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1476-928X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023005 issn: 1476-9271 databaseCode: AIEXJ dateStart: 20030201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLboBoILggGi_JiCtFuVKbGTOD5wqEbRQGjiUKTeLCext0xtWjVttf33PNuxW4YmChKXKIpkx8778vKe8_l7CJ1QGdM8kiQsVBaFCZM4LHBFwqxUmZKpioXITbEJenGRTybse7e7pDXlBGjT5Dc3bPFfTQ3XwNh66-xfmNt3ChfgHIwORzA7HPcy_MiIQhjqeNvKWTG91dTyVpe0aAdiejlf1qsrK8MwqDQrQ2-uMpT1-nLQSqvs5MULTNEHt2C4q9hUukpxOwQBAMzasiSb2gPmk9jMjacf28lamUflyhmLZt2x9ru1Bxx75ptzlwnNQoZtERXnTxnZcYiQXaZ2M-VvvtouG1zrR73Q49fjPtV3Od02-lUg-86Hy9MJHVPtmu_2xXVf3PbVQ4eYpgzc3uHwy2jy1efkWq3fbEDrJuJ0aQ0F8L6R3RfD9K40mfbON90EKuNn6GmXYQRDi4zn6IFsjtAjW3P09gg9PnOGe4GGHiuBw0rgsRJssRIAVgKPlcBiJdBYeYl-fB6Nz87DrqZGWCZJugoVJkpUuf79XogoY2UmIaLHklYklVRlkMVASC-EiApFZEQIreAljgUmhSogFiav0EEzb-RrFKRlkkakECVRMoE8m-VMaAU1iNgTKWjaR8w9JV52gvO67smU_9lefUR824WVXdmr1UdnDN4FkDYw5IC5vdqfgAX9DbXy-vnwG5_Wy9mMR5B6JDGLN3EffXAm5mAw_YdNNHK-bjnW4kiQhGP85p8m8BY92b5m79DBarmW79HDcrOq2-Ux6tFJftwh-Cc0N7Tc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+assembly+consensus+algorithms+for+divergent+contig+sets&rft.jtitle=Computational+biology+and+chemistry&rft.au=Chateau%2C+Annie&rft.au=Davot%2C+Tom&rft.au=Lafond%2C+Manuel&rft.date=2021-08-01&rft.issn=1476-9271&rft.volume=93&rft.spage=107516&rft_id=info:doi/10.1016%2Fj.compbiolchem.2021.107516&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiolchem_2021_107516 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-9271&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-9271&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-9271&client=summon |