Efficient assembly consensus algorithms for divergent contig sets

Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational biology and chemistry Ročník 93; s. 107516
Hlavní autoři: Chateau, Annie, Davot, Tom, Lafond, Manuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2021
Elsevier
Témata:
ISSN:1476-9271, 1476-928X, 1476-928X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consensus approach that takes the best parts of several contigs datasets produced by different methods, and combines them into a better assembly. This amounts to orienting and ordering sets of contigs, which can be viewed as an optimization problem where the aim is to find an alignment of two fragmented strings that maximizes an arbitrary scoring function between matched characters. In this work, we investigate the computational complexity of this problem. We first show that it is NP-hard, even in an alphabet with only two symbols and with all scores being either 0 or 1. On the positive side, we propose an efficient, quadratic time algorithm that achieves approximation factor 3.
AbstractList Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consensus approach that takes the best parts of several contigs datasets produced by different methods, and combines them into a better assembly. This amounts to orienting and ordering sets of contigs, which can be viewed as an optimization problem where the aim is to find an alignment of two fragmented strings that maximizes an arbitrary scoring function between matched characters. In this work, we investigate the computational complexity of this problem. We first show that it is NP-hard, even in an alphabet with only two symbols and with all scores being either 0 or 1. On the positive side, we propose an efficient, quadratic time algorithm that achieves approximation factor 3.
Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consensus approach that takes the best parts of several contigs datasets produced by different methods, and combines them into a better assembly. This amounts to orienting and ordering sets of contigs, which can be viewed as an optimization problem where the aim is to find an alignment of two fragmented strings that maximizes an arbitrary scoring function between matched characters. In this work, we investigate the computational complexity of this problem. We first show that it is NP-hard, even in an alphabet with only two symbols and with all scores being either 0 or 1. On the positive side, we propose an efficient, quadratic time algorithm that achieves approximation factor 3.Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible choices, it can be hard to determine which tool or parameter to use for a specific genome sequencing project. In this paper, we propose a consensus approach that takes the best parts of several contigs datasets produced by different methods, and combines them into a better assembly. This amounts to orienting and ordering sets of contigs, which can be viewed as an optimization problem where the aim is to find an alignment of two fragmented strings that maximizes an arbitrary scoring function between matched characters. In this work, we investigate the computational complexity of this problem. We first show that it is NP-hard, even in an alphabet with only two symbols and with all scores being either 0 or 1. On the positive side, we propose an efficient, quadratic time algorithm that achieves approximation factor 3.
ArticleNumber 107516
Author Davot, Tom
Chateau, Annie
Lafond, Manuel
Author_xml – sequence: 1
  givenname: Annie
  surname: Chateau
  fullname: Chateau, Annie
  email: chateau@lirmm.fr
  organization: LIRMM – CNRS UMR 5506 Montpellier, France
– sequence: 2
  givenname: Tom
  orcidid: 0000-0003-4203-5140
  surname: Davot
  fullname: Davot, Tom
  email: davot@lirmm.fr
  organization: LIRMM – CNRS UMR 5506 Montpellier, France
– sequence: 3
  givenname: Manuel
  orcidid: 0000-0002-5305-7372
  surname: Lafond
  fullname: Lafond, Manuel
  email: manuel.lafond@USherbrooke.ca
  organization: Université de Sherbrooke, Canada
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-03244191$$DView record in HAL
BookMark eNqNkU2L2zAQQEVJofvR_2B6KpRk9WFLSU8NaXZTCOylC3sTsjxKFGQr1SiB_PvaeAmlpz2NYN68w9MtmXSxA0K-MDpjlMmHw8zG9lj7GOwe2hmnnPULVTH5gdywUsnpgs9fJ9e3Yp_ILeKBUi4orW7Icu2ctx66XBhEaOtwKWzsEDo8YWHCLiaf9y0WLqai8WdIu4Htkex3BULGe_LRmYDw-W3ekZfH9e_VZrp9fvq1Wm6ntiyrPHVcONPMFVe8NlQurARZSQ6qERUoJ-esZgthjKG1E0CFUI2TlBkualfziok78m307k3Qx-Rbky46Gq83y60OPrWtpoKXJVuw80B_Heljin9OgFm3Hi2EYDqIJ9S8EkoKKjnv0e8jalNETOCudkb1UFkf9L-V9VBZj5X74x__HVufTfZ9n2R8eJ_i56iAvt7ZQ9I4fIiFxiewWTfRv0fzF9p9pIw
CitedBy_id crossref_primary_10_1016_j_isatra_2023_02_003
Cites_doi 10.1093/bioinformatics/bts174
10.1371/journal.pone.0060843
10.1101/gr.089532.108
10.1186/1471-2105-14-S15-S16
10.1101/gr.126953.111
10.1101/gr.223057.117
10.3389/fgene.2017.00023
10.1101/gr.213959.116
10.1016/S0166-218X(02)00289-5
10.1101/gr.072033.107
10.1093/bioinformatics/btv688
10.1186/gb-2012-13-12-r122
10.1371/journal.pone.0011147
10.1002/cpmb.59
10.1093/bioinformatics/btr588
10.1093/bioinformatics/btm542
10.1038/s41587-019-0072-8
10.1137/0204035
10.1016/j.ymeth.2016.02.020
10.1186/1471-2105-14-S7-S6
10.1093/bioinformatics/btl158
10.1145/2151171.2151177
10.1101/gr.074492.107
10.1101/gr.091777.109
10.1145/1041680.1041683
10.1145/28869.28874
10.1016/j.mimet.2018.06.007
10.2174/1568026613666131204110628
10.1093/nar/gks678
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7X8
1XC
VOOES
DOI 10.1016/j.compbiolchem.2021.107516
DatabaseName CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Computer Science
EISSN 1476-928X
ExternalDocumentID oai:HAL:lirmm-03244191v1
10_1016_j_compbiolchem_2021_107516
S1476927121000839
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
AAYFN
ABBOA
ABGSF
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADECG
ADEWK
ADEZE
ADJOM
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSU
SSV
SSZ
T5K
UHS
ZMT
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7X8
1XC
VOOES
ID FETCH-LOGICAL-c445t-f23fad87272ba069c6e6562e7d35e7f681b193aaa0bf3e0337df601a23bfb2513
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687401800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-9271
1476-928X
IngestDate Tue Nov 18 06:20:58 EST 2025
Sun Sep 28 00:35:28 EDT 2025
Sat Nov 29 07:04:27 EST 2025
Tue Nov 18 21:37:41 EST 2025
Fri Feb 23 02:43:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords L.3.0.j. Molecular biology
F.2 Analysis of algorithms and problem complexity
B.2.4.a Algorithms
F.2 Analysis of Algorithms and Problem Complexity
L.3.0.j. Molecular biology 3
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-f23fad87272ba069c6e6562e7d35e7f681b193aaa0bf3e0337df601a23bfb2513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4203-5140
0000-0002-5305-7372
0000-0003-4760-8171
OpenAccessLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-03244191
PQID 2537630622
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_lirmm_03244191v1
proquest_miscellaneous_2537630622
crossref_primary_10_1016_j_compbiolchem_2021_107516
crossref_citationtrail_10_1016_j_compbiolchem_2021_107516
elsevier_sciencedirect_doi_10_1016_j_compbiolchem_2021_107516
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
2021-08
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Computational biology and chemistry
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Garey, Johnson (bib0040) 1975; 4
Hernandez, François, Farinelli, Østerås, Schrenzel (bib0045) 2008; 18
Fredman, Tarjan (bib0035) 1987; 34
Li, Godzik (bib0055) 2006; 22
Soto-Jimenez, Estrada, Sanchez-Flores (bib0115) 2014; 14
Darling, Mau, Perna (bib0025) 2010; 5
Boisvert, Raymond, Godzaridis, Laviolette, Corbeil (bib0020) 2012; 13
Argueso, Carazzolle, Mieczkowski, Duarte, Netto, Missawa, Galzerani, Costa, Vidal, Noronha (bib0010) 2009; 19
Forouzan, Shariati, Mousavi Maleki, Karkhane, Yakhchali (bib0030) 2018 08; 151
Phillippy (bib0085) 2017 05; 27
Lin, Liao (bib0065) 2013; 8
Li, Luo, Liu, Leung, Ting, Sadakane, Yamashita, Lam (bib0060) 2016; 102
Slatko, Gardner, Ausubel (bib0110) 2018 04; 122
Soueidan, Maurier, Groppi, Sirand-Pugnet, Tardy, Citti, Dupuy, Nikolski (bib0120) 2013; 14
Ye, Borodin (bib0140) 2012; 8
Simpson, Durbin (bib0100) 2012; 22
Vicedomini, Vezzi, Scalabrin, Arvestad, Policriti (bib0130) 2013; 14
Roumpeka, Wallace, Escalettes, Fotheringham, Watson (bib0095) 2017; 8
Antipov, Korobeynikov, McLean, Pevzner (bib0005) 2016; 32
Namiki, Hachiya, Tanaka, Sakakibara (bib0070) 2012; 40
Bar-Yehuda, Bendel, Freund, Rawitz (bib0015) 2004; 36
Zimin, Smith, Sutton, Yorke (bib0150) 2008; 24
Kolmogorov, Yuan, Lin, Pevzner (bib0050) 2019 05; 37
Ramshaw, Tarjan (bib0090) 2012
Veeramachaneni, Berman, Miller (bib0125) 2003; 127
Nurk, Meleshko, Korobeynikov, Pevzner (bib0075) 2017 05; 27
Peng, Leung, Yiu, Chin (bib0080) 2012; 28
Yao, Ye, Gao, Minx, Warren, Weinstock (bib0135) 2012; 28
Zerbino, Birney (bib0145) 2008; 18
Simpson, Wong, Jackman, Schein, Jones, Birol (bib0105) 2009; 19
Forouzan (10.1016/j.compbiolchem.2021.107516_bib0030) 2018; 151
Phillippy (10.1016/j.compbiolchem.2021.107516_bib0085) 2017; 27
Zimin (10.1016/j.compbiolchem.2021.107516_bib0150) 2008; 24
Lin (10.1016/j.compbiolchem.2021.107516_bib0065) 2013; 8
Bar-Yehuda (10.1016/j.compbiolchem.2021.107516_bib0015) 2004; 36
Darling (10.1016/j.compbiolchem.2021.107516_bib0025) 2010; 5
Boisvert (10.1016/j.compbiolchem.2021.107516_bib0020) 2012; 13
Nurk (10.1016/j.compbiolchem.2021.107516_bib0075) 2017; 27
Kolmogorov (10.1016/j.compbiolchem.2021.107516_bib0050) 2019; 37
Zerbino (10.1016/j.compbiolchem.2021.107516_bib0145) 2008; 18
Simpson (10.1016/j.compbiolchem.2021.107516_bib0105) 2009; 19
Soueidan (10.1016/j.compbiolchem.2021.107516_bib0120) 2013; 14
Hernandez (10.1016/j.compbiolchem.2021.107516_bib0045) 2008; 18
Ye (10.1016/j.compbiolchem.2021.107516_bib0140) 2012; 8
Antipov (10.1016/j.compbiolchem.2021.107516_bib0005) 2016; 32
Ramshaw (10.1016/j.compbiolchem.2021.107516_bib0090) 2012
Fredman (10.1016/j.compbiolchem.2021.107516_bib0035) 1987; 34
Namiki (10.1016/j.compbiolchem.2021.107516_bib0070) 2012; 40
Li (10.1016/j.compbiolchem.2021.107516_bib0055) 2006; 22
Simpson (10.1016/j.compbiolchem.2021.107516_bib0100) 2012; 22
Slatko (10.1016/j.compbiolchem.2021.107516_bib0110) 2018; 122
Roumpeka (10.1016/j.compbiolchem.2021.107516_bib0095) 2017; 8
Vicedomini (10.1016/j.compbiolchem.2021.107516_bib0130) 2013; 14
Garey (10.1016/j.compbiolchem.2021.107516_bib0040) 1975; 4
Li (10.1016/j.compbiolchem.2021.107516_bib0060) 2016; 102
Soto-Jimenez (10.1016/j.compbiolchem.2021.107516_bib0115) 2014; 14
Veeramachaneni (10.1016/j.compbiolchem.2021.107516_bib0125) 2003; 127
Yao (10.1016/j.compbiolchem.2021.107516_bib0135) 2012; 28
Peng (10.1016/j.compbiolchem.2021.107516_bib0080) 2012; 28
Argueso (10.1016/j.compbiolchem.2021.107516_bib0010) 2009; 19
References_xml – volume: 36
  start-page: 422
  year: 2004
  end-page: 463
  ident: bib0015
  article-title: Local ratio: a unified framework for approximation algorithms. in memoriam: Shimon even 1935–2004
  publication-title: ACM Comput. Surv. (CSUR)
– volume: 40
  year: 2012
  ident: bib0070
  article-title: Metavelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads
  publication-title: Nucleic Acids Res.
– volume: 32
  start-page: 1009
  year: 2016
  end-page: 1015
  ident: bib0005
  article-title: hybridspades: an algorithm for hybrid assembly of short and long reads
  publication-title: Bioinformatics
– year: 2012
  ident: bib0090
  article-title: On Minimum-Cost Assignments in Unbalanced Bipartite Graphs
– volume: 18
  start-page: 821
  year: 2008
  end-page: 829
  ident: bib0145
  article-title: Velvet: algorithms for de novo short read assembly using de bruijn graphs
  publication-title: Genome Res.
– volume: 8
  start-page: e60843
  year: 2013
  ident: bib0065
  article-title: Cisa: contig integrator for sequence assembly of bacterial genomes
  publication-title: PLOS ONE
– volume: 127
  start-page: 119
  year: 2003
  end-page: 143
  ident: bib0125
  article-title: Aligning two fragmented sequences
  publication-title: Discrete Appl. Math.
– volume: 37
  start-page: 540
  year: 2019 05
  end-page: 546
  ident: bib0050
  article-title: Assembly of long, error-prone reads using repeat graphs
  publication-title: Nat. Biotechnol.
– volume: 13
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib0020
  article-title: Ray meta: scalable de novo metagenome assembly and profiling
  publication-title: Genome Biol.
– volume: 122
  start-page: e59
  year: 2018 04
  ident: bib0110
  article-title: Overview of next-generation sequencing technologies
  publication-title: Curr. Protoc. Mol. Biol.
– volume: 19
  start-page: 2258
  year: 2009
  end-page: 2270
  ident: bib0010
  article-title: Genome structure of a saccharomyces cerevisiae strain widely used in bioethanol production
  publication-title: Genome Res.
– volume: 27
  start-page: 824
  year: 2017 05
  end-page: 834
  ident: bib0075
  article-title: metaSPAdes: a new versatile metagenomic assembler
  publication-title: Genome Res.
– volume: 22
  start-page: 1658
  year: 2006
  end-page: 1659
  ident: bib0055
  article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
– volume: 8
  start-page: 23
  year: 2017
  ident: bib0095
  article-title: A review of bioinformatics tools for bio-prospecting from metagenomic sequence data
  publication-title: Front. Genet.
– volume: 8
  start-page: 1
  year: 2012
  end-page: 23
  ident: bib0140
  article-title: Elimination graphs
  publication-title: ACM Trans. Algorithms (TALG)
– volume: 22
  start-page: 549
  year: 2012
  end-page: 556
  ident: bib0100
  article-title: Efficient de novo assembly of large genomes using compressed data structures
  publication-title: Genome Res.
– volume: 14
  start-page: 418
  year: 2014
  ident: bib0115
  article-title: Garm: genome assembly, reconciliation and merging pipeline
  publication-title: Curr. Top. Med. Chem.
– volume: 19
  start-page: 1117
  year: 2009
  end-page: 1123
  ident: bib0105
  article-title: Abyss: a parallel assembler for short read sequence data
  publication-title: Genome Res.
– volume: 14
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib0120
  article-title: Finishing bacterial genome assemblies with mix
  publication-title: BMC Bioinform.
– volume: 18
  start-page: 802
  year: 2008
  end-page: 809
  ident: bib0045
  article-title: De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer
  publication-title: Genome Res.
– volume: 27
  start-page: xi
  year: 2017 05
  end-page: xiii
  ident: bib0085
  article-title: New advances in sequence assembly
  publication-title: Genome Res.
– volume: 28
  start-page: 1420
  year: 2012
  end-page: 1428
  ident: bib0080
  article-title: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth
  publication-title: Bioinformatics
– volume: 24
  start-page: 42
  year: 2008
  end-page: 45
  ident: bib0150
  article-title: Assembly reconciliation
  publication-title: Bioinformatics
– volume: 102
  start-page: 3
  year: 2016
  end-page: 11
  ident: bib0060
  article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices
  publication-title: Methods
– volume: 5
  start-page: e11147
  year: 2010
  ident: bib0025
  article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement
  publication-title: PLoS ONE
– volume: 34
  start-page: 596
  year: 1987
  end-page: 615
  ident: bib0035
  article-title: Fibonacci heaps and their uses in improved network optimization algorithms
  publication-title: J. ACM (JACM)
– volume: 28
  start-page: 13
  year: 2012
  end-page: 16
  ident: bib0135
  article-title: Graph accordance of next-generation sequence assemblies
  publication-title: Bioinformatics
– volume: 4
  start-page: 397
  year: 1975
  end-page: 411
  ident: bib0040
  article-title: Complexity results for multiprocessor scheduling under resource constraints
  publication-title: SIAM J. Comput.
– volume: 151
  start-page: 99
  year: 2018 08
  end-page: 105
  ident: bib0030
  article-title: Practical evaluation of 11 de novo assemblers in metagenome assembly
  publication-title: J. Microbiol. Methods
– volume: 14
  start-page: S6
  year: 2013
  ident: bib0130
  article-title: Gam-ngs: genomic assemblies merger for next generation sequencing
  publication-title: BMC Bioinform.
– volume: 28
  start-page: 1420
  issue: June
  year: 2012
  ident: 10.1016/j.compbiolchem.2021.107516_bib0080
  article-title: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts174
– volume: 8
  start-page: e60843
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiolchem.2021.107516_bib0065
  article-title: Cisa: contig integrator for sequence assembly of bacterial genomes
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0060843
– volume: 19
  start-page: 1117
  issue: 6
  year: 2009
  ident: 10.1016/j.compbiolchem.2021.107516_bib0105
  article-title: Abyss: a parallel assembler for short read sequence data
  publication-title: Genome Res.
  doi: 10.1101/gr.089532.108
– volume: 14
  start-page: 1
  year: 2013
  ident: 10.1016/j.compbiolchem.2021.107516_bib0120
  article-title: Finishing bacterial genome assemblies with mix
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-14-S15-S16
– volume: 22
  start-page: 549
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiolchem.2021.107516_bib0100
  article-title: Efficient de novo assembly of large genomes using compressed data structures
  publication-title: Genome Res.
  doi: 10.1101/gr.126953.111
– volume: 27
  start-page: xi
  year: 2017
  ident: 10.1016/j.compbiolchem.2021.107516_bib0085
  article-title: New advances in sequence assembly
  publication-title: Genome Res.
  doi: 10.1101/gr.223057.117
– volume: 8
  start-page: 23
  year: 2017
  ident: 10.1016/j.compbiolchem.2021.107516_bib0095
  article-title: A review of bioinformatics tools for bio-prospecting from metagenomic sequence data
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00023
– volume: 27
  start-page: 824
  year: 2017
  ident: 10.1016/j.compbiolchem.2021.107516_bib0075
  article-title: metaSPAdes: a new versatile metagenomic assembler
  publication-title: Genome Res.
  doi: 10.1101/gr.213959.116
– volume: 127
  start-page: 119
  issue: 1
  year: 2003
  ident: 10.1016/j.compbiolchem.2021.107516_bib0125
  article-title: Aligning two fragmented sequences
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(02)00289-5
– volume: 18
  start-page: 802
  issue: 5
  year: 2008
  ident: 10.1016/j.compbiolchem.2021.107516_bib0045
  article-title: De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer
  publication-title: Genome Res.
  doi: 10.1101/gr.072033.107
– volume: 32
  start-page: 1009
  issue: 7
  year: 2016
  ident: 10.1016/j.compbiolchem.2021.107516_bib0005
  article-title: hybridspades: an algorithm for hybrid assembly of short and long reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv688
– volume: 13
  start-page: 1
  issue: 12
  year: 2012
  ident: 10.1016/j.compbiolchem.2021.107516_bib0020
  article-title: Ray meta: scalable de novo metagenome assembly and profiling
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-12-r122
– volume: 5
  start-page: e11147
  issue: June
  year: 2010
  ident: 10.1016/j.compbiolchem.2021.107516_bib0025
  article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011147
– year: 2012
  ident: 10.1016/j.compbiolchem.2021.107516_bib0090
– volume: 122
  start-page: e59
  year: 2018
  ident: 10.1016/j.compbiolchem.2021.107516_bib0110
  article-title: Overview of next-generation sequencing technologies
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/cpmb.59
– volume: 28
  start-page: 13
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiolchem.2021.107516_bib0135
  article-title: Graph accordance of next-generation sequence assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr588
– volume: 24
  start-page: 42
  issue: 1
  year: 2008
  ident: 10.1016/j.compbiolchem.2021.107516_bib0150
  article-title: Assembly reconciliation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm542
– volume: 37
  start-page: 540
  year: 2019
  ident: 10.1016/j.compbiolchem.2021.107516_bib0050
  article-title: Assembly of long, error-prone reads using repeat graphs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0072-8
– volume: 4
  start-page: 397
  issue: 4
  year: 1975
  ident: 10.1016/j.compbiolchem.2021.107516_bib0040
  article-title: Complexity results for multiprocessor scheduling under resource constraints
  publication-title: SIAM J. Comput.
  doi: 10.1137/0204035
– volume: 102
  start-page: 3
  year: 2016
  ident: 10.1016/j.compbiolchem.2021.107516_bib0060
  article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.02.020
– volume: 14
  start-page: S6
  issue: S7
  year: 2013
  ident: 10.1016/j.compbiolchem.2021.107516_bib0130
  article-title: Gam-ngs: genomic assemblies merger for next generation sequencing
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-14-S7-S6
– volume: 22
  start-page: 1658
  issue: July
  year: 2006
  ident: 10.1016/j.compbiolchem.2021.107516_bib0055
  article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 8
  start-page: 1
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiolchem.2021.107516_bib0140
  article-title: Elimination graphs
  publication-title: ACM Trans. Algorithms (TALG)
  doi: 10.1145/2151171.2151177
– volume: 18
  start-page: 821
  issue: 5
  year: 2008
  ident: 10.1016/j.compbiolchem.2021.107516_bib0145
  article-title: Velvet: algorithms for de novo short read assembly using de bruijn graphs
  publication-title: Genome Res.
  doi: 10.1101/gr.074492.107
– volume: 19
  start-page: 2258
  issue: 12
  year: 2009
  ident: 10.1016/j.compbiolchem.2021.107516_bib0010
  article-title: Genome structure of a saccharomyces cerevisiae strain widely used in bioethanol production
  publication-title: Genome Res.
  doi: 10.1101/gr.091777.109
– volume: 36
  start-page: 422
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiolchem.2021.107516_bib0015
  article-title: Local ratio: a unified framework for approximation algorithms. in memoriam: Shimon even 1935–2004
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/1041680.1041683
– volume: 34
  start-page: 596
  issue: 3
  year: 1987
  ident: 10.1016/j.compbiolchem.2021.107516_bib0035
  article-title: Fibonacci heaps and their uses in improved network optimization algorithms
  publication-title: J. ACM (JACM)
  doi: 10.1145/28869.28874
– volume: 151
  start-page: 99
  year: 2018
  ident: 10.1016/j.compbiolchem.2021.107516_bib0030
  article-title: Practical evaluation of 11 de novo assemblers in metagenome assembly
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2018.06.007
– volume: 14
  start-page: 418
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiolchem.2021.107516_bib0115
  article-title: Garm: genome assembly, reconciliation and merging pipeline
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026613666131204110628
– volume: 40
  issue: 20
  year: 2012
  ident: 10.1016/j.compbiolchem.2021.107516_bib0070
  article-title: Metavelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks678
SSID ssj0023005
Score 2.2708466
Snippet Assembly is a fundamental task in genome sequencing, and many assemblers have been made available in the last decade. Because of the wide range of possible...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107516
SubjectTerms B.2.4.a Algorithms
Bioinformatics
Computational Complexity
Computer Science
F.2 Analysis of algorithms and problem complexity
L.3.0.j. Molecular biology
Title Efficient assembly consensus algorithms for divergent contig sets
URI https://dx.doi.org/10.1016/j.compbiolchem.2021.107516
https://www.proquest.com/docview/2537630622
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03244191
Volume 93
WOSCitedRecordID wos000687401800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1476-928X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023005
  issn: 1476-9271
  databaseCode: AIEXJ
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfoBoIXBANE-ZiCNPFSZUrtNE4eeKhGp4GqwkMm5c1yEmfL1Kalaavtv-cuttPyMak88BJVVl3Xdz9f7uzz7wg5YbliXh4yN-WqwCs5YAdlmruSFUyBh-BzTZk_5pNJmCTRd5PWXDflBHhVhbe30eK_qhraQNl4dfYf1N3-KDTAZ1A6PEHt8NxL8aOGFKJJHa9rNUund5haXmNJi7onp1fzZbm61jQMvRyzMvByVZOyXl71aqWZnVrygqbog90w3GVsymyluJ0EAQDMWmdJVmULmM9yM28sfawnq2keC1vOWFZrk7Vv9h5ov818s-bS54Eb0aY4MLxN_tJmbGzEdowkRJwDfcHyD_uttxJuUPwLnBPO5RRHPt12-pU0e_JNnF-OxyIeJfHHxQ8X64nhubsprtIhh5QPIrB3h8Mvo-RrG4wjTX9z88z8W0tI2-T-3Tf8fc5L5xqzaH97mTceSvyMPDWhhTPUkHhOHqjqiDzSxUbvjsjjM6uxF2TYgsSxIHFakDhbkDgAEqcFiaNB4iBIXpLL81F8duGaYhpu5vuDlVtQVsg8xHP3VHpBlAUKXHmqeM4GihcBhC_gy0spvRRWqQeLNi8gWJeUpUUKTjB7RQ6qeaVeE0cWgQopg9CaZj4ExKnKUxBOrnwmw4LzLomslERmmOax4MlU2JTCG7ErYYESFlrCXcLavgvNt7JXr09WGcJ4jtojFACsvfqfgAbbAZFy_WI4FtNyOZsJD2IOvx_1N_0u-WBVLEBheLQmKzVf14IiKxJE35S-2eM7b8mT7Wp6Rw5Wy7V6Tx5mm1VZL49JhyfhscHrT7HJrhA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+assembly+consensus+algorithms+for+divergent+contig+sets&rft.jtitle=Computational+biology+and+chemistry&rft.au=Chateau%2C+Annie&rft.au=Davot%2C+Tom&rft.au=Lafond%2C+Manuel&rft.date=2021-08-01&rft.issn=1476-928X&rft.eissn=1476-928X&rft.volume=93&rft.spage=107516&rft_id=info:doi/10.1016%2Fj.compbiolchem.2021.107516&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-9271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-9271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-9271&client=summon