A rapid on-site visualization platform based on RPA coupled with CRISPR-Cas12a for the detection of genetically modified papaya ‘Huanong No.1’

The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya ‘Huanong No.1’ has been certified as safe for consumption and widely planted in China for about 18 years. To protect consumers' rights and facilitate government supervision and monitoring, it is necessary to establish a...

Full description

Saved in:
Bibliographic Details
Published in:Talanta (Oxford) Vol. 277; p. 126437
Main Authors: Zhu, Lili, He, Gongwen, Yang, Guiqin, Yang, Wenli, He, Ying, Chen, Jian, Chen, Yanxin, Ji, Yi, Pan, Zhiwen, Yao, Juan, Chen, Xiaoyun, Jiang, Dagang
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.09.2024
Subjects:
ISSN:0039-9140, 1873-3573, 1873-3573
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya ‘Huanong No.1’ has been certified as safe for consumption and widely planted in China for about 18 years. To protect consumers' rights and facilitate government supervision and monitoring, it is necessary to establish a simple, rapid, and specific detection method for ‘Huanong No.1’. Herein, we developed a platform based on recombinase polymerase amplification (RPA) coupled with CRISPR-Cas12a for the detection of ‘Huanong No.1’. The RPA-CRISPR-Cas12a platform was found to have high specificity, with amplification signals only present in ‘Huanong No.1’. Additionally, the platform was highly sensitive, with a limit of detection (LOD) of approximately 20 copies. The detection process was fast and could be completed in less than 1 h. This novel platform enables the rapid on-site visualization detection of ‘Huanong No.1’, eliminating dependence on laboratory conditions and specialized instruments, and can serve as a technical reference for the rapid detection of other GM plants. •The RPA-CRISPR-Cas12a platform was first developed for the detection of genetically modified papaya ‘Huanong No.1’.•This novel platform enabled the on-site visualization detection of ‘Huanong No.1’, eliminating dependence on laboratory conditions and specialized instruments.•The detection process was faster than other detection methods and could be completed in less than 1 h.•The developed RPA-CRISPR-Cas12a platform showed highly specificity and sensitivity for ‘Huanong No.1’ detection.
AbstractList The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya 'Huanong No.1' has been certified as safe for consumption and widely planted in China for about 18 years. To protect consumers' rights and facilitate government supervision and monitoring, it is necessary to establish a simple, rapid, and specific detection method for 'Huanong No.1'. Herein, we developed a platform based on recombinase polymerase amplification (RPA) coupled with CRISPR-Cas12a for the detection of 'Huanong No.1'. The RPA-CRISPR-Cas12a platform was found to have high specificity, with amplification signals only present in 'Huanong No.1'. Additionally, the platform was highly sensitive, with a limit of detection (LOD) of approximately 20 copies. The detection process was fast and could be completed in less than 1 h. This novel platform enables the rapid on-site visualization detection of 'Huanong No.1', eliminating dependence on laboratory conditions and specialized instruments, and can serve as a technical reference for the rapid detection of other GM plants.The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya 'Huanong No.1' has been certified as safe for consumption and widely planted in China for about 18 years. To protect consumers' rights and facilitate government supervision and monitoring, it is necessary to establish a simple, rapid, and specific detection method for 'Huanong No.1'. Herein, we developed a platform based on recombinase polymerase amplification (RPA) coupled with CRISPR-Cas12a for the detection of 'Huanong No.1'. The RPA-CRISPR-Cas12a platform was found to have high specificity, with amplification signals only present in 'Huanong No.1'. Additionally, the platform was highly sensitive, with a limit of detection (LOD) of approximately 20 copies. The detection process was fast and could be completed in less than 1 h. This novel platform enables the rapid on-site visualization detection of 'Huanong No.1', eliminating dependence on laboratory conditions and specialized instruments, and can serve as a technical reference for the rapid detection of other GM plants.
The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya 'Huanong No.1' has been certified as safe for consumption and widely planted in China for about 18 years. To protect consumers' rights and facilitate government supervision and monitoring, it is necessary to establish a simple, rapid, and specific detection method for 'Huanong No.1'. Herein, we developed a platform based on recombinase polymerase amplification (RPA) coupled with CRISPR-Cas12a for the detection of 'Huanong No.1'. The RPA-CRISPR-Cas12a platform was found to have high specificity, with amplification signals only present in 'Huanong No.1'. Additionally, the platform was highly sensitive, with a limit of detection (LOD) of approximately 20 copies. The detection process was fast and could be completed in less than 1 h. This novel platform enables the rapid on-site visualization detection of 'Huanong No.1', eliminating dependence on laboratory conditions and specialized instruments, and can serve as a technical reference for the rapid detection of other GM plants.
The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya ‘Huanong No.1’ has been certified as safe for consumption and widely planted in China for about 18 years. To protect consumers' rights and facilitate government supervision and monitoring, it is necessary to establish a simple, rapid, and specific detection method for ‘Huanong No.1’. Herein, we developed a platform based on recombinase polymerase amplification (RPA) coupled with CRISPR-Cas12a for the detection of ‘Huanong No.1’. The RPA-CRISPR-Cas12a platform was found to have high specificity, with amplification signals only present in ‘Huanong No.1’. Additionally, the platform was highly sensitive, with a limit of detection (LOD) of approximately 20 copies. The detection process was fast and could be completed in less than 1 h. This novel platform enables the rapid on-site visualization detection of ‘Huanong No.1’, eliminating dependence on laboratory conditions and specialized instruments, and can serve as a technical reference for the rapid detection of other GM plants.
The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya ‘Huanong No.1’ has been certified as safe for consumption and widely planted in China for about 18 years. To protect consumers' rights and facilitate government supervision and monitoring, it is necessary to establish a simple, rapid, and specific detection method for ‘Huanong No.1’. Herein, we developed a platform based on recombinase polymerase amplification (RPA) coupled with CRISPR-Cas12a for the detection of ‘Huanong No.1’. The RPA-CRISPR-Cas12a platform was found to have high specificity, with amplification signals only present in ‘Huanong No.1’. Additionally, the platform was highly sensitive, with a limit of detection (LOD) of approximately 20 copies. The detection process was fast and could be completed in less than 1 h. This novel platform enables the rapid on-site visualization detection of ‘Huanong No.1’, eliminating dependence on laboratory conditions and specialized instruments, and can serve as a technical reference for the rapid detection of other GM plants. •The RPA-CRISPR-Cas12a platform was first developed for the detection of genetically modified papaya ‘Huanong No.1’.•This novel platform enabled the on-site visualization detection of ‘Huanong No.1’, eliminating dependence on laboratory conditions and specialized instruments.•The detection process was faster than other detection methods and could be completed in less than 1 h.•The developed RPA-CRISPR-Cas12a platform showed highly specificity and sensitivity for ‘Huanong No.1’ detection.
ArticleNumber 126437
Author Ji, Yi
Chen, Yanxin
Yang, Wenli
Chen, Xiaoyun
Yang, Guiqin
He, Ying
Yao, Juan
Jiang, Dagang
He, Gongwen
Zhu, Lili
Chen, Jian
Pan, Zhiwen
Author_xml – sequence: 1
  givenname: Lili
  surname: Zhu
  fullname: Zhu, Lili
  email: 15219204852@163.com
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
– sequence: 2
  givenname: Gongwen
  surname: He
  fullname: He, Gongwen
  email: 2979832525@qq.com
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
– sequence: 3
  givenname: Guiqin
  surname: Yang
  fullname: Yang, Guiqin
  email: 2405044017@qq.com
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
– sequence: 4
  givenname: Wenli
  surname: Yang
  fullname: Yang, Wenli
  email: 879404571@qq.com
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
– sequence: 5
  givenname: Ying
  surname: He
  fullname: He, Ying
  email: yinghe0916@163.com
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
– sequence: 6
  givenname: Jian
  orcidid: 0009-0003-7522-3540
  surname: Chen
  fullname: Chen, Jian
  email: 13424922617@stu.scau.edu.cn
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
– sequence: 7
  givenname: Yanxin
  surname: Chen
  fullname: Chen, Yanxin
  email: 19875909775@163.com
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
– sequence: 8
  givenname: Yi
  surname: Ji
  fullname: Ji, Yi
  email: jymemory12138@163.com
  organization: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
– sequence: 9
  givenname: Zhiwen
  orcidid: 0000-0002-4325-2342
  surname: Pan
  fullname: Pan, Zhiwen
  email: panzhiwen@scau.edu.cn
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
– sequence: 10
  givenname: Juan
  surname: Yao
  fullname: Yao, Juan
  email: yaojuan@scau.edu.cn
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
– sequence: 11
  givenname: Xiaoyun
  surname: Chen
  fullname: Chen, Xiaoyun
  email: xiaoyunchen_2016@163.com
  organization: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
– sequence: 12
  givenname: Dagang
  surname: Jiang
  fullname: Jiang, Dagang
  email: dagangj@scau.edu.cn
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38901194$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFTwB5ySbBjp04EQs0GhVaqSrVAGvrjfPSepTEwXaKhlW_gRX8Xr-kmc50w2ZWlqVzruV7T8hR73ok5C1nKWe8-LBOI7TQR0gzlsmUZ4UU6gWZ8VKJRORKHJEZY6JKKi7ZMTkJYc0YywQTr8ixKCvGeSVn5M-cehhsTV2fBBuR3tkwQmt_Q7Sup0MLsXG-oysIuIXo8npOjRuHdrr-svGWLpYX366XyQICz4BOMI23SGuMaJ4iXENvsMdoDbTthnauto2d5AEG2AB9uP97PsL0uRt65VL-cP_vNXnZQBvwzf48JT8-n31fnCeXX79cLOaXiZEyj0nDpVKsEIiqYI0BZDKrRVUAUyvIJXKZr3JjoMyNUFI2HERdmamSshKqzqU4Je93uYN3P0cMUXc2GGynVtGNQQuei0IWIueHUaZYKZTKtui7PTquOqz14G0HfqOfK5-AjzvAeBeCx0YbG5_ajh5sqznT24H1Wu8H1tuB9W7gyc7_s58fOOR92nk4NXpn0etgLPYGa-unoXTt7IGERwjxw2k
CitedBy_id crossref_primary_10_3390_ijms26010108
crossref_primary_10_1016_j_foodcont_2024_111049
crossref_primary_10_1016_j_snb_2025_137293
crossref_primary_10_1016_j_microc_2024_111443
crossref_primary_10_1016_j_microc_2025_115139
Cites_doi 10.3390/foods12020236
10.1021/jf901198x
10.1038/nature09523
10.1016/j.talanta.2022.124220
10.1126/science.1231143
10.1038/nbt.2508
10.1146/annurev.phyto.36.1.415
10.1016/j.trac.2017.10.015
10.1155/2015/392872
10.1016/j.foodcont.2019.106775
10.1016/j.aca.2014.09.037
10.1007/s40199-020-00348-7
10.3390/ijms151018197
10.1016/j.molcel.2017.03.016
10.1038/nature15386
10.1021/jf900656t
10.1016/j.foodcont.2015.02.048
10.1016/j.jfda.2015.06.011
10.1038/s41438-021-00601-3
10.1038/nbt1192-1466
10.1021/acs.jafc.8b05157
10.4269/ajtmh.17-0427
10.1016/j.aca.2020.02.044
10.1021/acsnano.9b00193
10.1016/j.foodchem.2015.07.010
10.1016/j.crfs.2022.11.009
10.1007/s10068-013-0278-3
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.talanta.2024.126437
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
ExternalDocumentID 38901194
10_1016_j_talanta_2024_126437
S0039914024008166
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
9DU
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
M36
M41
R2-
SCB
WUQ
XOL
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c445t-f1477063ee760fcae042d396a07ba54e145b5cca85c3744f1a3d9c0038937d543
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001345419600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0039-9140
1873-3573
IngestDate Thu Oct 02 22:56:19 EDT 2025
Thu Oct 02 02:37:49 EDT 2025
Wed Feb 19 02:05:45 EST 2025
Sat Nov 29 05:52:29 EST 2025
Tue Nov 18 21:15:09 EST 2025
Sat Jul 20 16:36:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Visualization
CRISPR-Cas12a
RPA
GM papaya
Huanong No.1
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-f1477063ee760fcae042d396a07ba54e145b5cca85c3744f1a3d9c0038937d543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0003-7522-3540
0000-0002-4325-2342
OpenAccessLink https://dx.doi.org/10.1016/j.talanta.2024.126437
PMID 38901194
PQID 3070837721
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153646351
proquest_miscellaneous_3070837721
pubmed_primary_38901194
crossref_citationtrail_10_1016_j_talanta_2024_126437
crossref_primary_10_1016_j_talanta_2024_126437
elsevier_sciencedirect_doi_10_1016_j_talanta_2024_126437
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Talanta (Oxford)
PublicationTitleAlternate Talanta
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Garneau, Dupuis, Villion, Romero, Barrangou, Boyaval, Fremaux, Horvath, Magadán, Moineau (bib17) 2010; 468
Lobato-Gómez, Hewitt, Capell, Christou, Dhingra, Girón-Calva (bib1) 2021; 8
Singh, Kumar, Mathan, Tomar, Singh, Verma, Kumar, Kumar, Singh, Acharya (bib2) 2020; 28
Guo, Yang, Liu, Guan, Jiang, Zhang (bib10) 2009; 57
Shin, Suh, Lim, Woo, Lee, Kim, Cho (bib6) 2013; 22
Lai, Ooi, Lau (bib14) 2017; 97
Jiang, Bikard, Cox, Zhang, Marraffini (bib20) 2013; 31
Lin, Pan (bib9) 2016; 24
Paul, Saville, Hansel, Ye, Ball, Williams, Chang, Chen, Gu, Ristaino, Wei (bib26) 2019; 13
Fraiture, Herman, Taverniers, De Loose, Deforce, Roosens (bib7) 2015; 2015
Xu, Li, Jin, Wan (bib15) 2014; 15
Wei, Le, Pan, Xu, Li, Li, Quan, Guo, Yang (bib11) 2016; 194
Gonsalves (bib3) 1998; 36
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini, Zhang (bib19) 2013; 339
Lobato, O'Sullivan (bib13) 2018; 98
Jiang, He, Bai, Chen, Jia, Pan, Lv, Tang, Wu (bib24) 2023; 12
Guo, Yang, Liu, Zhang, Qian, Zhang (bib5) 2009; 57
Swarts, Van der Oost, Jinek (bib21) 2017; 66
Marraffini (bib18) 2015; 526
Deng, Gao (bib12) 2015; 853
Liu, Wang, Li, Bai, Jia, Pan, Long, Cui, Tang (bib16) 2020; 107
Wang, Hu, Wang, Zeng, Liu, Liu (bib22) 2022; 5
Wang, Hu, Wang, Zeng, Liu, Liu (bib28) 2022; 5
Hao, Xie, Yang, Huo, Liu, Liu, Xiong, Zeng (bib23) 2023; 255
Alarcon, Shan, Layton, Bell, Whipkey, Shillito (bib8) 2019; 67
Fitch, Manshardt, Gonsalves, Slightom, Sanford (bib4) 1992; 10
Wang, Chen, Chen, Peng, Wang, Xu, Wu, Wei, Xu (bib27) 2020; 1109
Kim, Park, Roh, Woo, Shin, Moon, Hong, Zhang, Kim (bib25) 2015; 55
Cong (10.1016/j.talanta.2024.126437_bib19) 2013; 339
Swarts (10.1016/j.talanta.2024.126437_bib21) 2017; 66
Kim (10.1016/j.talanta.2024.126437_bib25) 2015; 55
Lin (10.1016/j.talanta.2024.126437_bib9) 2016; 24
Deng (10.1016/j.talanta.2024.126437_bib12) 2015; 853
Lai (10.1016/j.talanta.2024.126437_bib14) 2017; 97
Wang (10.1016/j.talanta.2024.126437_bib22) 2022; 5
Wang (10.1016/j.talanta.2024.126437_bib28) 2022; 5
Gonsalves (10.1016/j.talanta.2024.126437_bib3) 1998; 36
Guo (10.1016/j.talanta.2024.126437_bib5) 2009; 57
Jiang (10.1016/j.talanta.2024.126437_bib20) 2013; 31
Jiang (10.1016/j.talanta.2024.126437_bib24) 2023; 12
Lobato-Gómez (10.1016/j.talanta.2024.126437_bib1) 2021; 8
Fraiture (10.1016/j.talanta.2024.126437_bib7) 2015; 2015
Liu (10.1016/j.talanta.2024.126437_bib16) 2020; 107
Singh (10.1016/j.talanta.2024.126437_bib2) 2020; 28
Wang (10.1016/j.talanta.2024.126437_bib27) 2020; 1109
Wei (10.1016/j.talanta.2024.126437_bib11) 2016; 194
Paul (10.1016/j.talanta.2024.126437_bib26) 2019; 13
Lobato (10.1016/j.talanta.2024.126437_bib13) 2018; 98
Hao (10.1016/j.talanta.2024.126437_bib23) 2023; 255
Guo (10.1016/j.talanta.2024.126437_bib10) 2009; 57
Shin (10.1016/j.talanta.2024.126437_bib6) 2013; 22
Alarcon (10.1016/j.talanta.2024.126437_bib8) 2019; 67
Xu (10.1016/j.talanta.2024.126437_bib15) 2014; 15
Garneau (10.1016/j.talanta.2024.126437_bib17) 2010; 468
Fitch (10.1016/j.talanta.2024.126437_bib4) 1992; 10
Marraffini (10.1016/j.talanta.2024.126437_bib18) 2015; 526
References_xml – volume: 1109
  start-page: 158
  year: 2020
  end-page: 168
  ident: bib27
  article-title: A highly integrated system with rapid DNA extraction, recombinase polymerase amplification, and lateral flow biosensor for on-site detection of genetically modified crops
  publication-title: Anal. Chim. Acta
– volume: 2015
  year: 2015
  ident: bib7
  article-title: Current and New approaches in GMO detection: challenges and solutions
  publication-title: BioMed Res. Int.
– volume: 24
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib9
  article-title: Perspectives on genetically modified crops and food detection
  publication-title: J. Food Drug Anal.
– volume: 28
  start-page: 735
  year: 2020
  end-page: 744
  ident: bib2
  article-title: Therapeutic application of
  publication-title: Daru
– volume: 22
  start-page: 1763
  year: 2013
  end-page: 1772
  ident: bib6
  article-title: Event-specific detection system of stacked genetically modified maize by using the multiplex-PCR technique
  publication-title: Food Sci. Biotechnol.
– volume: 853
  start-page: 30
  year: 2015
  end-page: 45
  ident: bib12
  article-title: Bioanalytical applications of isothermal nucleic acid amplification techniques
  publication-title: Anal. Chim. Acta
– volume: 31
  start-page: 233
  year: 2013
  end-page: 239
  ident: bib20
  article-title: RNA-Guided editing of bacterial genomes using CRISPR/Cas systems
  publication-title: Nat. Biotechnol.
– volume: 468
  start-page: 67
  year: 2010
  end-page: 71
  ident: bib17
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
– volume: 8
  start-page: 166
  year: 2021
  ident: bib1
  article-title: Transgenic and genome-edited fruits: background, constraints, benefits, and commercial opportunities
  publication-title: Hortic Res-England
– volume: 5
  start-page: 2281
  year: 2022
  end-page: 2286
  ident: bib22
  article-title: Rapid detection of genetically modified products based on CRISPR-cas12a combined with recombinase polymerase amplification
  publication-title: Curr. Res. Food Sci.
– volume: 57
  start-page: 7205
  year: 2009
  end-page: 7212
  ident: bib10
  article-title: Characterization of the exogenous insert and development of event-specific PCR detection methods for genetically modified huanong No. 1 papaya
  publication-title: J. Agric. Food Chem.
– volume: 12
  start-page: 236
  year: 2023
  ident: bib24
  article-title: A rapid and visual method for nucleic acid detection of
  publication-title: Foods
– volume: 57
  start-page: 6502
  year: 2009
  end-page: 6509
  ident: bib5
  article-title: Applicability of the
  publication-title: J. Agric. Food Chem.
– volume: 36
  start-page: 415
  year: 1998
  end-page: 437
  ident: bib3
  article-title: Control of papaya ringspot virus in papaya: a case study
  publication-title: Annu. Rev. Phytopathol.
– volume: 55
  start-page: 127
  year: 2015
  end-page: 132
  ident: bib25
  article-title: Event-specific qualitative and quantitative detection of three genetically modified papaya events using a single standard reference molecule
  publication-title: Food Control
– volume: 98
  start-page: 19
  year: 2018
  end-page: 35
  ident: bib13
  article-title: Recombinase polymerase amplification: basics, applications and recent advances
  publication-title: TRAC-Trend Anal Chem
– volume: 107
  year: 2020
  ident: bib16
  article-title: Rapid detection of P-35S and T-nos in genetically modified organisms by recombinase polymerase amplification combined with a lateral flow strip
  publication-title: Food Control
– volume: 5
  start-page: 2281
  year: 2022
  end-page: 2286
  ident: bib28
  article-title: Rapid detection of genetically modified products based on CRISPR-cas12a combined with recombinase polymerase amplification
  publication-title: Curr. Res. Nutr. Food Sci.
– volume: 10
  start-page: 1466
  year: 1992
  end-page: 1472
  ident: bib4
  article-title: Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus
  publication-title: Nat. Biotechnol.
– volume: 13
  start-page: 6540
  year: 2019
  end-page: 6549
  ident: bib26
  article-title: Extraction of plant DNA by microneedle patch for rapid detection of plant diseases
  publication-title: ACS Nano
– volume: 67
  start-page: 1019
  year: 2019
  end-page: 1028
  ident: bib8
  article-title: Application of DNA- and protein-based detection methods in agricultural biotechnology
  publication-title: J. Agric. Food Chem.
– volume: 526
  start-page: 55
  year: 2015
  end-page: 61
  ident: bib18
  article-title: CRISPR/Cas immunity in prokaryotes
  publication-title: Nature
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: bib19
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 97
  start-page: 1597
  year: 2017
  end-page: 1599
  ident: bib14
  article-title: Rapid detection of
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 255
  year: 2023
  ident: bib23
  article-title: Naked-eye on-site detection platform for
  publication-title: Talanta
– volume: 66
  start-page: 221
  year: 2017
  end-page: 233
  ident: bib21
  article-title: Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR/Cas12a
  publication-title: Mol. Cell.
– volume: 194
  start-page: 20
  year: 2016
  end-page: 25
  ident: bib11
  article-title: Collaborative trial for the validation of event-specific PCR detection methods of genetically modified papaya huanong No.1
  publication-title: Food Chem.
– volume: 15
  start-page: 18197
  year: 2014
  end-page: 18205
  ident: bib15
  article-title: Recombinase polymerase amplification (RPA) of CaMV-35S promoter and
  publication-title: Int. J. Mol. Sci.
– volume: 12
  start-page: 236
  issue: 2
  year: 2023
  ident: 10.1016/j.talanta.2024.126437_bib24
  article-title: A rapid and visual method for nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a-PMNT
  publication-title: Foods
  doi: 10.3390/foods12020236
– volume: 57
  start-page: 7205
  issue: 16
  year: 2009
  ident: 10.1016/j.talanta.2024.126437_bib10
  article-title: Characterization of the exogenous insert and development of event-specific PCR detection methods for genetically modified huanong No. 1 papaya
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf901198x
– volume: 468
  start-page: 67
  issue: 7320
  year: 2010
  ident: 10.1016/j.talanta.2024.126437_bib17
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
  doi: 10.1038/nature09523
– volume: 255
  year: 2023
  ident: 10.1016/j.talanta.2024.126437_bib23
  article-title: Naked-eye on-site detection platform for Pasteurella multocida based on the CRISPR-cas12a system coupled with recombinase polymerase amplification
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.124220
– volume: 339
  start-page: 819
  issue: 6121
  year: 2013
  ident: 10.1016/j.talanta.2024.126437_bib19
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 31
  start-page: 233
  issue: 3
  year: 2013
  ident: 10.1016/j.talanta.2024.126437_bib20
  article-title: RNA-Guided editing of bacterial genomes using CRISPR/Cas systems
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2508
– volume: 36
  start-page: 415
  issue: 1
  year: 1998
  ident: 10.1016/j.talanta.2024.126437_bib3
  article-title: Control of papaya ringspot virus in papaya: a case study
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.36.1.415
– volume: 98
  start-page: 19
  year: 2018
  ident: 10.1016/j.talanta.2024.126437_bib13
  article-title: Recombinase polymerase amplification: basics, applications and recent advances
  publication-title: TRAC-Trend Anal Chem
  doi: 10.1016/j.trac.2017.10.015
– volume: 2015
  year: 2015
  ident: 10.1016/j.talanta.2024.126437_bib7
  article-title: Current and New approaches in GMO detection: challenges and solutions
  publication-title: BioMed Res. Int.
  doi: 10.1155/2015/392872
– volume: 107
  year: 2020
  ident: 10.1016/j.talanta.2024.126437_bib16
  article-title: Rapid detection of P-35S and T-nos in genetically modified organisms by recombinase polymerase amplification combined with a lateral flow strip
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2019.106775
– volume: 853
  start-page: 30
  year: 2015
  ident: 10.1016/j.talanta.2024.126437_bib12
  article-title: Bioanalytical applications of isothermal nucleic acid amplification techniques
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.09.037
– volume: 28
  start-page: 735
  issue: 2
  year: 2020
  ident: 10.1016/j.talanta.2024.126437_bib2
  article-title: Therapeutic application of Carica papaya leaf extract in the management of human diseases
  publication-title: Daru
  doi: 10.1007/s40199-020-00348-7
– volume: 15
  start-page: 18197
  issue: 10
  year: 2014
  ident: 10.1016/j.talanta.2024.126437_bib15
  article-title: Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms151018197
– volume: 66
  start-page: 221
  issue: 2
  year: 2017
  ident: 10.1016/j.talanta.2024.126437_bib21
  article-title: Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR/Cas12a
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2017.03.016
– volume: 526
  start-page: 55
  issue: 7571
  year: 2015
  ident: 10.1016/j.talanta.2024.126437_bib18
  article-title: CRISPR/Cas immunity in prokaryotes
  publication-title: Nature
  doi: 10.1038/nature15386
– volume: 57
  start-page: 6502
  issue: 15
  year: 2009
  ident: 10.1016/j.talanta.2024.126437_bib5
  article-title: Applicability of the chymopapain gene used as endogenous reference gene for transgenic huanong No. 1 papaya detection
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf900656t
– volume: 55
  start-page: 127
  year: 2015
  ident: 10.1016/j.talanta.2024.126437_bib25
  article-title: Event-specific qualitative and quantitative detection of three genetically modified papaya events using a single standard reference molecule
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2015.02.048
– volume: 24
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.talanta.2024.126437_bib9
  article-title: Perspectives on genetically modified crops and food detection
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2015.06.011
– volume: 8
  start-page: 166
  issue: 1
  year: 2021
  ident: 10.1016/j.talanta.2024.126437_bib1
  article-title: Transgenic and genome-edited fruits: background, constraints, benefits, and commercial opportunities
  publication-title: Hortic Res-England
  doi: 10.1038/s41438-021-00601-3
– volume: 10
  start-page: 1466
  issue: 11
  year: 1992
  ident: 10.1016/j.talanta.2024.126437_bib4
  article-title: Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1192-1466
– volume: 67
  start-page: 1019
  issue: 4
  year: 2019
  ident: 10.1016/j.talanta.2024.126437_bib8
  article-title: Application of DNA- and protein-based detection methods in agricultural biotechnology
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.8b05157
– volume: 97
  start-page: 1597
  issue: 5
  year: 2017
  ident: 10.1016/j.talanta.2024.126437_bib14
  article-title: Rapid detection of Plasmodium knowlesi by isothermal recombinase polymerase amplification assay
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.17-0427
– volume: 1109
  start-page: 158
  year: 2020
  ident: 10.1016/j.talanta.2024.126437_bib27
  article-title: A highly integrated system with rapid DNA extraction, recombinase polymerase amplification, and lateral flow biosensor for on-site detection of genetically modified crops
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.02.044
– volume: 5
  start-page: 2281
  year: 2022
  ident: 10.1016/j.talanta.2024.126437_bib28
  article-title: Rapid detection of genetically modified products based on CRISPR-cas12a combined with recombinase polymerase amplification
  publication-title: Curr. Res. Nutr. Food Sci.
– volume: 13
  start-page: 6540
  issue: 6
  year: 2019
  ident: 10.1016/j.talanta.2024.126437_bib26
  article-title: Extraction of plant DNA by microneedle patch for rapid detection of plant diseases
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00193
– volume: 194
  start-page: 20
  year: 2016
  ident: 10.1016/j.talanta.2024.126437_bib11
  article-title: Collaborative trial for the validation of event-specific PCR detection methods of genetically modified papaya huanong No.1
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.07.010
– volume: 5
  start-page: 2281
  year: 2022
  ident: 10.1016/j.talanta.2024.126437_bib22
  article-title: Rapid detection of genetically modified products based on CRISPR-cas12a combined with recombinase polymerase amplification
  publication-title: Curr. Res. Food Sci.
  doi: 10.1016/j.crfs.2022.11.009
– volume: 22
  start-page: 1763
  issue: 6
  year: 2013
  ident: 10.1016/j.talanta.2024.126437_bib6
  article-title: Event-specific detection system of stacked genetically modified maize by using the multiplex-PCR technique
  publication-title: Food Sci. Biotechnol.
  doi: 10.1007/s10068-013-0278-3
SSID ssj0002303
Score 2.481562
Snippet The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya ‘Huanong No.1’ has been certified as safe for consumption and widely planted in...
The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya 'Huanong No.1' has been certified as safe for consumption and widely planted in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126437
SubjectTerms China
CRISPR-Cas12a
detection limit
GM papaya
Huanong No.1
Papaya ringspot virus
rapid methods
recombinase polymerase amplification
RPA
Visualization
Title A rapid on-site visualization platform based on RPA coupled with CRISPR-Cas12a for the detection of genetically modified papaya ‘Huanong No.1’
URI https://dx.doi.org/10.1016/j.talanta.2024.126437
https://www.ncbi.nlm.nih.gov/pubmed/38901194
https://www.proquest.com/docview/3070837721
https://www.proquest.com/docview/3153646351
Volume 277
WOSCitedRecordID wos001345419600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3573
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002303
  issn: 0039-9140
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe6DQleEP8ZfyYjIfYQpTSJUyePVdWxoalUoxOFl8hxHJGpars2Ld2X4FvwPbmLnbQVHRsPvESVZcdpfr_cnc--O0LeBgmPOXcS-L5DZjMJCxTQO6ktpctUGvqpL-Oi2ATvdoPBIOzVar_KWJjFkI9GwXIZTv4r1NAGYGPo7D_AXd0UGuA3gA5XgB2utwK-ZU3FJEus8cjGnWFrkc0wcFKHW2LV6BztVAvVF3ayznotS47nk2F5EL19dvK5d2a3xcxxRXUMMVG5kqV5CZPr4MfhFdbSyVI0ZCegd68EcIkfz8UIaxh1x3UQlHzdAO7jUcpcFFlOl_pgfeWK-PZ9rt0Ew2zloi0c93CzH6uYta_Gx_1hnl1mf7R-Qf_MujPDZdVprVL-BtyzPV9XN6mrLW1GaLum-IsWu46L-49bNYJ2TlxgPkn8e3Wctb7qv5mBu_spOjo_PY36nUH_3eTSxuJkCJWp1LJD9lzuhyA891onncHHSuXDOq6I5CifdBUq9n7rzNcZQdctcgpjp_-A3DerFNrS7HpIamr0iNxtl8UBH5OfLVqwjBqW0Q2W0ZJltGAZdKLAMmpYRpFldINlFDpTYBmtWEbHKV1jGS1ZRjXL6KHhGEWOHT4h50edfvvYNqU9bMmYn9upwzgH61gp3mykUijQHYkXNkWDx8JnymF-7INwCXzpccZSR3hJKHEbG8zpxGfeU7ILk6jnhKZMeI20wd0G3CRp8rgBYikWIebic1QS7hNWvutImrz3WH5lGJUHHC8iA1GEEEUaon1Sr4ZNdOKXmwYEJZCRsV61VRoBFW8a-qYEPgIccctOjNR4PotQIwcerICdv_QBo6XJYOEAfZ5p1lRPDO8LkzqyF7eY4SW5t_okX5HdfDpXr8kduciz2fSA7PBBcGCI_xsOSNpK
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rapid+on-site+visualization+platform+based+on+RPA+coupled+with+CRISPR-Cas12a+for+the+detection+of+genetically+modified+papaya+%27Huanong+No.1%27&rft.jtitle=Talanta+%28Oxford%29&rft.au=Zhu%2C+Lili&rft.au=He%2C+Gongwen&rft.au=Yang%2C+Guiqin&rft.au=Yang%2C+Wenli&rft.date=2024-09-01&rft.issn=1873-3573&rft.eissn=1873-3573&rft.volume=277&rft.spage=126437&rft_id=info:doi/10.1016%2Fj.talanta.2024.126437&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon