Massive Parallelization of Massive Sample-Size Survival Analysis

Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this article, we use...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and graphical statistics Ročník 33; číslo 1; s. 289 - 302
Hlavní autoři: Yang, Jianxiao, Schuemie, Martijn J., Ji, Xiang, Suchard, Marc A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Taylor & Francis 2024
Taylor & Francis Ltd
Témata:
ISSN:1061-8600, 1537-2715
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this article, we use Graphics Processing Units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops.
AbstractList Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this article, we use Graphics Processing Units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops.
Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this paper, we use graphics processing units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops (Suchard et al., 2013).Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this paper, we use graphics processing units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops (Suchard et al., 2013).
Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this paper, we use graphics processing units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops (Suchard et al., 2013).
Author Yang, Jianxiao
Schuemie, Martijn J.
Suchard, Marc A.
Ji, Xiang
AuthorAffiliation d Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
a Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
f Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
e VA Informatics and Computing Infrastructure, US Department of Veterans Affairs, Salt Lake City, UT, USA
b Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, CA, USA
c Janssen Research and Development, Titusville, NJ, USA
AuthorAffiliation_xml – name: e VA Informatics and Computing Infrastructure, US Department of Veterans Affairs, Salt Lake City, UT, USA
– name: f Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
– name: b Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, CA, USA
– name: a Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
– name: d Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
– name: c Janssen Research and Development, Titusville, NJ, USA
Author_xml – sequence: 1
  givenname: Jianxiao
  surname: Yang
  fullname: Yang, Jianxiao
  organization: Department of Computational Medicine, David Geffen School of Medicine at UCLA
– sequence: 2
  givenname: Martijn J.
  surname: Schuemie
  fullname: Schuemie, Martijn J.
  organization: Janssen Research and Development
– sequence: 3
  givenname: Xiang
  surname: Ji
  fullname: Ji, Xiang
  organization: Department of Mathematics, Tulane University
– sequence: 4
  givenname: Marc A.
  surname: Suchard
  fullname: Suchard, Marc A.
  organization: Department of Veterans Affairs
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38716090$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URB7wCaCR2LDpofy2VySKeEmJghRYW-5uNzhy24PdPWjy9Xg0M1HCglWVVKeubtU9RUcxRYfQawxLDAreYxBYCYAlAUKXhGBKpH6GTjCnsiES86PaV6bZQsfotJQ7AMBCyxfomCqJBWg4QefXthS_dotvNtsQXPD3dvIpLtKwOIxu7bgKrrn197Wf89qvbVhcRBs2xZeX6PlgQ3Gv9vUM_fj08fvll-bq5vPXy4urpmOMT42zWtleq15AN1AuHWMKWkJbx4FZJVutWis5EKd127esl6wimrZCMCp4T8_Qh53uam5H13cuTtWwWWU_2rwxyXrzdBL9L_MzrQ3GIEEyVRXe7RVy-j27MpnRl86FYKNLczEUOOGaCLlF3_6D3qU514uLIZpixRVmolJvHlt68HL4bgX4DuhyKiW74QHBYLYpmkOKZpui2adY9853ez4OKY_2T8qhN5PdhJSHbGPnq9v_S_wF0fqiNQ
Cites_doi 10.1214/07-AOAS147
10.1145/1513895.1513905
10.1111/biom.12679
10.1093/ndt/gft355
10.1145/2414416.2414791
10.1198/jasa.2011.tm10159
10.1198/004017007000000245
10.1007/978-1-4757-1229-2_14
10.1080/10618600.2020.1754226
10.1214/10-BA607
10.1007/s10915-017-0376-0
10.1073/pnas.1510502113
10.1093/biostatistics/kxt043
10.1016/S0140-6736(19)32317-7
10.1145/1365490.1365500
10.1080/01621459.1999.10474144
10.1080/10618600.2020.1841650
10.1186/s12889-016-3239-y
10.1080/10618600.2015.1035724
10.1198/jcgs.2010.10016
10.1016/S2666-7568(20)30033-7
10.1146/annurev-statistics-022513-115645
10.1214/10-STS336
10.1214/21-STS835
10.1007/s11222-018-9809-3
10.1111/j.2517-6161.1972.tb00899.x
ContentType Journal Article
Copyright 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
– notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1080/10618600.2023.2213279
DatabaseName Taylor & Francis Open Access
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 302
ExternalDocumentID PMC11070748
38716090
10_1080_10618600_2023_2213279
2213279
Genre Research Article
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
– fundername: NIAID NIH HHS
  grantid: R01 AI153044
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
0YH
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
07G
29K
2AX
AAIKQ
AAKBW
AAWIL
ABAWQ
ABBHK
ABQDR
ABXSQ
ACAGQ
ACDIW
ACGEE
ACHJO
ADODI
ADULT
ADXHL
ADYSH
AEUMN
AEUPB
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AIHAF
ALCKM
ALRMG
AMATQ
AMEWO
AMXXU
BCCOT
BPLKW
C06
CRFIH
D-I
DMQIW
DQDLB
DSRWC
DWIFK
ECEWR
EJD
FEDTE
GIFXF
HGD
HQ6
HVGLF
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
NUSFT
QCRFL
RNS
SA0
TAQ
TFMCV
TOXWX
UB9
JQ2
7X8
5PM
ID FETCH-LOGICAL-c445t-ea98ad98d60cf357e4480b23be504a87b98ba7502e99bdb4d74e4493b664365d3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013464500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-8600
IngestDate Tue Nov 04 02:04:36 EST 2025
Thu Oct 02 06:45:27 EDT 2025
Mon Nov 03 21:07:23 EST 2025
Mon Jul 21 06:01:36 EDT 2025
Sat Nov 29 06:56:42 EST 2025
Sat Nov 01 10:41:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Survival analysis
Regularized regression
Cox proportional hazards model
Fine-Gray model
Graphics processing unit
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-ea98ad98d60cf357e4480b23be504a87b98ba7502e99bdb4d74e4493b664365d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10618600.2023.2213279
PMID 38716090
PQID 2931858146
PQPubID 29738
PageCount 14
ParticipantIDs proquest_miscellaneous_3052592678
pubmed_primary_38716090
informaworld_taylorfrancis_310_1080_10618600_2023_2213279
proquest_journals_2931858146
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070748
crossref_primary_10_1080_10618600_2023_2213279
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationTitleAlternate J Comput Graph Stat
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Merrill D. (e_1_3_3_17_1) 2016
e_1_3_3_30_1
e_1_3_3_18_1
e_1_3_3_19_1
Harris M. (e_1_3_3_10_1) 2007; 3
e_1_3_3_14_1
e_1_3_3_13_1
Madigan D. (e_1_3_3_15_1) 2010; 9
e_1_3_3_16_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
Barney B. (e_1_3_3_2_1) 2010; 6
Rennich S. (e_1_3_3_23_1) 2011
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_30_1
  doi: 10.1214/07-AOAS147
– ident: e_1_3_3_18_1
  doi: 10.1145/1513895.1513905
– ident: e_1_3_3_25_1
  doi: 10.1111/biom.12679
– ident: e_1_3_3_22_1
  doi: 10.1093/ndt/gft355
– ident: e_1_3_3_27_1
  doi: 10.1145/2414416.2414791
– ident: e_1_3_3_6_1
  doi: 10.1198/jasa.2011.tm10159
– year: 2011
  ident: e_1_3_3_23_1
  article-title: CUDA C/C++ Streams and Concurrency
  publication-title: GPU Technology Conference
– volume: 9
  start-page: 421
  year: 2010
  ident: e_1_3_3_15_1
  article-title: Bayesian Methods in Pharmacovigilance
  publication-title: Bayesian Statistics
– ident: e_1_3_3_9_1
  doi: 10.1198/004017007000000245
– ident: e_1_3_3_24_1
  doi: 10.1007/978-1-4757-1229-2_14
– ident: e_1_3_3_11_1
  doi: 10.1080/10618600.2020.1754226
– ident: e_1_3_3_5_1
  doi: 10.1214/10-BA607
– ident: e_1_3_3_31_1
  doi: 10.1007/s10915-017-0376-0
– ident: e_1_3_3_12_1
  doi: 10.1073/pnas.1510502113
– ident: e_1_3_3_19_1
  doi: 10.1093/biostatistics/kxt043
– volume: 3
  start-page: 851
  year: 2007
  ident: e_1_3_3_10_1
  article-title: Parallel Prefix Sum (Scan) with CUDA
  publication-title: GPU Gems
– ident: e_1_3_3_28_1
  doi: 10.1016/S0140-6736(19)32317-7
– ident: e_1_3_3_21_1
  doi: 10.1145/1365490.1365500
– ident: e_1_3_3_8_1
  doi: 10.1080/01621459.1999.10474144
– ident: e_1_3_3_13_1
  doi: 10.1080/10618600.2020.1841650
– ident: e_1_3_3_20_1
  doi: 10.1186/s12889-016-3239-y
– volume: 6
  start-page: 10
  year: 2010
  ident: e_1_3_3_2_1
  publication-title: Lawrence Livermore National Laboratory
– ident: e_1_3_3_3_1
  doi: 10.1080/10618600.2015.1035724
– ident: e_1_3_3_26_1
  doi: 10.1198/jcgs.2010.10016
– ident: e_1_3_3_4_1
  doi: 10.1016/S2666-7568(20)30033-7
– ident: e_1_3_3_16_1
  doi: 10.1146/annurev-statistics-022513-115645
– ident: e_1_3_3_32_1
  doi: 10.1214/10-STS336
– volume-title: NVIDIA, Tech. Rep
  year: 2016
  ident: e_1_3_3_17_1
– ident: e_1_3_3_14_1
  doi: 10.1214/21-STS835
– ident: e_1_3_3_29_1
  doi: 10.1007/s11222-018-9809-3
– ident: e_1_3_3_7_1
  doi: 10.1111/j.2517-6161.1972.tb00899.x
SSID ssj0001697
Score 2.3864949
Snippet Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However,...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 289
SubjectTerms Algorithms
Cox proportional hazards model
Fine-Gray model
Graphics processing unit
Graphics processing units
Parallel processing
Regression models
Regularized regression
Statistical models
Survival
Survival analysis
Title Massive Parallelization of Massive Sample-Size Survival Analysis
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2023.2213279
https://www.ncbi.nlm.nih.gov/pubmed/38716090
https://www.proquest.com/docview/2931858146
https://www.proquest.com/docview/3052592678
https://pubmed.ncbi.nlm.nih.gov/PMC11070748
Volume 33
WOSCitedRecordID wos001013464500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: TFW
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7BigMcoEALAboKElcviePd2DdQ1RWHgpCg6vYU-RUVCWXRPjjw65lJnIhFrXpoL1EiPxI_5xtn5huAM1UiDrWaM4fgnQmXaGYQGTBurSgFEaqntaPwt_zmRk4m6jZYE86DWSXp0GVDFFHv1bS4tZm3FnHnpMVIFNQDCv094BwVqpxc-BDZk1Hf_fhHtxenIbwKlmBUpPXh-VMtK9Jphbv0dwj0vSHlG8k03vkPbfoA2wGWxpfNPNqFNV_twdZ1x-k634NNwqUNrfM-XFwj6MaNMr7VM4rG8hjcOeNpGbdJd5qYh9ndwwveL3FLeqY3BBKUj_B9_PX-yxULwRiYFWK4YF4rqZ2SbpTYMhvmHvW6xPDM-GEitMyNkkYj_OBeKeOMcLnALCozI8Q8o6HLPkGvmlb-EOLUuJFF4IKapxcIWCT3xgonsyzV3vI0gkE7CMVTw7lRpIHKtO2ngvqpCP0UgXo7VMWiPuwom8gkRfaXsiftuBZh-c4LxECIY-h0NILTLhkXHv1N0ZWfLrFaigCoOAr7CA6aadB9bUZqaKKSCOTKBOkyEKn3akr18Ksm96ZeQVgnj_6hTcewiY-iOSk6gd5itvSfYcM-4yyZ9WE9-XmF13wi-_VqeQWBug4L
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BqUQ5QFugLLRlK3F1uut1svYNhIiKmkRITUVvll8rIqFNlSY99Nd3Zl9KqiIOcFvJj13b45lvvJ5vAD6pAnGoM5x5BO9M-MQwi8iAcedEIYhQPa0ChUf5ZCKvrtR6LAxdqyQfuqiJIipdTZubDqPbK3Gn5MZItNQ9yv3d4xw9qlw9hWeUnY7486fDn502TpsEK9iEUZs2iudP3WzYpw320scw6MOrlGu2afjqf4xqF142yDT-UovSHjwJ5T68GHe0rjf7sEPQtGZ2fg2fx4i7UVfGP8yCErL8biI643kRt0UXhsiH2cXsDp9XqJVu6Q0ND8obuBx-m349Y00-BuaE6C9ZMEoar6QfJK7I-nlA1y6xPLOhnwgjc6ukNYhAeFDKeit8LrCKyuwAYc-g77O3sFXOy_AO4tT6gUPsgs5nEIhZJA_WCS-zLDXB8TSCXrsK-rqm3dBpw2bazpOmedLNPEWg1tdKL6vzjqJOTqKzv7Q9bBdWNzv4RiMMQihDB6QRnHTFuPfoh4opw3yF3VISQMXR3kdwUMtB97UZeaKJSiKQGxLSVSBe782Scvar4vemWUFkJ9__w5g-wvOz6XikR98n5x9gB4tEfXB0CFvLxSocwba7RYlZHFfb5R67ABBR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQagceJRSAgWCxNXbxHE29q0IWIFoVyu1iN4sv6JWQtlqHz3013cmcaIuAnGAW6SxndieGX_j2N8AvFc14lBnOPMI3pnwmWEWkQHjzolaEKF63l4UPqqmU3l2pmbxNOEyHqukGLruiCJaX03Gfenr_kTcAUUxEhfqEaX-HnGOAVWl7sI9hM4lKfnp5MfgjPOYXwWrMKrTX-L5UzMby9MGeenvIOivJylvLU2Tx_-hU0_gUcSl6YdOkZ7CndDswMPjgdR1uQPbBEw7XudncHiMqBs9ZTozC0rH8jPe50znddqLTgxRD7OTi2t8XqNPuqI3RBaUXfg--Xz68QuL2RiYE6JcsWCUNF5JP85cXZRVwMAus7ywocyEkZVV0hrEHzwoZb0VvhJYRBV2jKBnXPriOWw18ya8gDS3fuwQuWDoGQQiFsmDdcLLoshNcDxPYNRPgr7sSDd0HrlM-3HSNE46jlMC6vZU6VW721F3qUl08Ze6-_286mi_S40gCIEMbY8m8G4Qo-XR7xTThPkam6UUgIrjap_AXqcGw9cWFIdmKktAbijIUIBYvTclzcV5y-5No4K4Tr78hz69hQezTxN99HX67RVso0R0u0b7sLVarMNruO-uUGEWb1pjuQF2Vw8D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Massive+Parallelization+of+Massive+Sample-size+Survival+Analysis&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Yang%2C+Jianxiao&rft.au=Schuemie%2C+Martijn+J&rft.au=Ji%2C+Xiang&rft.au=Suchard%2C+Marc+A&rft.date=2024&rft.issn=1061-8600&rft.volume=33&rft.issue=1&rft.spage=289&rft_id=info:doi/10.1080%2F10618600.2023.2213279&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon