Massive Parallelization of Massive Sample-Size Survival Analysis
Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this article, we use...
Uloženo v:
| Vydáno v: | Journal of computational and graphical statistics Ročník 33; číslo 1; s. 289 - 302 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Taylor & Francis
2024
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1061-8600, 1537-2715 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this article, we use Graphics Processing Units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops. |
|---|---|
| AbstractList | Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this article, we use Graphics Processing Units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops. Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this paper, we use graphics processing units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops (Suchard et al., 2013).Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this paper, we use graphics processing units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops (Suchard et al., 2013). Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However, increasing number of patients poses computational challenges when fitting survival regression models in such studies. In this paper, we use graphics processing units (GPUs) to parallelize the computational bottlenecks of massive sample-size survival analyses. Specifically, we develop and apply time- and memory-efficient single-pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel scan algorithms for Fine-Gray models for analysis with and without a competing risk using a cyclic coordinate descent optimization approach. We demonstrate that GPUs accelerate the computation of fitting these complex models in large databases by orders of magnitude as compared to traditional multi-core CPU parallelism. Our implementation enables efficient large-scale observational studies involving millions of patients and thousands of patient characteristics. The above implementation is available in the open-source R package Cyclops (Suchard et al., 2013). |
| Author | Yang, Jianxiao Schuemie, Martijn J. Suchard, Marc A. Ji, Xiang |
| AuthorAffiliation | d Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA a Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA f Department of Mathematics, Tulane University, New Orleans, Louisiana, USA e VA Informatics and Computing Infrastructure, US Department of Veterans Affairs, Salt Lake City, UT, USA b Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, CA, USA c Janssen Research and Development, Titusville, NJ, USA |
| AuthorAffiliation_xml | – name: e VA Informatics and Computing Infrastructure, US Department of Veterans Affairs, Salt Lake City, UT, USA – name: f Department of Mathematics, Tulane University, New Orleans, Louisiana, USA – name: b Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, CA, USA – name: a Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA – name: d Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA – name: c Janssen Research and Development, Titusville, NJ, USA |
| Author_xml | – sequence: 1 givenname: Jianxiao surname: Yang fullname: Yang, Jianxiao organization: Department of Computational Medicine, David Geffen School of Medicine at UCLA – sequence: 2 givenname: Martijn J. surname: Schuemie fullname: Schuemie, Martijn J. organization: Janssen Research and Development – sequence: 3 givenname: Xiang surname: Ji fullname: Ji, Xiang organization: Department of Mathematics, Tulane University – sequence: 4 givenname: Marc A. surname: Suchard fullname: Suchard, Marc A. organization: Department of Veterans Affairs |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38716090$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctuFDEQRS0URB7wCaCR2LDpofy2VySKeEmJghRYW-5uNzhy24PdPWjy9Xg0M1HCglWVVKeubtU9RUcxRYfQawxLDAreYxBYCYAlAUKXhGBKpH6GTjCnsiES86PaV6bZQsfotJQ7AMBCyxfomCqJBWg4QefXthS_dotvNtsQXPD3dvIpLtKwOIxu7bgKrrn197Wf89qvbVhcRBs2xZeX6PlgQ3Gv9vUM_fj08fvll-bq5vPXy4urpmOMT42zWtleq15AN1AuHWMKWkJbx4FZJVutWis5EKd127esl6wimrZCMCp4T8_Qh53uam5H13cuTtWwWWU_2rwxyXrzdBL9L_MzrQ3GIEEyVRXe7RVy-j27MpnRl86FYKNLczEUOOGaCLlF3_6D3qU514uLIZpixRVmolJvHlt68HL4bgX4DuhyKiW74QHBYLYpmkOKZpui2adY9853ez4OKY_2T8qhN5PdhJSHbGPnq9v_S_wF0fqiNQ |
| Cites_doi | 10.1214/07-AOAS147 10.1145/1513895.1513905 10.1111/biom.12679 10.1093/ndt/gft355 10.1145/2414416.2414791 10.1198/jasa.2011.tm10159 10.1198/004017007000000245 10.1007/978-1-4757-1229-2_14 10.1080/10618600.2020.1754226 10.1214/10-BA607 10.1007/s10915-017-0376-0 10.1073/pnas.1510502113 10.1093/biostatistics/kxt043 10.1016/S0140-6736(19)32317-7 10.1145/1365490.1365500 10.1080/01621459.1999.10474144 10.1080/10618600.2020.1841650 10.1186/s12889-016-3239-y 10.1080/10618600.2015.1035724 10.1198/jcgs.2010.10016 10.1016/S2666-7568(20)30033-7 10.1146/annurev-statistics-022513-115645 10.1214/10-STS336 10.1214/21-STS835 10.1007/s11222-018-9809-3 10.1111/j.2517-6161.1972.tb00899.x |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION NPM JQ2 7X8 5PM |
| DOI | 10.1080/10618600.2023.2213279 |
| DatabaseName | Taylor & Francis Open Access CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 302 |
| ExternalDocumentID | PMC11070748 38716090 10_1080_10618600_2023_2213279 2213279 |
| Genre | Research Article Journal Article |
| GrantInformation_xml | – fundername: National Institutes of Health – fundername: NIAID NIH HHS grantid: R01 AI153044 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 0YH 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION 07G 29K 2AX AAIKQ AAKBW AAWIL ABAWQ ABBHK ABQDR ABXSQ ACAGQ ACDIW ACGEE ACHJO ADODI ADULT ADXHL ADYSH AEUMN AEUPB AGCQS AGLEN AGLNM AGROQ AHMOU AIHAF ALCKM ALRMG AMATQ AMEWO AMXXU BCCOT BPLKW C06 CRFIH D-I DMQIW DQDLB DSRWC DWIFK ECEWR EJD FEDTE GIFXF HGD HQ6 HVGLF IPSME IVXBP JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM NUSFT QCRFL RNS SA0 TAQ TFMCV TOXWX UB9 JQ2 7X8 5PM |
| ID | FETCH-LOGICAL-c445t-ea98ad98d60cf357e4480b23be504a87b98ba7502e99bdb4d74e4493b664365d3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013464500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-8600 |
| IngestDate | Tue Nov 04 02:04:36 EST 2025 Thu Oct 02 06:45:27 EDT 2025 Mon Nov 03 21:07:23 EST 2025 Mon Jul 21 06:01:36 EDT 2025 Sat Nov 29 06:56:42 EST 2025 Sat Nov 01 10:41:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Survival analysis Regularized regression Cox proportional hazards model Fine-Gray model Graphics processing unit |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c445t-ea98ad98d60cf357e4480b23be504a87b98ba7502e99bdb4d74e4493b664365d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/10618600.2023.2213279 |
| PMID | 38716090 |
| PQID | 2931858146 |
| PQPubID | 29738 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_3052592678 pubmed_primary_38716090 informaworld_taylorfrancis_310_1080_10618600_2023_2213279 proquest_journals_2931858146 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070748 crossref_primary_10_1080_10618600_2023_2213279 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationTitleAlternate | J Comput Graph Stat |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Merrill D. (e_1_3_3_17_1) 2016 e_1_3_3_30_1 e_1_3_3_18_1 e_1_3_3_19_1 Harris M. (e_1_3_3_10_1) 2007; 3 e_1_3_3_14_1 e_1_3_3_13_1 Madigan D. (e_1_3_3_15_1) 2010; 9 e_1_3_3_16_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 Barney B. (e_1_3_3_2_1) 2010; 6 Rennich S. (e_1_3_3_23_1) 2011 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_4_1 e_1_3_3_22_1 |
| References_xml | – ident: e_1_3_3_30_1 doi: 10.1214/07-AOAS147 – ident: e_1_3_3_18_1 doi: 10.1145/1513895.1513905 – ident: e_1_3_3_25_1 doi: 10.1111/biom.12679 – ident: e_1_3_3_22_1 doi: 10.1093/ndt/gft355 – ident: e_1_3_3_27_1 doi: 10.1145/2414416.2414791 – ident: e_1_3_3_6_1 doi: 10.1198/jasa.2011.tm10159 – year: 2011 ident: e_1_3_3_23_1 article-title: CUDA C/C++ Streams and Concurrency publication-title: GPU Technology Conference – volume: 9 start-page: 421 year: 2010 ident: e_1_3_3_15_1 article-title: Bayesian Methods in Pharmacovigilance publication-title: Bayesian Statistics – ident: e_1_3_3_9_1 doi: 10.1198/004017007000000245 – ident: e_1_3_3_24_1 doi: 10.1007/978-1-4757-1229-2_14 – ident: e_1_3_3_11_1 doi: 10.1080/10618600.2020.1754226 – ident: e_1_3_3_5_1 doi: 10.1214/10-BA607 – ident: e_1_3_3_31_1 doi: 10.1007/s10915-017-0376-0 – ident: e_1_3_3_12_1 doi: 10.1073/pnas.1510502113 – ident: e_1_3_3_19_1 doi: 10.1093/biostatistics/kxt043 – volume: 3 start-page: 851 year: 2007 ident: e_1_3_3_10_1 article-title: Parallel Prefix Sum (Scan) with CUDA publication-title: GPU Gems – ident: e_1_3_3_28_1 doi: 10.1016/S0140-6736(19)32317-7 – ident: e_1_3_3_21_1 doi: 10.1145/1365490.1365500 – ident: e_1_3_3_8_1 doi: 10.1080/01621459.1999.10474144 – ident: e_1_3_3_13_1 doi: 10.1080/10618600.2020.1841650 – ident: e_1_3_3_20_1 doi: 10.1186/s12889-016-3239-y – volume: 6 start-page: 10 year: 2010 ident: e_1_3_3_2_1 publication-title: Lawrence Livermore National Laboratory – ident: e_1_3_3_3_1 doi: 10.1080/10618600.2015.1035724 – ident: e_1_3_3_26_1 doi: 10.1198/jcgs.2010.10016 – ident: e_1_3_3_4_1 doi: 10.1016/S2666-7568(20)30033-7 – ident: e_1_3_3_16_1 doi: 10.1146/annurev-statistics-022513-115645 – ident: e_1_3_3_32_1 doi: 10.1214/10-STS336 – volume-title: NVIDIA, Tech. Rep year: 2016 ident: e_1_3_3_17_1 – ident: e_1_3_3_14_1 doi: 10.1214/21-STS835 – ident: e_1_3_3_29_1 doi: 10.1007/s11222-018-9809-3 – ident: e_1_3_3_7_1 doi: 10.1111/j.2517-6161.1972.tb00899.x |
| SSID | ssj0001697 |
| Score | 2.3864949 |
| Snippet | Large-scale observational health databases are increasingly popular for conducting comparative effectiveness and safety studies of medical products. However,... |
| SourceID | pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 289 |
| SubjectTerms | Algorithms Cox proportional hazards model Fine-Gray model Graphics processing unit Graphics processing units Parallel processing Regression models Regularized regression Statistical models Survival Survival analysis |
| Title | Massive Parallelization of Massive Sample-Size Survival Analysis |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2023.2213279 https://www.ncbi.nlm.nih.gov/pubmed/38716090 https://www.proquest.com/docview/2931858146 https://www.proquest.com/docview/3052592678 https://pubmed.ncbi.nlm.nih.gov/PMC11070748 |
| Volume | 33 |
| WOSCitedRecordID | wos001013464500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: TFW dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7BigMcoEALAboKElcviePd2DdQ1RWHgpCg6vYU-RUVCWXRPjjw65lJnIhFrXpoL1EiPxI_5xtn5huAM1UiDrWaM4fgnQmXaGYQGTBurSgFEaqntaPwt_zmRk4m6jZYE86DWSXp0GVDFFHv1bS4tZm3FnHnpMVIFNQDCv094BwVqpxc-BDZk1Hf_fhHtxenIbwKlmBUpPXh-VMtK9Jphbv0dwj0vSHlG8k03vkPbfoA2wGWxpfNPNqFNV_twdZ1x-k634NNwqUNrfM-XFwj6MaNMr7VM4rG8hjcOeNpGbdJd5qYh9ndwwveL3FLeqY3BBKUj_B9_PX-yxULwRiYFWK4YF4rqZ2SbpTYMhvmHvW6xPDM-GEitMyNkkYj_OBeKeOMcLnALCozI8Q8o6HLPkGvmlb-EOLUuJFF4IKapxcIWCT3xgonsyzV3vI0gkE7CMVTw7lRpIHKtO2ngvqpCP0UgXo7VMWiPuwom8gkRfaXsiftuBZh-c4LxECIY-h0NILTLhkXHv1N0ZWfLrFaigCoOAr7CA6aadB9bUZqaKKSCOTKBOkyEKn3akr18Ksm96ZeQVgnj_6hTcewiY-iOSk6gd5itvSfYcM-4yyZ9WE9-XmF13wi-_VqeQWBug4L |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BqUQ5QFugLLRlK3F1uut1svYNhIiKmkRITUVvll8rIqFNlSY99Nd3Zl9KqiIOcFvJj13b45lvvJ5vAD6pAnGoM5x5BO9M-MQwi8iAcedEIYhQPa0ChUf5ZCKvrtR6LAxdqyQfuqiJIipdTZubDqPbK3Gn5MZItNQ9yv3d4xw9qlw9hWeUnY7486fDn502TpsEK9iEUZs2iudP3WzYpw320scw6MOrlGu2afjqf4xqF142yDT-UovSHjwJ5T68GHe0rjf7sEPQtGZ2fg2fx4i7UVfGP8yCErL8biI643kRt0UXhsiH2cXsDp9XqJVu6Q0ND8obuBx-m349Y00-BuaE6C9ZMEoar6QfJK7I-nlA1y6xPLOhnwgjc6ukNYhAeFDKeit8LrCKyuwAYc-g77O3sFXOy_AO4tT6gUPsgs5nEIhZJA_WCS-zLDXB8TSCXrsK-rqm3dBpw2bazpOmedLNPEWg1tdKL6vzjqJOTqKzv7Q9bBdWNzv4RiMMQihDB6QRnHTFuPfoh4opw3yF3VISQMXR3kdwUMtB97UZeaKJSiKQGxLSVSBe782Scvar4vemWUFkJ9__w5g-wvOz6XikR98n5x9gB4tEfXB0CFvLxSocwba7RYlZHFfb5R67ABBR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQagceJRSAgWCxNXbxHE29q0IWIFoVyu1iN4sv6JWQtlqHz3013cmcaIuAnGAW6SxndieGX_j2N8AvFc14lBnOPMI3pnwmWEWkQHjzolaEKF63l4UPqqmU3l2pmbxNOEyHqukGLruiCJaX03Gfenr_kTcAUUxEhfqEaX-HnGOAVWl7sI9hM4lKfnp5MfgjPOYXwWrMKrTX-L5UzMby9MGeenvIOivJylvLU2Tx_-hU0_gUcSl6YdOkZ7CndDswMPjgdR1uQPbBEw7XudncHiMqBs9ZTozC0rH8jPe50znddqLTgxRD7OTi2t8XqNPuqI3RBaUXfg--Xz68QuL2RiYE6JcsWCUNF5JP85cXZRVwMAus7ywocyEkZVV0hrEHzwoZb0VvhJYRBV2jKBnXPriOWw18ya8gDS3fuwQuWDoGQQiFsmDdcLLoshNcDxPYNRPgr7sSDd0HrlM-3HSNE46jlMC6vZU6VW721F3qUl08Ze6-_286mi_S40gCIEMbY8m8G4Qo-XR7xTThPkam6UUgIrjap_AXqcGw9cWFIdmKktAbijIUIBYvTclzcV5y-5No4K4Tr78hz69hQezTxN99HX67RVso0R0u0b7sLVarMNruO-uUGEWb1pjuQF2Vw8D |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Massive+Parallelization+of+Massive+Sample-size+Survival+Analysis&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Yang%2C+Jianxiao&rft.au=Schuemie%2C+Martijn+J&rft.au=Ji%2C+Xiang&rft.au=Suchard%2C+Marc+A&rft.date=2024&rft.issn=1061-8600&rft.volume=33&rft.issue=1&rft.spage=289&rft_id=info:doi/10.1080%2F10618600.2023.2213279&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |