Energy Efficient Scheduling of Real-Time Tasks on Multicore Processors
Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of real-time tasks using DVS. These approaches must be modi...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on parallel and distributed systems Jg. 19; H. 11; S. 1540 - 1552 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1045-9219, 1558-2183 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of real-time tasks using DVS. These approaches must be modified for multicore processors, however, since normally all the cores in a chip must run at the same performance level. Thus, blindly adopting existing DVS algorithms that do not consider the restriction will result in a waste of energy. This article suggests Dynamic Repartitioning algorithm based on existing partitioning approaches of multiprocessor systems. The algorithm dynamically balances the task loads of multiple cores to optimize power consumption during execution. We also suggest Dynamic Core Scaling algorithm, which adjusts the number of active cores to reduce leakage power consumption under low load conditions. Simulation results show that Dynamic Repartitioning can produce energy savings of about 8 percent even with the best energy-efficient partitioning algorithm. The results also show that Dynamic Core Scaling can reduce energy consumption by about 26 percent under low load conditions. |
|---|---|
| AbstractList | Multicore processors deliver a higher throughput at lower power consumption than unicore pro- cessors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of real-time tasks using DVS. These approaches must be modified for multicore processors, however, since normally all the cores in a chip must run at the same performance level. Thus blindly adopting existing DVS algorithms which do not consider the restriction will result in a waste of energy. This article suggests Dynamic Repartitioning algorithm based on existing partitioning approaches of multiprocessor systems. The algorithm dynamically balances the task loads of multiple cores to optimize power consumption during execution. We also suggest Dynamic Core Scaling algorithm which adjusts the number of active cores to reduce leakage power consumption under low load conditions. Simulation results show that Dynamic Repartitioning can produce energy savings of about 8% even with the best energy-efficient partitioning algorithm. The results also show that Dynamic Core Scaling can reduce energy consumption by about 26% under low load conditions. Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of real-time tasks using DVS. These approaches must be modified for multicore processors, however, since normally all the cores in a chip must run at the same performance level. Thus, blindly adopting existing DVS algorithms that do not consider the restriction will result in a waste of energy. This article suggests Dynamic Repartitioning algorithm based on existing partitioning approaches of multiprocessor systems. The algorithm dynamically balances the task loads of multiple cores to optimize power consumption during execution. We also suggest Dynamic Core Scaling algorithm, which adjusts the number of active cores to reduce leakage power consumption under low load conditions. Simulation results show that Dynamic Repartitioning can produce energy savings of about 8 percent even with the best energy-efficient partitioning algorithm. The results also show that Dynamic Core Scaling can reduce energy consumption by about 26 percent under low load conditions. Multicore processors deliver a higher throughput at lower power consumption than unicore pro- cessors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling [abstract truncated by publisher]. [...] blindly adopting existing DVS algorithms which do not consider the restriction will result in a waste of energy. |
| Author | Joonwon Lee Seonyeong Park Jinkyu Jeong Euiseong Seo |
| Author_xml | – sequence: 1 givenname: Euiseong surname: Seo fullname: Seo, Euiseong – sequence: 2 givenname: Jinkyu surname: Jeong fullname: Jeong, Jinkyu – sequence: 3 givenname: Seonyeong surname: Park fullname: Park, Seonyeong – sequence: 4 givenname: Joonwon surname: Lee fullname: Lee, Joonwon |
| BookMark | eNqFkTtPxDAQhC0EEs-SiiaigCqH37FLBMdDAoG4o458zhoMORvspODfk-gQBRJQ7Wr1zaxGs43WQwyA0D7BE0KwPpnfn88mFGM1IZivoS0ihCopUWx92DEXpaZEb6LtnF8wJlxgvoUupgHS00cxdc5bD6ErZvYZmr714amIrngA05Zzv4RibvJrLmIobvu28zYmKO5TtJBzTHkXbTjTZtj7mjvo8WI6P7sqb-4ur89Ob0rLuejKpqISpGZKV6ZqGmWkYEZIRcFq5UBKvGgEl8wJIyh2Tlq8UNIMGXTFpQO2g45Xvm8pvveQu3rps4W2NQFin2uNmWQVIeRfUlUCM0W5GsijP0nGOdNCjpaHP8CX2Kcw5K01oVQxwka3cgXZFHNO4Oq35JcmfdQE12NN9VhTPdY0XPjAsx-89Z3pfAxdMr79VXWwUnkA-P7AhWBSa_YJhwOeXg |
| CODEN | ITDSEO |
| CitedBy_id | crossref_primary_10_1016_j_future_2016_09_014 crossref_primary_10_1016_j_jpdc_2016_11_014 crossref_primary_10_1016_j_micpro_2015_08_001 crossref_primary_10_1016_j_sysarc_2022_102708 crossref_primary_10_1007_s11227_014_1307_6 crossref_primary_10_1145_2367736_2367743 crossref_primary_10_1145_3399413 crossref_primary_10_1007_s11390_012_1264_6 crossref_primary_10_1049_el_2013_0310 crossref_primary_10_1109_TSUSC_2023_3283518 crossref_primary_10_1109_TC_2013_44 crossref_primary_10_1109_JIOT_2025_3568691 crossref_primary_10_1016_j_ins_2017_08_042 crossref_primary_10_1002_cpe_2899 crossref_primary_10_1007_s41870_022_01042_4 crossref_primary_10_1016_j_cie_2017_12_001 crossref_primary_10_1109_ACCESS_2025_3574340 crossref_primary_10_1145_2660490 crossref_primary_10_1109_TNSE_2021_3115054 crossref_primary_10_1145_3291387 crossref_primary_10_1145_2086696_2086726 crossref_primary_10_1016_j_future_2016_11_015 crossref_primary_10_1007_s10617_016_9176_2 crossref_primary_10_1007_s11241_014_9207_7 crossref_primary_10_1109_TC_2014_2315629 crossref_primary_10_1016_j_procs_2018_04_301 crossref_primary_10_1109_TPDS_2011_87 crossref_primary_10_1155_2014_101529 crossref_primary_10_1007_s11241_019_09327_x crossref_primary_10_1016_j_jss_2014_12_031 crossref_primary_10_1016_j_future_2012_05_019 crossref_primary_10_1016_j_micpro_2013_04_007 crossref_primary_10_1016_j_vlsi_2016_12_011 crossref_primary_10_1007_s11390_011_1144_5 crossref_primary_10_1109_TPDS_2013_251 crossref_primary_10_1109_ACCESS_2017_2724598 crossref_primary_10_1109_TPDS_2014_2307866 crossref_primary_10_1109_TPDS_2016_2623616 crossref_primary_10_1016_j_jpdc_2013_05_003 crossref_primary_10_1109_JSYST_2015_2446205 crossref_primary_10_1002_cplx_21561 crossref_primary_10_1007_s11227_024_06685_7 crossref_primary_10_1109_TPDS_2018_2889851 crossref_primary_10_1007_s11227_013_0956_1 crossref_primary_10_1109_TPDS_2011_230 crossref_primary_10_3103_S0146411620040094 crossref_primary_10_3233_JIFS_169680 crossref_primary_10_1016_j_micpro_2013_11_013 crossref_primary_10_1109_MSP_2011_940410 crossref_primary_10_1145_2935749 crossref_primary_10_1587_transinf_E94_D_2389 crossref_primary_10_1016_j_suscom_2020_100480 crossref_primary_10_1016_j_ins_2019_12_034 crossref_primary_10_1109_TSMC_2014_2331022 crossref_primary_10_1007_s11227_014_1226_6 crossref_primary_10_1002_cpe_3516 crossref_primary_10_1109_TPDS_2010_50 crossref_primary_10_3390_app11125731 |
| Cites_doi | 10.1109/HICSS.1995.375385 10.1109/ICCAD.2002.1167611 10.1109/EMRTS.2001.934003 10.1007/3-540-44572-2_1 10.1109/EMWRTS.1998.685084 10.1535/itj.1002.03 10.1109/LPE.2001.945370 10.1145/581630.581638 10.1109/EMRTS.2000.853989 10.1145/1065579.1065612 10.1145/502034.502044 10.1016/0166-5316(82)90024-4 10.1109/ICCAD.2000.896499 10.1109/MM.2003.1261388 10.1109/REAL.1989.63567 10.1145/996566.996650 10.1109/date.2002.998389 10.1109/TC.2004.16 10.1109/EMRTS.2004.1311011 10.1109/IPDPS.2003.1213225 10.1109/TC.2004.1275298 10.1109/DATE.2005.51 10.1109/ICCD.2002.1106798 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TPDS.2008.104 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 1552 |
| ExternalDocumentID | 2545149081 10_1109_TPDS_2008_104 4553699 |
| Genre | orig-research |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 TWZ UHB VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c445t-d726e693897a7dd8a653a5682ec98fe660bd5463f5a520ff6c0b86a2189746fe3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259457200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9219 |
| IngestDate | Sun Nov 09 11:08:51 EST 2025 Thu Oct 02 11:50:00 EDT 2025 Thu Oct 02 10:48:42 EDT 2025 Sun Nov 09 08:00:14 EST 2025 Tue Nov 18 22:33:42 EST 2025 Sat Nov 29 08:07:56 EST 2025 Wed Aug 27 02:52:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Scheduling and task partitioning Multi-core/single-chip multiprocessors Real-time systems and embedded systems Energy-aware systems |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c445t-d726e693897a7dd8a653a5682ec98fe660bd5463f5a520ff6c0b86a2189746fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 912283138 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPDS_2008_104 proquest_miscellaneous_903637111 proquest_journals_912283138 proquest_miscellaneous_34439561 ieee_primary_4553699 crossref_primary_10_1109_TPDS_2008_104 proquest_miscellaneous_875038248 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-11-01 |
| PublicationDateYYYYMMDD | 2008-11-01 |
| PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2008 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 Liu (ref9) 1973; 20 (ref1) 2005 ref2 ref17 (ref28) 2006 ref16 (ref30) 2005 ref19 ref18 Funk (ref7) 2001 ref24 ref23 ref25 ref20 ref22 ref27 Anderson (ref21) ref29 ref8 ref4 ref3 ref6 Fleischmann (ref26) 2001 ref5 |
| References_xml | – ident: ref23 doi: 10.1109/HICSS.1995.375385 – ident: ref25 doi: 10.1109/ICCAD.2002.1167611 – ident: ref5 doi: 10.1109/EMRTS.2001.934003 – ident: ref19 doi: 10.1007/3-540-44572-2_1 – volume-title: technical report, Transmeta Corp. year: 2001 ident: ref26 article-title: Longrun Power Management – ident: ref8 doi: 10.1109/EMWRTS.1998.685084 – ident: ref29 doi: 10.1535/itj.1002.03 – ident: ref15 doi: 10.1109/LPE.2001.945370 – ident: ref22 doi: 10.1145/581630.581638 – ident: ref3 doi: 10.1109/EMRTS.2000.853989 – ident: ref27 doi: 10.1145/1065579.1065612 – ident: ref13 doi: 10.1145/502034.502044 – volume-title: Platform 2015: Intel Processor and Platform Evolution for the Next Decade year: 2005 ident: ref30 – ident: ref2 doi: 10.1016/0166-5316(82)90024-4 – start-page: 430 volume-title: Proc. 16th Int’l Conf. Parallel and Distributed Computing Systems (PDCS ’03) ident: ref21 article-title: Energy-Aware Implementation of Hard-Real-Time Systems upon Multiprocessor Platforms – ident: ref16 doi: 10.1109/ICCAD.2000.896499 – ident: ref11 doi: 10.1109/MM.2003.1261388 – ident: ref10 doi: 10.1109/REAL.1989.63567 – volume-title: Technical Report TR01-030, 1 year: 2001 ident: ref7 article-title: Energy Minimization Techniques for Real-Time Scheduling on Multiprocessor Platforms – ident: ref24 doi: 10.1145/996566.996650 – ident: ref17 doi: 10.1109/date.2002.998389 – ident: ref6 doi: 10.1109/TC.2004.16 – volume-title: Acpi Specification Rev. 3.0b year: 2006 ident: ref28 – ident: ref20 doi: 10.1109/EMRTS.2004.1311011 – volume: 20 start-page: 46 issue: 1 volume-title: J. ACM year: 1973 ident: ref9 article-title: Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment – ident: ref4 doi: 10.1109/IPDPS.2003.1213225 – ident: ref14 doi: 10.1109/TC.2004.1275298 – ident: ref12 doi: 10.1109/DATE.2005.51 – volume-title: Multi-Core Processors—The Next Evolution in Computing year: 2005 ident: ref1 – ident: ref18 doi: 10.1109/ICCD.2002.1106798 |
| SSID | ssj0014504 |
| Score | 2.3076365 |
| Snippet | Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future, they will thus be widely used in... [...] blindly adopting existing DVS algorithms which do not consider the restriction will result in a waste of energy. Multicore processors deliver a higher throughput at lower power consumption than unicore pro- cessors. In the near future, they will thus be widely used in... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1540 |
| SubjectTerms | Algorithms Dynamics Energy consumption Energy efficiency Energy-aware systems Heuristic algorithms Loads (forces) Microprocessors Multi-core/single-chip multiprocessors Multicore processing Multiprocessing systems Partitioning Partitioning algorithms Power consumption Processor scheduling Processors Real time Real time systems Real-time systems and embedded systems Scheduling and task partitioning Studies Tasks Throughput Voltage control |
| Title | Energy Efficient Scheduling of Real-Time Tasks on Multicore Processors |
| URI | https://ieeexplore.ieee.org/document/4553699 https://www.proquest.com/docview/912283138 https://www.proquest.com/docview/34439561 https://www.proquest.com/docview/875038248 https://www.proquest.com/docview/903637111 |
| Volume | 19 |
| WOSCitedRecordID | wos000259457200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6oEegEIrApT6UPWEyzrx5xHRXfVQIdRuJW6R44zVCpSgzS6_H9vJhkrtHnqLlJFleTwZOzPvPYCPnBdKMZ9TJq2j3DFLLbKK8kpxWxmU3iSg8Dd1c6Pv7sztFlyMWBhETM1n-Dk-plp-3bpV_FV2yYUopDHbsK2U6rFaY8WAiyQVGG4XgpoQhi98mpfz2y8_-q5JNuixrfNPElT56yucUsts__8mdQB7wxGSXPU-fwNb2BzC_lqegQzRegiv_-AaPILZNKH8yDRxRoQhg-GvkGciHJ20nnwPJ0YaASFkbrv7jrQNSeDcSHNJBjhBu-jews_ZdH79lQ4iCtRxLpa0VrlEacK5RFlV19pKUVghdY7OaI9STqo6UuJ7YUU-8V66SaWlDZk_3DSkx-Id7DRtg8dA0GqhVV3Z2oXQ97ZCVitvjfUSsWBVBhfrpS3dwDAehS4eynTTmJgyeqIXvgyeyODTaP7YU2tsMjyKyz4aDSuewenab-UQeF1pWOTzYYXO4MP4NkRMLIPYBttVVxZhf0Y4bwZkg4WOxV2dc73ZxMQCuAqJ4uTfkzuF3dRZklCLZ7CzXKzwPbxyT8vf3eI8bd1nVybt8Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQ9UGhBhAL1AXGq6Trx5xHBropYVhUsUm-R44xFVZSgzS6_v7aTDUiwB26RMrIsjydjZ-a9B_Ca80Ip5nPKpHWUO2apRVZRXiluK4PSmwQUnqvFQl9dmcs9OBuxMIiYms_wbXxMtfy6dZv4q-ycC1FIY-7AXcF5znq01lgz4CKJBYb7haAmBOJvRs3z5eWHr33fJBsU2bYZKEmq_PUdTslldvh_03oED4dDJHnXe_0x7GFzBIdbgQYyxOsRHPzBNngMs2nC-ZFpYo0IQwbD7yHTREA6aT35Es6MNEJCyNJ2Nx1pG5LguZHokgyAgnbVPYFvs-ny_QUdZBSo41ysaa1yidKEk4myqq61laKwQuocndEepZxUdSTF98KKfOK9dJNKSxtyf7hrSI_FU9hv2gafAUGrhVZ1ZWsXgt_bClmtvDXWS8SCVRmcbZe2dAPHeJS6-FGmu8bElNETvfRl8EQGb0bznz25xi7D47jso9Gw4hmcbP1WDqHXlYZFRh9W6AxOx7chZmIhxDbYbrqyCDs0AnozIDssdCzv6pzr3SYmlsBVSBXP_z25U7h_sfw8L-cfF59O4EHqM0kYxhewv15t8CXcc7_W193qVdrGt9gb8Tg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Efficient+Scheduling+of+Real-Time+Tasks+on+Multicore+Processors&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Seo%2C+Euiseong&rft.au=Jeong%2C+Jinkyu&rft.au=Park%2C+Seonyeong&rft.au=Lee%2C+Joonwon&rft.date=2008-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=19&rft.issue=11&rft.spage=1540&rft_id=info:doi/10.1109%2FTPDS.2008.104&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2545149081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |