Energy Efficient Scheduling of Real-Time Tasks on Multicore Processors

Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of real-time tasks using DVS. These approaches must be modi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems Jg. 19; H. 11; S. 1540 - 1552
Hauptverfasser: Seo, Euiseong, Jeong, Jinkyu, Park, Seonyeong, Lee, Joonwon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1045-9219, 1558-2183
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of real-time tasks using DVS. These approaches must be modified for multicore processors, however, since normally all the cores in a chip must run at the same performance level. Thus, blindly adopting existing DVS algorithms that do not consider the restriction will result in a waste of energy. This article suggests Dynamic Repartitioning algorithm based on existing partitioning approaches of multiprocessor systems. The algorithm dynamically balances the task loads of multiple cores to optimize power consumption during execution. We also suggest Dynamic Core Scaling algorithm, which adjusts the number of active cores to reduce leakage power consumption under low load conditions. Simulation results show that Dynamic Repartitioning can produce energy savings of about 8 percent even with the best energy-efficient partitioning algorithm. The results also show that Dynamic Core Scaling can reduce energy consumption by about 26 percent under low load conditions.
AbstractList Multicore processors deliver a higher throughput at lower power consumption than unicore pro- cessors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of real-time tasks using DVS. These approaches must be modified for multicore processors, however, since normally all the cores in a chip must run at the same performance level. Thus blindly adopting existing DVS algorithms which do not consider the restriction will result in a waste of energy. This article suggests Dynamic Repartitioning algorithm based on existing partitioning approaches of multiprocessor systems. The algorithm dynamically balances the task loads of multiple cores to optimize power consumption during execution. We also suggest Dynamic Core Scaling algorithm which adjusts the number of active cores to reduce leakage power consumption under low load conditions. Simulation results show that Dynamic Repartitioning can produce energy savings of about 8% even with the best energy-efficient partitioning algorithm. The results also show that Dynamic Core Scaling can reduce energy consumption by about 26% under low load conditions.
Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling of real-time tasks using DVS. These approaches must be modified for multicore processors, however, since normally all the cores in a chip must run at the same performance level. Thus, blindly adopting existing DVS algorithms that do not consider the restriction will result in a waste of energy. This article suggests Dynamic Repartitioning algorithm based on existing partitioning approaches of multiprocessor systems. The algorithm dynamically balances the task loads of multiple cores to optimize power consumption during execution. We also suggest Dynamic Core Scaling algorithm, which adjusts the number of active cores to reduce leakage power consumption under low load conditions. Simulation results show that Dynamic Repartitioning can produce energy savings of about 8 percent even with the best energy-efficient partitioning algorithm. The results also show that Dynamic Core Scaling can reduce energy consumption by about 26 percent under low load conditions.
Multicore processors deliver a higher throughput at lower power consumption than unicore pro- cessors. In the near future, they will thus be widely used in mobile real-time systems. There have been many research on energy-efficient scheduling [abstract truncated by publisher].
[...] blindly adopting existing DVS algorithms which do not consider the restriction will result in a waste of energy.
Author Joonwon Lee
Seonyeong Park
Jinkyu Jeong
Euiseong Seo
Author_xml – sequence: 1
  givenname: Euiseong
  surname: Seo
  fullname: Seo, Euiseong
– sequence: 2
  givenname: Jinkyu
  surname: Jeong
  fullname: Jeong, Jinkyu
– sequence: 3
  givenname: Seonyeong
  surname: Park
  fullname: Park, Seonyeong
– sequence: 4
  givenname: Joonwon
  surname: Lee
  fullname: Lee, Joonwon
BookMark eNqFkTtPxDAQhC0EEs-SiiaigCqH37FLBMdDAoG4o458zhoMORvspODfk-gQBRJQ7Wr1zaxGs43WQwyA0D7BE0KwPpnfn88mFGM1IZivoS0ihCopUWx92DEXpaZEb6LtnF8wJlxgvoUupgHS00cxdc5bD6ErZvYZmr714amIrngA05Zzv4RibvJrLmIobvu28zYmKO5TtJBzTHkXbTjTZtj7mjvo8WI6P7sqb-4ur89Ob0rLuejKpqISpGZKV6ZqGmWkYEZIRcFq5UBKvGgEl8wJIyh2Tlq8UNIMGXTFpQO2g45Xvm8pvveQu3rps4W2NQFin2uNmWQVIeRfUlUCM0W5GsijP0nGOdNCjpaHP8CX2Kcw5K01oVQxwka3cgXZFHNO4Oq35JcmfdQE12NN9VhTPdY0XPjAsx-89Z3pfAxdMr79VXWwUnkA-P7AhWBSa_YJhwOeXg
CODEN ITDSEO
CitedBy_id crossref_primary_10_1016_j_future_2016_09_014
crossref_primary_10_1016_j_jpdc_2016_11_014
crossref_primary_10_1016_j_micpro_2015_08_001
crossref_primary_10_1016_j_sysarc_2022_102708
crossref_primary_10_1007_s11227_014_1307_6
crossref_primary_10_1145_2367736_2367743
crossref_primary_10_1145_3399413
crossref_primary_10_1007_s11390_012_1264_6
crossref_primary_10_1049_el_2013_0310
crossref_primary_10_1109_TSUSC_2023_3283518
crossref_primary_10_1109_TC_2013_44
crossref_primary_10_1109_JIOT_2025_3568691
crossref_primary_10_1016_j_ins_2017_08_042
crossref_primary_10_1002_cpe_2899
crossref_primary_10_1007_s41870_022_01042_4
crossref_primary_10_1016_j_cie_2017_12_001
crossref_primary_10_1109_ACCESS_2025_3574340
crossref_primary_10_1145_2660490
crossref_primary_10_1109_TNSE_2021_3115054
crossref_primary_10_1145_3291387
crossref_primary_10_1145_2086696_2086726
crossref_primary_10_1016_j_future_2016_11_015
crossref_primary_10_1007_s10617_016_9176_2
crossref_primary_10_1007_s11241_014_9207_7
crossref_primary_10_1109_TC_2014_2315629
crossref_primary_10_1016_j_procs_2018_04_301
crossref_primary_10_1109_TPDS_2011_87
crossref_primary_10_1155_2014_101529
crossref_primary_10_1007_s11241_019_09327_x
crossref_primary_10_1016_j_jss_2014_12_031
crossref_primary_10_1016_j_future_2012_05_019
crossref_primary_10_1016_j_micpro_2013_04_007
crossref_primary_10_1016_j_vlsi_2016_12_011
crossref_primary_10_1007_s11390_011_1144_5
crossref_primary_10_1109_TPDS_2013_251
crossref_primary_10_1109_ACCESS_2017_2724598
crossref_primary_10_1109_TPDS_2014_2307866
crossref_primary_10_1109_TPDS_2016_2623616
crossref_primary_10_1016_j_jpdc_2013_05_003
crossref_primary_10_1109_JSYST_2015_2446205
crossref_primary_10_1002_cplx_21561
crossref_primary_10_1007_s11227_024_06685_7
crossref_primary_10_1109_TPDS_2018_2889851
crossref_primary_10_1007_s11227_013_0956_1
crossref_primary_10_1109_TPDS_2011_230
crossref_primary_10_3103_S0146411620040094
crossref_primary_10_3233_JIFS_169680
crossref_primary_10_1016_j_micpro_2013_11_013
crossref_primary_10_1109_MSP_2011_940410
crossref_primary_10_1145_2935749
crossref_primary_10_1587_transinf_E94_D_2389
crossref_primary_10_1016_j_suscom_2020_100480
crossref_primary_10_1016_j_ins_2019_12_034
crossref_primary_10_1109_TSMC_2014_2331022
crossref_primary_10_1007_s11227_014_1226_6
crossref_primary_10_1002_cpe_3516
crossref_primary_10_1109_TPDS_2010_50
crossref_primary_10_3390_app11125731
Cites_doi 10.1109/HICSS.1995.375385
10.1109/ICCAD.2002.1167611
10.1109/EMRTS.2001.934003
10.1007/3-540-44572-2_1
10.1109/EMWRTS.1998.685084
10.1535/itj.1002.03
10.1109/LPE.2001.945370
10.1145/581630.581638
10.1109/EMRTS.2000.853989
10.1145/1065579.1065612
10.1145/502034.502044
10.1016/0166-5316(82)90024-4
10.1109/ICCAD.2000.896499
10.1109/MM.2003.1261388
10.1109/REAL.1989.63567
10.1145/996566.996650
10.1109/date.2002.998389
10.1109/TC.2004.16
10.1109/EMRTS.2004.1311011
10.1109/IPDPS.2003.1213225
10.1109/TC.2004.1275298
10.1109/DATE.2005.51
10.1109/ICCD.2002.1106798
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TPDS.2008.104
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 1552
ExternalDocumentID 2545149081
10_1109_TPDS_2008_104
4553699
Genre orig-research
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
TWZ
UHB
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c445t-d726e693897a7dd8a653a5682ec98fe660bd5463f5a520ff6c0b86a2189746fe3
IEDL.DBID RIE
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259457200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
IngestDate Sun Nov 09 11:08:51 EST 2025
Thu Oct 02 11:50:00 EDT 2025
Thu Oct 02 10:48:42 EDT 2025
Sun Nov 09 08:00:14 EST 2025
Tue Nov 18 22:33:42 EST 2025
Sat Nov 29 08:07:56 EST 2025
Wed Aug 27 02:52:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Scheduling and task partitioning
Multi-core/single-chip multiprocessors
Real-time systems and embedded systems
Energy-aware systems
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-d726e693897a7dd8a653a5682ec98fe660bd5463f5a520ff6c0b86a2189746fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 912283138
PQPubID 23500
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TPDS_2008_104
proquest_miscellaneous_903637111
proquest_journals_912283138
proquest_miscellaneous_34439561
ieee_primary_4553699
crossref_primary_10_1109_TPDS_2008_104
proquest_miscellaneous_875038248
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2008
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
Liu (ref9) 1973; 20
(ref1) 2005
ref2
ref17
(ref28) 2006
ref16
(ref30) 2005
ref19
ref18
Funk (ref7) 2001
ref24
ref23
ref25
ref20
ref22
ref27
Anderson (ref21)
ref29
ref8
ref4
ref3
ref6
Fleischmann (ref26) 2001
ref5
References_xml – ident: ref23
  doi: 10.1109/HICSS.1995.375385
– ident: ref25
  doi: 10.1109/ICCAD.2002.1167611
– ident: ref5
  doi: 10.1109/EMRTS.2001.934003
– ident: ref19
  doi: 10.1007/3-540-44572-2_1
– volume-title: technical report, Transmeta Corp.
  year: 2001
  ident: ref26
  article-title: Longrun Power Management
– ident: ref8
  doi: 10.1109/EMWRTS.1998.685084
– ident: ref29
  doi: 10.1535/itj.1002.03
– ident: ref15
  doi: 10.1109/LPE.2001.945370
– ident: ref22
  doi: 10.1145/581630.581638
– ident: ref3
  doi: 10.1109/EMRTS.2000.853989
– ident: ref27
  doi: 10.1145/1065579.1065612
– ident: ref13
  doi: 10.1145/502034.502044
– volume-title: Platform 2015: Intel Processor and Platform Evolution for the Next Decade
  year: 2005
  ident: ref30
– ident: ref2
  doi: 10.1016/0166-5316(82)90024-4
– start-page: 430
  volume-title: Proc. 16th Int’l Conf. Parallel and Distributed Computing Systems (PDCS ’03)
  ident: ref21
  article-title: Energy-Aware Implementation of Hard-Real-Time Systems upon Multiprocessor Platforms
– ident: ref16
  doi: 10.1109/ICCAD.2000.896499
– ident: ref11
  doi: 10.1109/MM.2003.1261388
– ident: ref10
  doi: 10.1109/REAL.1989.63567
– volume-title: Technical Report TR01-030, 1
  year: 2001
  ident: ref7
  article-title: Energy Minimization Techniques for Real-Time Scheduling on Multiprocessor Platforms
– ident: ref24
  doi: 10.1145/996566.996650
– ident: ref17
  doi: 10.1109/date.2002.998389
– ident: ref6
  doi: 10.1109/TC.2004.16
– volume-title: Acpi Specification Rev. 3.0b
  year: 2006
  ident: ref28
– ident: ref20
  doi: 10.1109/EMRTS.2004.1311011
– volume: 20
  start-page: 46
  issue: 1
  volume-title: J. ACM
  year: 1973
  ident: ref9
  article-title: Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment
– ident: ref4
  doi: 10.1109/IPDPS.2003.1213225
– ident: ref14
  doi: 10.1109/TC.2004.1275298
– ident: ref12
  doi: 10.1109/DATE.2005.51
– volume-title: Multi-Core Processors—The Next Evolution in Computing
  year: 2005
  ident: ref1
– ident: ref18
  doi: 10.1109/ICCD.2002.1106798
SSID ssj0014504
Score 2.3076365
Snippet Multicore processors deliver a higher throughput at lower power consumption than unicore processors. In the near future, they will thus be widely used in...
[...] blindly adopting existing DVS algorithms which do not consider the restriction will result in a waste of energy.
Multicore processors deliver a higher throughput at lower power consumption than unicore pro- cessors. In the near future, they will thus be widely used in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1540
SubjectTerms Algorithms
Dynamics
Energy consumption
Energy efficiency
Energy-aware systems
Heuristic algorithms
Loads (forces)
Microprocessors
Multi-core/single-chip multiprocessors
Multicore processing
Multiprocessing systems
Partitioning
Partitioning algorithms
Power consumption
Processor scheduling
Processors
Real time
Real time systems
Real-time systems and embedded systems
Scheduling and task partitioning
Studies
Tasks
Throughput
Voltage control
Title Energy Efficient Scheduling of Real-Time Tasks on Multicore Processors
URI https://ieeexplore.ieee.org/document/4553699
https://www.proquest.com/docview/912283138
https://www.proquest.com/docview/34439561
https://www.proquest.com/docview/875038248
https://www.proquest.com/docview/903637111
Volume 19
WOSCitedRecordID wos000259457200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6oEegEIrApT6UPWEyzrx5xHRXfVQIdRuJW6R44zVCpSgzS6_H9vJhkrtHnqLlJFleTwZOzPvPYCPnBdKMZ9TJq2j3DFLLbKK8kpxWxmU3iSg8Dd1c6Pv7sztFlyMWBhETM1n-Dk-plp-3bpV_FV2yYUopDHbsK2U6rFaY8WAiyQVGG4XgpoQhi98mpfz2y8_-q5JNuixrfNPElT56yucUsts__8mdQB7wxGSXPU-fwNb2BzC_lqegQzRegiv_-AaPILZNKH8yDRxRoQhg-GvkGciHJ20nnwPJ0YaASFkbrv7jrQNSeDcSHNJBjhBu-jews_ZdH79lQ4iCtRxLpa0VrlEacK5RFlV19pKUVghdY7OaI9STqo6UuJ7YUU-8V66SaWlDZk_3DSkx-Id7DRtg8dA0GqhVV3Z2oXQ97ZCVitvjfUSsWBVBhfrpS3dwDAehS4eynTTmJgyeqIXvgyeyODTaP7YU2tsMjyKyz4aDSuewenab-UQeF1pWOTzYYXO4MP4NkRMLIPYBttVVxZhf0Y4bwZkg4WOxV2dc73ZxMQCuAqJ4uTfkzuF3dRZklCLZ7CzXKzwPbxyT8vf3eI8bd1nVybt8Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQ9UGhBhAL1AXGq6Trx5xHBropYVhUsUm-R44xFVZSgzS6_v7aTDUiwB26RMrIsjydjZ-a9B_Ca80Ip5nPKpHWUO2apRVZRXiluK4PSmwQUnqvFQl9dmcs9OBuxMIiYms_wbXxMtfy6dZv4q-ycC1FIY-7AXcF5znq01lgz4CKJBYb7haAmBOJvRs3z5eWHr33fJBsU2bYZKEmq_PUdTslldvh_03oED4dDJHnXe_0x7GFzBIdbgQYyxOsRHPzBNngMs2nC-ZFpYo0IQwbD7yHTREA6aT35Es6MNEJCyNJ2Nx1pG5LguZHokgyAgnbVPYFvs-ny_QUdZBSo41ysaa1yidKEk4myqq61laKwQuocndEepZxUdSTF98KKfOK9dJNKSxtyf7hrSI_FU9hv2gafAUGrhVZ1ZWsXgt_bClmtvDXWS8SCVRmcbZe2dAPHeJS6-FGmu8bElNETvfRl8EQGb0bznz25xi7D47jso9Gw4hmcbP1WDqHXlYZFRh9W6AxOx7chZmIhxDbYbrqyCDs0AnozIDssdCzv6pzr3SYmlsBVSBXP_z25U7h_sfw8L-cfF59O4EHqM0kYxhewv15t8CXcc7_W193qVdrGt9gb8Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Efficient+Scheduling+of+Real-Time+Tasks+on+Multicore+Processors&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Seo%2C+Euiseong&rft.au=Jeong%2C+Jinkyu&rft.au=Park%2C+Seonyeong&rft.au=Lee%2C+Joonwon&rft.date=2008-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=19&rft.issue=11&rft.spage=1540&rft_id=info:doi/10.1109%2FTPDS.2008.104&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2545149081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon