Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression
Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the st...
Uložené v:
| Vydané v: | International journal of remote sensing Ročník 34; číslo 5; s. 1724 - 1743 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
01.01.2013
|
| Predmet: | |
| ISSN: | 1366-5901, 0143-1161, 1366-5901 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the study were to (1) assess the accuracy of foliar chemistry retrieval, (2) compare the performance of models based on support vector regression (SVR), i.e. ϵ-SVR, ν-SVR, and least squares SVR (LS-SVR), to models based on partial least squares regression (PLSR), and (3) investigate which spectral transformations are best suited. The results indicated that nitrogen could be successfully modelled at the landscape level (R² = 0.67, root mean square error (RMSE) = 0.17, normalized RMSE (nRMSE) = 15%), whereas estimations of P, K, Ca, Mg, and Na were less encouraging. The developed nitrogen model was applied over the study area to generate a map of foliar N variation, which can be used for studying ecosystem processes in mangroves. While PLSR attained good results directly using all untransformed bands, the highest accuracy for nitrogen modelling was achieved using a combination of LS-SVR and continuum-removed derivative reflectance. All SVR techniques suffered from multicollinearity when using the full spectrum, and the number of independent variables had to be reduced by singling out the most informative wavelength bands. This was achieved by interpreting and visualizing the structure of the PLSR and SVR models. |
|---|---|
| AbstractList | Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the study were to (1) assess the accuracy of foliar chemistry retrieval, (2) compare the performance of models based on support vector regression (SVR), i.e. ϵ-SVR, ν-SVR, and least squares SVR (LS-SVR), to models based on partial least squares regression (PLSR), and (3) investigate which spectral transformations are best suited. The results indicated that nitrogen could be successfully modelled at the landscape level (R² = 0.67, root mean square error (RMSE) = 0.17, normalized RMSE (nRMSE) = 15%), whereas estimations of P, K, Ca, Mg, and Na were less encouraging. The developed nitrogen model was applied over the study area to generate a map of foliar N variation, which can be used for studying ecosystem processes in mangroves. While PLSR attained good results directly using all untransformed bands, the highest accuracy for nitrogen modelling was achieved using a combination of LS-SVR and continuum-removed derivative reflectance. All SVR techniques suffered from multicollinearity when using the full spectrum, and the number of independent variables had to be reduced by singling out the most informative wavelength bands. This was achieved by interpreting and visualizing the structure of the PLSR and SVR models. Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the study were to (1) assess the accuracy of foliar chemistry retrieval, (2) compare the performance of models based on support vector regression (SVR), i.e. ϵ-SVR, ν-SVR, and least squares SVR (LS-SVR), to models based on partial least squares regression (PLSR), and (3) investigate which spectral transformations are best suited. The results indicated that nitrogen could be successfully modelled at the landscape level (R² = 0.67, root mean square error (RMSE) = 0.17, normalized RMSE (nRMSE) = 15%), whereas estimations of P, K, Ca, Mg, and Na were less encouraging. The developed nitrogen model was applied over the study area to generate a map of foliar N variation, which can be used for studying ecosystem processes in mangroves. While PLSR attained good results directly using all untransformed bands, the highest accuracy for nitrogen modelling was achieved using a combination of LS-SVR and continuum-removed derivative reflectance. All SVR techniques suffered from multicollinearity when using the full spectrum, and the number of independent variables had to be reduced by singling out the most informative wavelength bands. This was achieved by interpreting and visualizing the structure of the PLSR and SVR models. Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the study were to (1) assess the accuracy of foliar chemistry retrieval, (2) compare the performance of models based on support vector regression (SVR), i.e. e-SVR, ¿-SVR, and least squares SVR (LS-SVR), to models based on partial least squares regression (PLSR), and (3) investigate which spectral transformations are best suited. The results indicated that nitrogen could be successfully modelled at the landscape level (R 2 = 0.67, root mean square error (RMSE) = 0.17, normalized RMSE (nRMSE) = 15%), whereas estimations of P, K, Ca, Mg, and Na were less encouraging. The developed nitrogen model was applied over the study area to generate a map of foliar N variation, which can be used for studying ecosystem processes in mangroves. While PLSR attained good results directly using all untransformed bands, the highest accuracy for nitrogen modelling was achieved using a combination of LS-SVR and continuum-removed derivative reflectance. All SVR techniques suffered from multicollinearity when using the full spectrum, and the number of independent variables had to be reduced by singling out the most informative wavelength bands. This was achieved by interpreting and visualizing the structure of the PLSR and SVR models. |
| Author | Schlerf, Martin Axelsson, Christoffer Skidmore, Andrew K Fauzi, Anas Verhoef, Wouter |
| Author_xml | – sequence: 1 fullname: Axelsson, Christoffer – sequence: 2 fullname: Skidmore, Andrew K – sequence: 3 fullname: Schlerf, Martin – sequence: 4 fullname: Fauzi, Anas – sequence: 5 fullname: Verhoef, Wouter |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27104924$$DView record in Pascal Francis |
| BookMark | eNqFkUGL1TAUhYuM4MzoPxDMRnDznkmapq9uRIbRER4ojrMTwm2a1EheUm_aefTfm9J5KG5mEW4W5zu5OeeiOAsxmKJ4yeiW0R19S5koGZNsyynj25pXTbV7UpyzUspN1VB29s_9WXGR0i9Kqayr-rz4cTMPBtNg9IjgCQTwc3KJREsOEHqM94bY6B0g0T_NwaURZzIlF3rydX_7LQMdSdMwRBzJfTaJSND0aFJyMTwvnlrwybx4mJfF3cfr71c3m_2XT5-vPuw3Wohq3GhrmSmt1FDzrm6rVlLDGGu6bidt24rOaMMb3WlTcdpC12nOBbUZafWO6rK8LN6tvkfoTci7maACoHZJRXDKuxYBZ3WcUAW_jGFqkxIlL2WV4TcrPGD8PZk0qvxLbbyHYOKUFJOyrGRD-S5LXz9IIWnwFiEsbwzoDos_rxkVDRd_99EYU0JjlXYjjDmRHLLzilG19KZOvamlN7X2lmHxH3zyfwR7v2Iu2IgHOEb0nRph9hFPi5aPOLxaHSxEBT1m4O42CwTNp6lzWn8ACKu90g |
| CODEN | IJSEDK |
| CitedBy_id | crossref_primary_10_3390_rs12060958 crossref_primary_10_1080_01431161_2017_1372862 crossref_primary_10_1109_JSTARS_2021_3067890 crossref_primary_10_1007_s40333_025_0009_7 crossref_primary_10_1016_j_jhazmat_2020_123288 crossref_primary_10_3390_rs8060491 crossref_primary_10_1080_09064710_2020_1726999 crossref_primary_10_1016_j_jag_2025_104650 crossref_primary_10_1080_01431161_2022_2093143 crossref_primary_10_1007_s11104_024_07029_3 crossref_primary_10_1016_j_marpolbul_2013_09_033 crossref_primary_10_3390_rs9101060 crossref_primary_10_3390_s21227616 crossref_primary_10_3390_s21010171 crossref_primary_10_1016_j_rse_2015_03_033 crossref_primary_10_1111_jvs_12421 crossref_primary_10_1016_j_rse_2018_02_030 crossref_primary_10_3389_ffgc_2023_1162291 crossref_primary_10_3390_rs13061105 crossref_primary_10_3390_rs13040641 crossref_primary_10_3390_s130810027 crossref_primary_10_3390_rs17040652 crossref_primary_10_1007_s11368_019_02418_z crossref_primary_10_3390_rs10091446 crossref_primary_10_1088_2515_7620_add3d7 crossref_primary_10_1007_s41064_024_00323_w crossref_primary_10_1080_01431161_2020_1718242 crossref_primary_10_1117_1_JRS_16_034525 crossref_primary_10_3390_rs12162578 crossref_primary_10_3390_rs5020891 crossref_primary_10_3390_s20185394 crossref_primary_10_3390_rs11070738 crossref_primary_10_1016_j_earscirev_2023_104337 crossref_primary_10_3390_s20164550 crossref_primary_10_1080_10106049_2019_1624988 crossref_primary_10_1016_j_isprsjprs_2023_10_003 crossref_primary_10_1002_ppj2_20007 crossref_primary_10_1186_s13007_023_01046_6 crossref_primary_10_1016_j_geoderma_2018_12_049 crossref_primary_10_1109_TGRS_2018_2889318 crossref_primary_10_1021_acssensors_5c01215 crossref_primary_10_3390_rs70912009 crossref_primary_10_1016_j_infrared_2022_104163 crossref_primary_10_1016_j_rsase_2021_100676 crossref_primary_10_3390_f12121747 crossref_primary_10_1007_s41742_025_00752_4 crossref_primary_10_1016_j_agrformet_2017_10_017 crossref_primary_10_3389_fpls_2022_820585 crossref_primary_10_3390_rs11030230 crossref_primary_10_3390_rs14133022 crossref_primary_10_1016_j_scitotenv_2019_01_379 crossref_primary_10_1080_10106049_2018_1434687 crossref_primary_10_3390_rs15030559 crossref_primary_10_1016_j_ecoinf_2025_103208 crossref_primary_10_3390_rs10020172 crossref_primary_10_1016_j_indcrop_2018_09_055 crossref_primary_10_1016_j_ecolind_2020_106467 crossref_primary_10_1109_TGRS_2025_3553751 crossref_primary_10_3390_rs12233891 crossref_primary_10_1016_j_rse_2018_11_016 crossref_primary_10_3390_f15050782 crossref_primary_10_3390_rs13163198 crossref_primary_10_3390_su142013076 crossref_primary_10_1007_s11119_022_09920_4 crossref_primary_10_1016_j_compag_2022_107019 crossref_primary_10_1016_j_isprsjprs_2016_03_010 crossref_primary_10_1080_10106049_2020_1756461 crossref_primary_10_1007_s12145_024_01657_0 crossref_primary_10_1016_j_ecolind_2016_02_033 crossref_primary_10_3389_fpls_2019_01380 crossref_primary_10_3390_rs15153898 crossref_primary_10_1016_j_compag_2021_106654 crossref_primary_10_1016_j_jag_2016_09_008 crossref_primary_10_1016_j_talanta_2023_124310 crossref_primary_10_3390_rs15061497 crossref_primary_10_1002_eap_1436 crossref_primary_10_1016_j_eja_2022_126548 crossref_primary_10_1016_j_jhazmat_2020_122427 crossref_primary_10_1063_1_5034503 crossref_primary_10_1007_s10661_024_12478_5 crossref_primary_10_1109_JSTARS_2015_2422734 crossref_primary_10_3390_rs16142549 crossref_primary_10_1016_j_agrformet_2018_02_010 crossref_primary_10_3390_rs16173142 crossref_primary_10_1016_j_compag_2020_105621 crossref_primary_10_1155_2014_953830 crossref_primary_10_1016_j_ecoinf_2016_11_005 crossref_primary_10_1016_j_foreco_2023_121461 crossref_primary_10_3390_rs13061072 |
| Cites_doi | 10.1080/01431160110104647 10.1080/01431160902895480 10.1021/ac035522m 10.1177/0309133310385371 10.1016/S0034-4257(02)00011-1 10.1016/j.isprsjprs.2007.07.004 10.1086/283931 10.1038/nature02403 10.1016/j.rse.2008.10.018 10.1890/1051-0761(1997)007[0431:HSRRSO]2.0.CO;2 10.1007/0-387-25465-X_12 10.1016/j.rse.2005.12.011 10.4324/9781849776608 10.1016/j.aquabot.2008.02.009 10.1016/j.chemolab.2004.01.002 10.1016/j.aca.2007.03.023 10.1080/10106040802556207 10.1021/ac60214a047 10.1016/j.rse.2009.08.010 10.1007/978-1-4757-2440-0 10.1016/0034-4257(89)90069-2 10.1016/j.rse.2008.04.008 10.1007/s11258-009-9650-z 10.1111/j.1461-0248.2007.01112.x 10.1016/j.rse.2004.06.008 10.1080/01431160512331326738 10.3168/jds.2008-0985 10.1023/A:1024704204037 10.1007/s10750-010-0554-7 10.1109/36.3001 10.1016/S0378-1127(97)00269-7 10.1023/B:STCO.0000035301.49549.88 10.1016/S0034-4257(98)00084-4 10.1016/S0034-4257(98)00014-5 10.1080/00031305.1983.10483087 10.1109/TGRS.2003.813128 10.3354/meps011063 10.1080/01431160310001654923 10.1017/S0376892906003341 10.1080/00288230909510524 10.1016/j.ecss.2009.12.005 10.1007/978-3-642-14212-3_10 10.1039/c0an00387e 10.1016/j.jag.2009.08.006 10.1016/j.compag.2010.05.006 10.1007/s11119-010-9185-2 10.1016/j.geoderma.2008.09.016 10.1201/9781420053432.ch12 10.1093/treephys/tpq048 10.1016/S0034-4257(01)00182-1 10.1016/j.rse.2008.07.003 10.14214/sf.575 10.1080/01431160110075622 10.1016/j.chemolab.2004.01.003 10.1093/bioinformatics/btq245 10.1016/j.chemolab.2009.04.012 10.1016/j.rse.2005.10.006 10.1016/S0169-7439(01)00155-1 10.1016/j.isprsjprs.2008.01.001 10.1007/s11104-009-0026-x 10.1111/j.1365-2699.2007.01806.x 10.1142/5089 10.1016/j.rse.2003.11.001 10.2989/SF.2008.70.3.11.672 10.14358/PERS.76.12.1385 10.1016/0034-4257(88)90092-2 10.1016/0034-4257(92)90133-5 10.1023/A:1021166010892 10.1162/089976600300015565 10.1016/S0034-4257(00)00163-2 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2013 2014 INIST-CNRS Wageningen University & Research |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2013 – notice: 2014 INIST-CNRS – notice: Wageningen University & Research |
| DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 QVL |
| DOI | 10.1080/01431161.2012.725958 |
| DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic NARCIS:Publications |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 1743 |
| ExternalDocumentID | oai_library_wur_nl_wurpubs_432365 27104924 10_1080_01431161_2012_725958 725958 US201400149732 |
| GeographicLocations | Far East Asia Indonesia |
| GeographicLocations_xml | – name: Indonesia |
| GroupedDBID | -~X .7F .DC .QJ 07I 0BK 0R~ 1TA 29J 30N 4.4 4B5 5GY 5VS 6TJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDPE ABFIM ABFMO ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABTAH ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACTTO ADCVX ADGTB ADXEU ADXPE ADYSH AEHZU AEISY AENEX AEOZL AEPSL AEXLP AEYOC AEZBV AFBWG AFION AFKVX AFRVT AGBLW AGDLA AGMYJ AGVKY AGWUF AHDZW AI. AIDBO AIJEM AIYEW AJWEG AKBVH AKHJE AKMBP AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRRR ALXIB AQRUH AVBZW AWYRJ BGSSV BLEHA BWMZZ C0- C5H CAG CCCUG CE4 COF CS3 CYRSC DAOYK DEXXA DGEBU DKSSO DU5 EBS EJD E~A E~B F5P FBQ FETWF H13 HF~ H~9 IFELN IPNFZ J.P KYCEM L8C LJTGL M4Z OPCYK P2P RIG RNANH ROSJB RTWRZ S-T SNACF TAJZE TAP TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UAO UB6 UPT UT5 UU3 VH1 VOH ZGOLN ZY4 ~02 ~S~ AAGDL AAHIA ABUFD AQTUD TASJS AAYXX CITATION IQODW 7S9 L.6 02 08R 7F AAAVI ABFLS ABJVF ABPTK ABQHQ ADCOW AEGYZ AFOLD AHDLD AIRXU FUNRP FVPDL G8K NUSFT QJ QVL S TEJ UNR V1K X |
| ID | FETCH-LOGICAL-c445t-cff1e3f6ca72d7b5b60e1119dd86fbb4dece29cdce520baddc2240fe3fbc80c33 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 107 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000323247900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1366-5901 0143-1161 |
| IngestDate | Tue Jan 05 17:59:11 EST 2021 Fri Sep 05 17:23:44 EDT 2025 Wed Apr 02 07:49:46 EDT 2025 Sat Nov 29 06:13:27 EST 2025 Tue Nov 18 20:48:56 EST 2025 Mon Oct 20 23:34:21 EDT 2025 Thu Apr 03 09:45:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | models calcium potassium Biochemical property nitrogen magnesium accuracy vegetation concentration Plant leaf cartography Support vector machine Hyperspectral imaging sensor PLS regression sodium Mangrove biochemistry Hyperspectral characteristic deltas performances Canopy(vegetation) phosphorus |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c445t-cff1e3f6ca72d7b5b60e1119dd86fbb4dece29cdce520baddc2240fe3fbc80c33 |
| Notes | http://dx.doi.org/10.1080/01431161.2012.725958 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1663569028 |
| PQPubID | 24069 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1080_01431161_2012_725958 wageningen_narcis_oai_library_wur_nl_wurpubs_432365 informaworld_taylorfrancis_310_1080_01431161_2012_725958 crossref_primary_10_1080_01431161_2012_725958 pascalfrancis_primary_27104924 proquest_miscellaneous_1663569028 fao_agris_US201400149732 |
| ProviderPackageCode | QVL |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-01 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2013 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0072 CIT0071 CIT0030 CIT0074 CIT0073 CIT0032 CIT0076 CIT0031 CIT0075 CIT0034 CIT0033 CIT0077 CIT0070 CIT0036 CIT0035 Chang C. (CIT0011) 2011; 2 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 FAO (CIT0022) 2007 CIT0003 CIT0047 CIT0002 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0050 CIT0052 CIT0051 Boto K. (CIT0009) 1983; 11 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0055 Field C. (CIT0025) 1986 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 De Brabanter K (CIT0020) 2010 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0064 CIT0023 CIT0067 Mooney H. (CIT0046) 1986 CIT0066 Bishop C. M. (CIT0008) 2006; 4 Tan K. (CIT0065) 1996 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
| References_xml | – ident: CIT0014 doi: 10.1080/01431160110104647 – volume-title: The World's Mangroves 1980–2005, FAO Forestry Paper 153 year: 2007 ident: CIT0022 – ident: CIT0036 doi: 10.1080/01431160902895480 – ident: CIT0067 doi: 10.1021/ac035522m – ident: CIT0032 doi: 10.1177/0309133310385371 – ident: CIT0057 doi: 10.1016/S0034-4257(02)00011-1 – ident: CIT0024 doi: 10.1016/j.isprsjprs.2007.07.004 – ident: CIT0070 doi: 10.1086/283931 – ident: CIT0076 doi: 10.1038/nature02403 – ident: CIT0038 doi: 10.1016/j.rse.2008.10.018 – volume-title: LS-SVMlab Toolbox User's Guide Version 1.7, ESAT-SISTA Technical Report 10–146 year: 2010 ident: CIT0020 – ident: CIT0043 doi: 10.1890/1051-0761(1997)007[0431:HSRRSO]2.0.CO;2 – ident: CIT0059 doi: 10.1007/0-387-25465-X_12 – ident: CIT0013 doi: 10.1016/j.rse.2005.12.011 – ident: CIT0063 doi: 10.4324/9781849776608 – ident: CIT0071 doi: 10.1016/j.aquabot.2008.02.009 – ident: CIT0066 doi: 10.1016/j.chemolab.2004.01.002 – ident: CIT0068 doi: 10.1016/j.aca.2007.03.023 – ident: CIT0034 doi: 10.1080/10106040802556207 – ident: CIT0053 doi: 10.1021/ac60214a047 – ident: CIT0060 doi: 10.1016/j.rse.2009.08.010 – ident: CIT0069 doi: 10.1007/978-1-4757-2440-0 – ident: CIT0015 doi: 10.1016/0034-4257(89)90069-2 – ident: CIT0044 doi: 10.1016/j.rse.2008.04.008 – ident: CIT0045 doi: 10.1007/s11258-009-9650-z – ident: CIT0041 doi: 10.1111/j.1461-0248.2007.01112.x – ident: CIT0033 doi: 10.1016/j.rse.2004.06.008 – ident: CIT0049 doi: 10.1080/01431160512331326738 – ident: CIT0051 doi: 10.3168/jds.2008-0985 – ident: CIT0074 doi: 10.1023/A:1024704204037 – ident: CIT0001 doi: 10.1007/s10750-010-0554-7 – ident: CIT0030 doi: 10.1109/36.3001 – volume: 2 start-page: 1 volume-title: ACM Transactions on Intelligent Systems and Technology (TIST) year: 2011 ident: CIT0011 – ident: CIT0018 doi: 10.1016/S0378-1127(97)00269-7 – ident: CIT0062 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: CIT0039 doi: 10.1016/S0034-4257(98)00084-4 – ident: CIT0002 doi: 10.1016/S0034-4257(98)00014-5 – ident: CIT0021 doi: 10.1080/00031305.1983.10483087 – ident: CIT0061 doi: 10.1109/TGRS.2003.813128 – volume: 11 start-page: 63 year: 1983 ident: CIT0009 publication-title: Oldendorf doi: 10.3354/meps011063 – ident: CIT0048 doi: 10.1080/01431160310001654923 – ident: CIT0072 doi: 10.1017/S0376892906003341 – ident: CIT0035 doi: 10.1080/00288230909510524 – ident: CIT0077 doi: 10.1016/j.ecss.2009.12.005 – ident: CIT0028 doi: 10.1007/978-3-642-14212-3_10 – ident: CIT0006 doi: 10.1039/c0an00387e – ident: CIT0055 doi: 10.1016/j.jag.2009.08.006 – ident: CIT0005 doi: 10.1016/j.compag.2010.05.006 – start-page: 25 volume-title: On the Economy of Plant Form and Function year: 1986 ident: CIT0025 – ident: CIT0073 doi: 10.1007/s11119-010-9185-2 – ident: CIT0027 doi: 10.1016/j.geoderma.2008.09.016 – ident: CIT0003 doi: 10.1201/9781420053432.ch12 – ident: CIT0052 doi: 10.1093/treephys/tpq048 – ident: CIT0017 doi: 10.1016/S0034-4257(01)00182-1 – ident: CIT0004 doi: 10.1016/j.rse.2008.07.003 – ident: CIT0047 doi: 10.14214/sf.575 – ident: CIT0029 doi: 10.1080/01431160110075622 – ident: CIT0012 doi: 10.1016/j.chemolab.2004.01.003 – ident: CIT0058 doi: 10.1093/bioinformatics/btq245 – ident: CIT0031 doi: 10.1016/j.chemolab.2009.04.012 – ident: CIT0054 doi: 10.1016/j.rse.2005.10.006 – volume: 4 volume-title: Pattern Recognition and Machine Learning year: 2006 ident: CIT0008 – ident: CIT0075 doi: 10.1016/S0169-7439(01)00155-1 – ident: CIT0019 doi: 10.1016/j.isprsjprs.2008.01.001 – ident: CIT0040 doi: 10.1007/s11104-009-0026-x – ident: CIT0026 doi: 10.1111/j.1365-2699.2007.01806.x – ident: CIT0064 doi: 10.1142/5089 – start-page: 345 volume-title: Plant Ecology year: 1986 ident: CIT0046 – ident: CIT0050 doi: 10.1016/j.rse.2003.11.001 – ident: CIT0042 doi: 10.2989/SF.2008.70.3.11.672 – ident: CIT0007 doi: 10.14358/PERS.76.12.1385 – ident: CIT0010 doi: 10.1016/0034-4257(88)90092-2 – ident: CIT0016 doi: 10.1016/0034-4257(92)90133-5 – ident: CIT0023 doi: 10.1023/A:1021166010892 – ident: CIT0056 doi: 10.1162/089976600300015565 – ident: CIT0037 doi: 10.1016/S0034-4257(00)00163-2 – volume-title: Soil Sampling, Preparation, and Analysis year: 1996 ident: CIT0065 |
| SSID | ssj0006757 |
| Score | 2.4054348 |
| Snippet | Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the... |
| SourceID | wageningen proquest pascalfrancis crossref informaworld fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1724 |
| SubjectTerms | absorption features Animal, plant and microbial ecology Applied geophysics band-depth analysis Biological and medical sciences calcium canopy canopy nitrogen continuum removal deciduous forests Earth sciences Earth, ocean, space ecosystems Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques hyperspectral imagery Indonesia infrared reflectance spectroscopy Internal geophysics landscapes leaf-area index least squares magnesium nitrogen nitrogen concentration nitrogen content pasture quality phosphorus potassium reflectance remote sensing remote-sensing data sodium Teledetection and vegetation maps wavelengths |
| Title | Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2012.725958 https://www.proquest.com/docview/1663569028 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F432365 |
| Volume | 34 |
| WOSCitedRecordID | wos000323247900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 1366-5901 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYoQoIL5dGK9BEZietC1vY-ckSIiANCUQGRA5Ll9SONFLxoNwnqv2dmH2lSCSq1p73Ylnc8Hn9jz3xDyIkwzIaMmaDH-nEgNO65lLkgMUakoQtt6ExVbCK5uUlHo_5wJYsfwyrRh3Y1UURlq3Fzq6xsI-LOkJIuBKSCgVnsNAEAH2G2LwB7VPG7wcPSFAMarvOlkYcTerS5c28MsnY2fXAq_4O_FAMnVQmyc3XRizVUuvMCBsBXGVErJ9Tg4___2x7ZbdApPa_VaZ9sWH9AtptC6T9_HZLHK_Bb6_TMAhqqhtKE5o4-KT8u8oWlLp9OVEF1W0qOYmz9mA6vb39AB0PL-TOCfrqoHgxoYcd1LK7_RO4Hl3cXV0FToCHQQkSzQDtYTO5irRJmkizK4p4F29k3Jo1dlgljtWV9bbSNWC8DS6oRQDjokum0pzn_TDZ97u0RoXGoU2Zix0FnBM9UahFpoKkGDBIZ0yG8XRqpG_ZyLKIxlWFLctpITqLkZC25DgmWvZ5r9o6_tD-CVZdqDAZW3t8ydD_Rh0w465B0VRXkrLpQaRRB8vdH7a6pzXIqDOCdAAe4Q45bPZKwMvhko7zN56UMERDGyLADAvitYNJjoalSIjd4c9snX-aF9FP8wEYupeCMx9GXf5_1V7LDqtIfeN30jWzOirn9Trb0YjYpi261z14BmWgkkA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfYQNpe-EYrH8NIvAYa20ncR4SoiijVxDqxByTL8UeZVJwpaTvx33OXOGVFAiTEU15sy7k7n39nn39HyEthmUsZs8mQjfJEGFxzkvmksFbI1Kcu9bYtNlHMZvL8fHQSswmbmFaJMbTviCJaX42LGw-j-5S418hJlwJUwcws9qoABJ_JPXIzg60Ws_rm489bZwx4uHsxjUyc0KV_PfebUXZ2pz2vq18YTDF1UjcgPd-VvdjBpYdX4AJC-ybq2h41vvMf_u4uuR0BKn3TWdQ9csOF--Qg1kr_-v0B-TKB0LV7oVlDQx1ZTWjl6TcdFnW1cdRXywtdU9NXk6OYXr-gJ9PTT9DB0mZ9ibifbto7A1q7RZeOGx6Ss_G7-dtJEms0JEaIbJUYD_rkPje6YLYoszIfOnCfI2tl7stSWGccGxlrXMaGJThTgxjCQ5fSyKHh_BHZD1VwR4TmqZHM5p6D2QheaukQbKC3BhiSWTsgvNeNMpHAHOtoLFXa85xGySmUnOokNyDJttdlR-Dxl_ZHoHalF-Bj1dkpwwgUw8iCswGR121BrdozlWgJiv951OMdu9lOhQHCExADD8iL3pAUaAZvbXRw1bpRKWLCHEl2QAA_LUwFrDXVKKQHjwd-6mpdq7DED6zlRgnOeJ49_vdZPycHk_nHqZq-n314Qg5ZWwkET5-ekv1VvXbPyC2zWV009XG76H4A6CIosQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xC4K98EZbHouRuAYa20ncIwKqRayqit0Ve0CyEj_KSsWpkrYr_j0zeZQWCZDglIttOePx-Bt75huAl9JyF3NuoyEfpZE0tOcU91FmrVSxj13sbVNsIptM1MXFaLqVxU9hleRD-5YoorHVtLkX1vcRca-Jki5GpEKBWfxVhgA-UXtwveHGQo0-G3_e2GKEw23CNBFxYpc-ee43o-wcTns-L38hMKXIybxG4fm26sUOLD24QgsQmpSorSNqfOf_f-4u3O7gKXvT6tM9uObCfbjVVUr_-v0BfDlGx7XNz6ywYd5xmrDSs295mFXl2jFfzi_zipm-lhyj4PoZm56cfsIOltWrBaF-tm5eDFjlZm0wbngI5-P3Z2-Po65CQ2SkTJaR8biawqcmz7jNiqRIhw6N58halfqikNYZx0fGGpfwYYGm1BCC8NilMGpohHgE-6EM7hBYGhvFbeoFKo0URa4cQQ2y1QhCEmsHIPql0aajL6cqGnMd9yynneQ0SU63khtAtOm1aOk7_tL-EFdd5zO0sPr8lJP_SU5kJvgA1LYq6GVzo9IpghZ_HvVoR202U-GI7yR6wAN40euRxpWhN5s8uHJV65gQYUoUOyiAnwqmA1WaqjWRg3fXffpqVekwpw_u5FpLwUWaPP73WT-Hm9N3Y33yYfLxCRzwpgwIXT09hf1ltXLP4IZZLy_r6qjZcj8AGjEnVQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+analysis+of+mangrove+foliar+chemistry+using+PLSR+and+support+vector+regression&rft.jtitle=International+journal+of+remote+sensing&rft.au=Axelsson%2C+Christoffer&rft.au=Skidmore%2C+Andrew+K.&rft.au=Schlerf%2C+Martin&rft.au=Fauzi%2C+Anas&rft.date=2013-01-01&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=34&rft.issue=5&rft.spage=1724&rft.epage=1743&rft_id=info:doi/10.1080%2F01431161.2012.725958&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2012_725958 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1366-5901&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1366-5901&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1366-5901&client=summon |