Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression

Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the st...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of remote sensing Ročník 34; číslo 5; s. 1724 - 1743
Hlavní autori: Axelsson, Christoffer, Skidmore, Andrew K, Schlerf, Martin, Fauzi, Anas, Verhoef, Wouter
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 01.01.2013
Predmet:
ISSN:1366-5901, 0143-1161, 1366-5901
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the study were to (1) assess the accuracy of foliar chemistry retrieval, (2) compare the performance of models based on support vector regression (SVR), i.e. ϵ-SVR, ν-SVR, and least squares SVR (LS-SVR), to models based on partial least squares regression (PLSR), and (3) investigate which spectral transformations are best suited. The results indicated that nitrogen could be successfully modelled at the landscape level (R² = 0.67, root mean square error (RMSE) = 0.17, normalized RMSE (nRMSE) = 15%), whereas estimations of P, K, Ca, Mg, and Na were less encouraging. The developed nitrogen model was applied over the study area to generate a map of foliar N variation, which can be used for studying ecosystem processes in mangroves. While PLSR attained good results directly using all untransformed bands, the highest accuracy for nitrogen modelling was achieved using a combination of LS-SVR and continuum-removed derivative reflectance. All SVR techniques suffered from multicollinearity when using the full spectrum, and the number of independent variables had to be reduced by singling out the most informative wavelength bands. This was achieved by interpreting and visualizing the structure of the PLSR and SVR models.
AbstractList Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the study were to (1) assess the accuracy of foliar chemistry retrieval, (2) compare the performance of models based on support vector regression (SVR), i.e. ϵ-SVR, ν-SVR, and least squares SVR (LS-SVR), to models based on partial least squares regression (PLSR), and (3) investigate which spectral transformations are best suited. The results indicated that nitrogen could be successfully modelled at the landscape level (R² = 0.67, root mean square error (RMSE) = 0.17, normalized RMSE (nRMSE) = 15%), whereas estimations of P, K, Ca, Mg, and Na were less encouraging. The developed nitrogen model was applied over the study area to generate a map of foliar N variation, which can be used for studying ecosystem processes in mangroves. While PLSR attained good results directly using all untransformed bands, the highest accuracy for nitrogen modelling was achieved using a combination of LS-SVR and continuum-removed derivative reflectance. All SVR techniques suffered from multicollinearity when using the full spectrum, and the number of independent variables had to be reduced by singling out the most informative wavelength bands. This was achieved by interpreting and visualizing the structure of the PLSR and SVR models.
Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the study were to (1) assess the accuracy of foliar chemistry retrieval, (2) compare the performance of models based on support vector regression (SVR), i.e. ϵ-SVR, ν-SVR, and least squares SVR (LS-SVR), to models based on partial least squares regression (PLSR), and (3) investigate which spectral transformations are best suited. The results indicated that nitrogen could be successfully modelled at the landscape level (R² = 0.67, root mean square error (RMSE) = 0.17, normalized RMSE (nRMSE) = 15%), whereas estimations of P, K, Ca, Mg, and Na were less encouraging. The developed nitrogen model was applied over the study area to generate a map of foliar N variation, which can be used for studying ecosystem processes in mangroves. While PLSR attained good results directly using all untransformed bands, the highest accuracy for nitrogen modelling was achieved using a combination of LS-SVR and continuum-removed derivative reflectance. All SVR techniques suffered from multicollinearity when using the full spectrum, and the number of independent variables had to be reduced by singling out the most informative wavelength bands. This was achieved by interpreting and visualizing the structure of the PLSR and SVR models.
Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium from mangroves in the Berau Delta, Indonesia. The objectives of the study were to (1) assess the accuracy of foliar chemistry retrieval, (2) compare the performance of models based on support vector regression (SVR), i.e. e-SVR, ¿-SVR, and least squares SVR (LS-SVR), to models based on partial least squares regression (PLSR), and (3) investigate which spectral transformations are best suited. The results indicated that nitrogen could be successfully modelled at the landscape level (R 2 = 0.67, root mean square error (RMSE) = 0.17, normalized RMSE (nRMSE) = 15%), whereas estimations of P, K, Ca, Mg, and Na were less encouraging. The developed nitrogen model was applied over the study area to generate a map of foliar N variation, which can be used for studying ecosystem processes in mangroves. While PLSR attained good results directly using all untransformed bands, the highest accuracy for nitrogen modelling was achieved using a combination of LS-SVR and continuum-removed derivative reflectance. All SVR techniques suffered from multicollinearity when using the full spectrum, and the number of independent variables had to be reduced by singling out the most informative wavelength bands. This was achieved by interpreting and visualizing the structure of the PLSR and SVR models.
Author Schlerf, Martin
Axelsson, Christoffer
Skidmore, Andrew K
Fauzi, Anas
Verhoef, Wouter
Author_xml – sequence: 1
  fullname: Axelsson, Christoffer
– sequence: 2
  fullname: Skidmore, Andrew K
– sequence: 3
  fullname: Schlerf, Martin
– sequence: 4
  fullname: Fauzi, Anas
– sequence: 5
  fullname: Verhoef, Wouter
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27104924$$DView record in Pascal Francis
BookMark eNqFkUGL1TAUhYuM4MzoPxDMRnDznkmapq9uRIbRER4ojrMTwm2a1EheUm_aefTfm9J5KG5mEW4W5zu5OeeiOAsxmKJ4yeiW0R19S5koGZNsyynj25pXTbV7UpyzUspN1VB29s_9WXGR0i9Kqayr-rz4cTMPBtNg9IjgCQTwc3KJREsOEHqM94bY6B0g0T_NwaURZzIlF3rydX_7LQMdSdMwRBzJfTaJSND0aFJyMTwvnlrwybx4mJfF3cfr71c3m_2XT5-vPuw3Wohq3GhrmSmt1FDzrm6rVlLDGGu6bidt24rOaMMb3WlTcdpC12nOBbUZafWO6rK8LN6tvkfoTci7maACoHZJRXDKuxYBZ3WcUAW_jGFqkxIlL2WV4TcrPGD8PZk0qvxLbbyHYOKUFJOyrGRD-S5LXz9IIWnwFiEsbwzoDos_rxkVDRd_99EYU0JjlXYjjDmRHLLzilG19KZOvamlN7X2lmHxH3zyfwR7v2Iu2IgHOEb0nRph9hFPi5aPOLxaHSxEBT1m4O42CwTNp6lzWn8ACKu90g
CODEN IJSEDK
CitedBy_id crossref_primary_10_3390_rs12060958
crossref_primary_10_1080_01431161_2017_1372862
crossref_primary_10_1109_JSTARS_2021_3067890
crossref_primary_10_1007_s40333_025_0009_7
crossref_primary_10_1016_j_jhazmat_2020_123288
crossref_primary_10_3390_rs8060491
crossref_primary_10_1080_09064710_2020_1726999
crossref_primary_10_1016_j_jag_2025_104650
crossref_primary_10_1080_01431161_2022_2093143
crossref_primary_10_1007_s11104_024_07029_3
crossref_primary_10_1016_j_marpolbul_2013_09_033
crossref_primary_10_3390_rs9101060
crossref_primary_10_3390_s21227616
crossref_primary_10_3390_s21010171
crossref_primary_10_1016_j_rse_2015_03_033
crossref_primary_10_1111_jvs_12421
crossref_primary_10_1016_j_rse_2018_02_030
crossref_primary_10_3389_ffgc_2023_1162291
crossref_primary_10_3390_rs13061105
crossref_primary_10_3390_rs13040641
crossref_primary_10_3390_s130810027
crossref_primary_10_3390_rs17040652
crossref_primary_10_1007_s11368_019_02418_z
crossref_primary_10_3390_rs10091446
crossref_primary_10_1088_2515_7620_add3d7
crossref_primary_10_1007_s41064_024_00323_w
crossref_primary_10_1080_01431161_2020_1718242
crossref_primary_10_1117_1_JRS_16_034525
crossref_primary_10_3390_rs12162578
crossref_primary_10_3390_rs5020891
crossref_primary_10_3390_s20185394
crossref_primary_10_3390_rs11070738
crossref_primary_10_1016_j_earscirev_2023_104337
crossref_primary_10_3390_s20164550
crossref_primary_10_1080_10106049_2019_1624988
crossref_primary_10_1016_j_isprsjprs_2023_10_003
crossref_primary_10_1002_ppj2_20007
crossref_primary_10_1186_s13007_023_01046_6
crossref_primary_10_1016_j_geoderma_2018_12_049
crossref_primary_10_1109_TGRS_2018_2889318
crossref_primary_10_1021_acssensors_5c01215
crossref_primary_10_3390_rs70912009
crossref_primary_10_1016_j_infrared_2022_104163
crossref_primary_10_1016_j_rsase_2021_100676
crossref_primary_10_3390_f12121747
crossref_primary_10_1007_s41742_025_00752_4
crossref_primary_10_1016_j_agrformet_2017_10_017
crossref_primary_10_3389_fpls_2022_820585
crossref_primary_10_3390_rs11030230
crossref_primary_10_3390_rs14133022
crossref_primary_10_1016_j_scitotenv_2019_01_379
crossref_primary_10_1080_10106049_2018_1434687
crossref_primary_10_3390_rs15030559
crossref_primary_10_1016_j_ecoinf_2025_103208
crossref_primary_10_3390_rs10020172
crossref_primary_10_1016_j_indcrop_2018_09_055
crossref_primary_10_1016_j_ecolind_2020_106467
crossref_primary_10_1109_TGRS_2025_3553751
crossref_primary_10_3390_rs12233891
crossref_primary_10_1016_j_rse_2018_11_016
crossref_primary_10_3390_f15050782
crossref_primary_10_3390_rs13163198
crossref_primary_10_3390_su142013076
crossref_primary_10_1007_s11119_022_09920_4
crossref_primary_10_1016_j_compag_2022_107019
crossref_primary_10_1016_j_isprsjprs_2016_03_010
crossref_primary_10_1080_10106049_2020_1756461
crossref_primary_10_1007_s12145_024_01657_0
crossref_primary_10_1016_j_ecolind_2016_02_033
crossref_primary_10_3389_fpls_2019_01380
crossref_primary_10_3390_rs15153898
crossref_primary_10_1016_j_compag_2021_106654
crossref_primary_10_1016_j_jag_2016_09_008
crossref_primary_10_1016_j_talanta_2023_124310
crossref_primary_10_3390_rs15061497
crossref_primary_10_1002_eap_1436
crossref_primary_10_1016_j_eja_2022_126548
crossref_primary_10_1016_j_jhazmat_2020_122427
crossref_primary_10_1063_1_5034503
crossref_primary_10_1007_s10661_024_12478_5
crossref_primary_10_1109_JSTARS_2015_2422734
crossref_primary_10_3390_rs16142549
crossref_primary_10_1016_j_agrformet_2018_02_010
crossref_primary_10_3390_rs16173142
crossref_primary_10_1016_j_compag_2020_105621
crossref_primary_10_1155_2014_953830
crossref_primary_10_1016_j_ecoinf_2016_11_005
crossref_primary_10_1016_j_foreco_2023_121461
crossref_primary_10_3390_rs13061072
Cites_doi 10.1080/01431160110104647
10.1080/01431160902895480
10.1021/ac035522m
10.1177/0309133310385371
10.1016/S0034-4257(02)00011-1
10.1016/j.isprsjprs.2007.07.004
10.1086/283931
10.1038/nature02403
10.1016/j.rse.2008.10.018
10.1890/1051-0761(1997)007[0431:HSRRSO]2.0.CO;2
10.1007/0-387-25465-X_12
10.1016/j.rse.2005.12.011
10.4324/9781849776608
10.1016/j.aquabot.2008.02.009
10.1016/j.chemolab.2004.01.002
10.1016/j.aca.2007.03.023
10.1080/10106040802556207
10.1021/ac60214a047
10.1016/j.rse.2009.08.010
10.1007/978-1-4757-2440-0
10.1016/0034-4257(89)90069-2
10.1016/j.rse.2008.04.008
10.1007/s11258-009-9650-z
10.1111/j.1461-0248.2007.01112.x
10.1016/j.rse.2004.06.008
10.1080/01431160512331326738
10.3168/jds.2008-0985
10.1023/A:1024704204037
10.1007/s10750-010-0554-7
10.1109/36.3001
10.1016/S0378-1127(97)00269-7
10.1023/B:STCO.0000035301.49549.88
10.1016/S0034-4257(98)00084-4
10.1016/S0034-4257(98)00014-5
10.1080/00031305.1983.10483087
10.1109/TGRS.2003.813128
10.3354/meps011063
10.1080/01431160310001654923
10.1017/S0376892906003341
10.1080/00288230909510524
10.1016/j.ecss.2009.12.005
10.1007/978-3-642-14212-3_10
10.1039/c0an00387e
10.1016/j.jag.2009.08.006
10.1016/j.compag.2010.05.006
10.1007/s11119-010-9185-2
10.1016/j.geoderma.2008.09.016
10.1201/9781420053432.ch12
10.1093/treephys/tpq048
10.1016/S0034-4257(01)00182-1
10.1016/j.rse.2008.07.003
10.14214/sf.575
10.1080/01431160110075622
10.1016/j.chemolab.2004.01.003
10.1093/bioinformatics/btq245
10.1016/j.chemolab.2009.04.012
10.1016/j.rse.2005.10.006
10.1016/S0169-7439(01)00155-1
10.1016/j.isprsjprs.2008.01.001
10.1007/s11104-009-0026-x
10.1111/j.1365-2699.2007.01806.x
10.1142/5089
10.1016/j.rse.2003.11.001
10.2989/SF.2008.70.3.11.672
10.14358/PERS.76.12.1385
10.1016/0034-4257(88)90092-2
10.1016/0034-4257(92)90133-5
10.1023/A:1021166010892
10.1162/089976600300015565
10.1016/S0034-4257(00)00163-2
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2013
2014 INIST-CNRS
Wageningen University & Research
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2013
– notice: 2014 INIST-CNRS
– notice: Wageningen University & Research
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
QVL
DOI 10.1080/01431161.2012.725958
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 1743
ExternalDocumentID oai_library_wur_nl_wurpubs_432365
27104924
10_1080_01431161_2012_725958
725958
US201400149732
GeographicLocations Far East
Asia
Indonesia
GeographicLocations_xml – name: Indonesia
GroupedDBID -~X
.7F
.DC
.QJ
07I
0BK
0R~
1TA
29J
30N
4.4
4B5
5GY
5VS
6TJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDPE
ABFIM
ABFMO
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABTAH
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACTTO
ADCVX
ADGTB
ADXEU
ADXPE
ADYSH
AEHZU
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AEZBV
AFBWG
AFION
AFKVX
AFRVT
AGBLW
AGDLA
AGMYJ
AGVKY
AGWUF
AHDZW
AI.
AIDBO
AIJEM
AIYEW
AJWEG
AKBVH
AKHJE
AKMBP
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
ALXIB
AQRUH
AVBZW
AWYRJ
BGSSV
BLEHA
BWMZZ
C0-
C5H
CAG
CCCUG
CE4
COF
CS3
CYRSC
DAOYK
DEXXA
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
FBQ
FETWF
H13
HF~
H~9
IFELN
IPNFZ
J.P
KYCEM
L8C
LJTGL
M4Z
OPCYK
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TAP
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UAO
UB6
UPT
UT5
UU3
VH1
VOH
ZGOLN
ZY4
~02
~S~
AAGDL
AAHIA
ABUFD
AQTUD
TASJS
AAYXX
CITATION
IQODW
7S9
L.6
02
08R
7F
AAAVI
ABFLS
ABJVF
ABPTK
ABQHQ
ADCOW
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
G8K
NUSFT
QJ
QVL
S
TEJ
UNR
V1K
X
ID FETCH-LOGICAL-c445t-cff1e3f6ca72d7b5b60e1119dd86fbb4dece29cdce520baddc2240fe3fbc80c33
IEDL.DBID TFW
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000323247900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1366-5901
0143-1161
IngestDate Tue Jan 05 17:59:11 EST 2021
Fri Sep 05 17:23:44 EDT 2025
Wed Apr 02 07:49:46 EDT 2025
Sat Nov 29 06:13:27 EST 2025
Tue Nov 18 20:48:56 EST 2025
Mon Oct 20 23:34:21 EDT 2025
Thu Apr 03 09:45:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords models
calcium
potassium
Biochemical property
nitrogen
magnesium
accuracy
vegetation
concentration
Plant leaf
cartography
Support vector machine
Hyperspectral imaging sensor
PLS regression
sodium
Mangrove
biochemistry
Hyperspectral characteristic
deltas
performances
Canopy(vegetation)
phosphorus
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-cff1e3f6ca72d7b5b60e1119dd86fbb4dece29cdce520baddc2240fe3fbc80c33
Notes http://dx.doi.org/10.1080/01431161.2012.725958
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663569028
PQPubID 24069
PageCount 20
ParticipantIDs crossref_citationtrail_10_1080_01431161_2012_725958
wageningen_narcis_oai_library_wur_nl_wurpubs_432365
informaworld_taylorfrancis_310_1080_01431161_2012_725958
crossref_primary_10_1080_01431161_2012_725958
pascalfrancis_primary_27104924
proquest_miscellaneous_1663569028
fao_agris_US201400149732
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of remote sensing
PublicationYear 2013
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0072
CIT0071
CIT0030
CIT0074
CIT0073
CIT0032
CIT0076
CIT0031
CIT0075
CIT0034
CIT0033
CIT0077
CIT0070
CIT0036
CIT0035
Chang C. (CIT0011) 2011; 2
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
FAO (CIT0022) 2007
CIT0003
CIT0047
CIT0002
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0050
CIT0052
CIT0051
Boto K. (CIT0009) 1983; 11
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0055
Field C. (CIT0025) 1986
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
De Brabanter K (CIT0020) 2010
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0064
CIT0023
CIT0067
Mooney H. (CIT0046) 1986
CIT0066
Bishop C. M. (CIT0008) 2006; 4
Tan K. (CIT0065) 1996
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0014
  doi: 10.1080/01431160110104647
– volume-title: The World's Mangroves 1980–2005, FAO Forestry Paper 153
  year: 2007
  ident: CIT0022
– ident: CIT0036
  doi: 10.1080/01431160902895480
– ident: CIT0067
  doi: 10.1021/ac035522m
– ident: CIT0032
  doi: 10.1177/0309133310385371
– ident: CIT0057
  doi: 10.1016/S0034-4257(02)00011-1
– ident: CIT0024
  doi: 10.1016/j.isprsjprs.2007.07.004
– ident: CIT0070
  doi: 10.1086/283931
– ident: CIT0076
  doi: 10.1038/nature02403
– ident: CIT0038
  doi: 10.1016/j.rse.2008.10.018
– volume-title: LS-SVMlab Toolbox User's Guide Version 1.7, ESAT-SISTA Technical Report 10–146
  year: 2010
  ident: CIT0020
– ident: CIT0043
  doi: 10.1890/1051-0761(1997)007[0431:HSRRSO]2.0.CO;2
– ident: CIT0059
  doi: 10.1007/0-387-25465-X_12
– ident: CIT0013
  doi: 10.1016/j.rse.2005.12.011
– ident: CIT0063
  doi: 10.4324/9781849776608
– ident: CIT0071
  doi: 10.1016/j.aquabot.2008.02.009
– ident: CIT0066
  doi: 10.1016/j.chemolab.2004.01.002
– ident: CIT0068
  doi: 10.1016/j.aca.2007.03.023
– ident: CIT0034
  doi: 10.1080/10106040802556207
– ident: CIT0053
  doi: 10.1021/ac60214a047
– ident: CIT0060
  doi: 10.1016/j.rse.2009.08.010
– ident: CIT0069
  doi: 10.1007/978-1-4757-2440-0
– ident: CIT0015
  doi: 10.1016/0034-4257(89)90069-2
– ident: CIT0044
  doi: 10.1016/j.rse.2008.04.008
– ident: CIT0045
  doi: 10.1007/s11258-009-9650-z
– ident: CIT0041
  doi: 10.1111/j.1461-0248.2007.01112.x
– ident: CIT0033
  doi: 10.1016/j.rse.2004.06.008
– ident: CIT0049
  doi: 10.1080/01431160512331326738
– ident: CIT0051
  doi: 10.3168/jds.2008-0985
– ident: CIT0074
  doi: 10.1023/A:1024704204037
– ident: CIT0001
  doi: 10.1007/s10750-010-0554-7
– ident: CIT0030
  doi: 10.1109/36.3001
– volume: 2
  start-page: 1
  volume-title: ACM Transactions on Intelligent Systems and Technology (TIST)
  year: 2011
  ident: CIT0011
– ident: CIT0018
  doi: 10.1016/S0378-1127(97)00269-7
– ident: CIT0062
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: CIT0039
  doi: 10.1016/S0034-4257(98)00084-4
– ident: CIT0002
  doi: 10.1016/S0034-4257(98)00014-5
– ident: CIT0021
  doi: 10.1080/00031305.1983.10483087
– ident: CIT0061
  doi: 10.1109/TGRS.2003.813128
– volume: 11
  start-page: 63
  year: 1983
  ident: CIT0009
  publication-title: Oldendorf
  doi: 10.3354/meps011063
– ident: CIT0048
  doi: 10.1080/01431160310001654923
– ident: CIT0072
  doi: 10.1017/S0376892906003341
– ident: CIT0035
  doi: 10.1080/00288230909510524
– ident: CIT0077
  doi: 10.1016/j.ecss.2009.12.005
– ident: CIT0028
  doi: 10.1007/978-3-642-14212-3_10
– ident: CIT0006
  doi: 10.1039/c0an00387e
– ident: CIT0055
  doi: 10.1016/j.jag.2009.08.006
– ident: CIT0005
  doi: 10.1016/j.compag.2010.05.006
– start-page: 25
  volume-title: On the Economy of Plant Form and Function
  year: 1986
  ident: CIT0025
– ident: CIT0073
  doi: 10.1007/s11119-010-9185-2
– ident: CIT0027
  doi: 10.1016/j.geoderma.2008.09.016
– ident: CIT0003
  doi: 10.1201/9781420053432.ch12
– ident: CIT0052
  doi: 10.1093/treephys/tpq048
– ident: CIT0017
  doi: 10.1016/S0034-4257(01)00182-1
– ident: CIT0004
  doi: 10.1016/j.rse.2008.07.003
– ident: CIT0047
  doi: 10.14214/sf.575
– ident: CIT0029
  doi: 10.1080/01431160110075622
– ident: CIT0012
  doi: 10.1016/j.chemolab.2004.01.003
– ident: CIT0058
  doi: 10.1093/bioinformatics/btq245
– ident: CIT0031
  doi: 10.1016/j.chemolab.2009.04.012
– ident: CIT0054
  doi: 10.1016/j.rse.2005.10.006
– volume: 4
  volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: CIT0008
– ident: CIT0075
  doi: 10.1016/S0169-7439(01)00155-1
– ident: CIT0019
  doi: 10.1016/j.isprsjprs.2008.01.001
– ident: CIT0040
  doi: 10.1007/s11104-009-0026-x
– ident: CIT0026
  doi: 10.1111/j.1365-2699.2007.01806.x
– ident: CIT0064
  doi: 10.1142/5089
– start-page: 345
  volume-title: Plant Ecology
  year: 1986
  ident: CIT0046
– ident: CIT0050
  doi: 10.1016/j.rse.2003.11.001
– ident: CIT0042
  doi: 10.2989/SF.2008.70.3.11.672
– ident: CIT0007
  doi: 10.14358/PERS.76.12.1385
– ident: CIT0010
  doi: 10.1016/0034-4257(88)90092-2
– ident: CIT0016
  doi: 10.1016/0034-4257(92)90133-5
– ident: CIT0023
  doi: 10.1023/A:1021166010892
– ident: CIT0056
  doi: 10.1162/089976600300015565
– ident: CIT0037
  doi: 10.1016/S0034-4257(00)00163-2
– volume-title: Soil Sampling, Preparation, and Analysis
  year: 1996
  ident: CIT0065
SSID ssj0006757
Score 2.4054348
Snippet Hyperspectral remote sensing enables the large-scale mapping of canopy biochemical properties. This study explored the possibility of retrieving the...
SourceID wageningen
proquest
pascalfrancis
crossref
informaworld
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1724
SubjectTerms absorption features
Animal, plant and microbial ecology
Applied geophysics
band-depth analysis
Biological and medical sciences
calcium
canopy
canopy nitrogen
continuum removal
deciduous forests
Earth sciences
Earth, ocean, space
ecosystems
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
hyperspectral imagery
Indonesia
infrared reflectance spectroscopy
Internal geophysics
landscapes
leaf-area index
least squares
magnesium
nitrogen
nitrogen concentration
nitrogen content
pasture quality
phosphorus
potassium
reflectance
remote sensing
remote-sensing data
sodium
Teledetection and vegetation maps
wavelengths
Title Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2012.725958
https://www.proquest.com/docview/1663569028
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F432365
Volume 34
WOSCitedRecordID wos000323247900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 1366-5901
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYoQoIL5dGK9BEZietC1vY-ckSIiANCUQGRA5Ll9SONFLxoNwnqv2dmH2lSCSq1p73Ylnc8Hn9jz3xDyIkwzIaMmaDH-nEgNO65lLkgMUakoQtt6ExVbCK5uUlHo_5wJYsfwyrRh3Y1UURlq3Fzq6xsI-LOkJIuBKSCgVnsNAEAH2G2LwB7VPG7wcPSFAMarvOlkYcTerS5c28MsnY2fXAq_4O_FAMnVQmyc3XRizVUuvMCBsBXGVErJ9Tg4___2x7ZbdApPa_VaZ9sWH9AtptC6T9_HZLHK_Bb6_TMAhqqhtKE5o4-KT8u8oWlLp9OVEF1W0qOYmz9mA6vb39AB0PL-TOCfrqoHgxoYcd1LK7_RO4Hl3cXV0FToCHQQkSzQDtYTO5irRJmkizK4p4F29k3Jo1dlgljtWV9bbSNWC8DS6oRQDjokum0pzn_TDZ97u0RoXGoU2Zix0FnBM9UahFpoKkGDBIZ0yG8XRqpG_ZyLKIxlWFLctpITqLkZC25DgmWvZ5r9o6_tD-CVZdqDAZW3t8ydD_Rh0w465B0VRXkrLpQaRRB8vdH7a6pzXIqDOCdAAe4Q45bPZKwMvhko7zN56UMERDGyLADAvitYNJjoalSIjd4c9snX-aF9FP8wEYupeCMx9GXf5_1V7LDqtIfeN30jWzOirn9Trb0YjYpi261z14BmWgkkA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfYQNpe-EYrH8NIvAYa20ncR4SoiijVxDqxByTL8UeZVJwpaTvx33OXOGVFAiTEU15sy7k7n39nn39HyEthmUsZs8mQjfJEGFxzkvmksFbI1Kcu9bYtNlHMZvL8fHQSswmbmFaJMbTviCJaX42LGw-j-5S418hJlwJUwcws9qoABJ_JPXIzg60Ws_rm489bZwx4uHsxjUyc0KV_PfebUXZ2pz2vq18YTDF1UjcgPd-VvdjBpYdX4AJC-ybq2h41vvMf_u4uuR0BKn3TWdQ9csOF--Qg1kr_-v0B-TKB0LV7oVlDQx1ZTWjl6TcdFnW1cdRXywtdU9NXk6OYXr-gJ9PTT9DB0mZ9ibifbto7A1q7RZeOGx6Ss_G7-dtJEms0JEaIbJUYD_rkPje6YLYoszIfOnCfI2tl7stSWGccGxlrXMaGJThTgxjCQ5fSyKHh_BHZD1VwR4TmqZHM5p6D2QheaukQbKC3BhiSWTsgvNeNMpHAHOtoLFXa85xGySmUnOokNyDJttdlR-Dxl_ZHoHalF-Bj1dkpwwgUw8iCswGR121BrdozlWgJiv951OMdu9lOhQHCExADD8iL3pAUaAZvbXRw1bpRKWLCHEl2QAA_LUwFrDXVKKQHjwd-6mpdq7DED6zlRgnOeJ49_vdZPycHk_nHqZq-n314Qg5ZWwkET5-ekv1VvXbPyC2zWV009XG76H4A6CIosQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xC4K98EZbHouRuAYa20ncIwKqRayqit0Ve0CyEj_KSsWpkrYr_j0zeZQWCZDglIttOePx-Bt75huAl9JyF3NuoyEfpZE0tOcU91FmrVSxj13sbVNsIptM1MXFaLqVxU9hleRD-5YoorHVtLkX1vcRca-Jki5GpEKBWfxVhgA-UXtwveHGQo0-G3_e2GKEw23CNBFxYpc-ee43o-wcTns-L38hMKXIybxG4fm26sUOLD24QgsQmpSorSNqfOf_f-4u3O7gKXvT6tM9uObCfbjVVUr_-v0BfDlGx7XNz6ywYd5xmrDSs295mFXl2jFfzi_zipm-lhyj4PoZm56cfsIOltWrBaF-tm5eDFjlZm0wbngI5-P3Z2-Po65CQ2SkTJaR8biawqcmz7jNiqRIhw6N58halfqikNYZx0fGGpfwYYGm1BCC8NilMGpohHgE-6EM7hBYGhvFbeoFKo0URa4cQQ2y1QhCEmsHIPql0aajL6cqGnMd9yynneQ0SU63khtAtOm1aOk7_tL-EFdd5zO0sPr8lJP_SU5kJvgA1LYq6GVzo9IpghZ_HvVoR202U-GI7yR6wAN40euRxpWhN5s8uHJV65gQYUoUOyiAnwqmA1WaqjWRg3fXffpqVekwpw_u5FpLwUWaPP73WT-Hm9N3Y33yYfLxCRzwpgwIXT09hf1ltXLP4IZZLy_r6qjZcj8AGjEnVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+analysis+of+mangrove+foliar+chemistry+using+PLSR+and+support+vector+regression&rft.jtitle=International+journal+of+remote+sensing&rft.au=Axelsson%2C+Christoffer&rft.au=Skidmore%2C+Andrew+K.&rft.au=Schlerf%2C+Martin&rft.au=Fauzi%2C+Anas&rft.date=2013-01-01&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=34&rft.issue=5&rft.spage=1724&rft.epage=1743&rft_id=info:doi/10.1080%2F01431161.2012.725958&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2012_725958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1366-5901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1366-5901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1366-5901&client=summon