Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications
[Display omitted] •A comprehensive review of functional electrospun nanofibers for food packaging.•Nanofibers with antioxidant, antibacterial and antifungal functionalities via electrospinning.•Bioactive agents are encapsulated in electrospun nanofibers for active food packaging. Food packaging is a...
Uložené v:
| Vydané v: | Food research international Ročník 130; s. 108927 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Canada
Elsevier Ltd
01.04.2020
|
| Predmet: | |
| ISSN: | 0963-9969, 1873-7145, 1873-7145 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•A comprehensive review of functional electrospun nanofibers for food packaging.•Nanofibers with antioxidant, antibacterial and antifungal functionalities via electrospinning.•Bioactive agents are encapsulated in electrospun nanofibers for active food packaging.
Food packaging is a multidisciplinary area that encompasses food science and engineering, microbiology, as well as chemistry, and ignited tremendous interest in maintaining the freshness and quality of foods and their raw materials from oxidation and microbial spoilage. With the advances in the packaging industry, they could be engineered as easy-to-open, resealable, active, as well as intelligent with the incorporation of sensory elements while offering desired barrier properties against oxygen and water vapor. In this regard, the use of the electrospinning approach allows producing nanofibrous packaging materials with large surface-to-volume ratios and enables the higher loading of active agents into packaging materials. Electrospun packaging materials have been produced from various polymers (i.e., synthetic and natural) and their (nano)composites, and were mainly exploited for the encapsulation of active agents for their use as active food packaging materials. The electrospinning process was also used for the deposition of electrospun fibers on films to enhance their performance (e.g., as reinforcement material, or to enhance barrier properties). They could be even engineered to provide nutraceuticals to food, or antioxidant, antimicrobial or antifungal protection to the packaged food. In this article, first, introductory descriptions of food packaging, barrier properties, and electrospinning are given. Afterward, active and intelligent food packaging materials are briefly discussed, and the use of electrospinning for the fabrication of active food packaging materials is elaborated. Particular interest has been given to the polymer-type used in the production of electrospun fibers and active properties of the resultant packaging materials (e.g., antioxidant, antibacterial, antifungal). Finally, this review paper concludes with a summary and future outlook towards the development of electrospun food packaging materials. |
|---|---|
| AbstractList | Food packaging is a multidisciplinary area that encompasses food science and engineering, microbiology, as well as chemistry, and ignited tremendous interest in maintaining the freshness and quality of foods and their raw materials from oxidation and microbial spoilage. With the advances in the packaging industry, they could be engineered as easy-to-open, resealable, active, as well as intelligent with the incorporation of sensory elements while offering desired barrier properties against oxygen and water vapor. In this regard, the use of the electrospinning approach allows producing nanofibrous packaging materials with large surface-to-volume ratios and enables the higher loading of active agents into packaging materials. Electrospun packaging materials have been produced from various polymers (i.e., synthetic and natural) and their (nano)composites, and were mainly exploited for the encapsulation of active agents for their use as active food packaging materials. The electrospinning process was also used for the deposition of electrospun fibers on films to enhance their performance (e.g., as reinforcement material, or to enhance barrier properties). They could be even engineered to provide nutraceuticals to food, or antioxidant, antimicrobial or antifungal protection to the packaged food. In this article, first, introductory descriptions of food packaging, barrier properties, and electrospinning are given. Afterward, active and intelligent food packaging materials are briefly discussed, and the use of electrospinning for the fabrication of active food packaging materials is elaborated. Particular interest has been given to the polymer-type used in the production of electrospun fibers and active properties of the resultant packaging materials (e.g., antioxidant, antibacterial, antifungal). Finally, this review paper concludes with a summary and future outlook towards the development of electrospun food packaging materials. Food packaging is a multidisciplinary area that encompasses food science and engineering, microbiology, as well as chemistry, and ignited tremendous interest in maintaining the freshness and quality of foods and their raw materials from oxidation and microbial spoilage. With the advances in the packaging industry, they could be engineered as easy-to-open, resealable, active, as well as intelligent with the incorporation of sensory elements while offering desired barrier properties against oxygen and water vapor. In this regard, the use of the electrospinning approach allows producing nanofibrous packaging materials with large surface-to-volume ratios and enables the higher loading of active agents into packaging materials. Electrospun packaging materials have been produced from various polymers (i.e., synthetic and natural) and their (nano)composites, and were mainly exploited for the encapsulation of active agents for their use as active food packaging materials. The electrospinning process was also used for the deposition of electrospun fibers on films to enhance their performance (e.g., as reinforcement material, or to enhance barrier properties). They could be even engineered to provide nutraceuticals to food, or antioxidant, antimicrobial or antifungal protection to the packaged food. In this article, first, introductory descriptions of food packaging, barrier properties, and electrospinning are given. Afterward, active and intelligent food packaging materials are briefly discussed, and the use of electrospinning for the fabrication of active food packaging materials is elaborated. Particular interest has been given to the polymer-type used in the production of electrospun fibers and active properties of the resultant packaging materials (e.g., antioxidant, antibacterial, antifungal). Finally, this review paper concludes with a summary and future outlook towards the development of electrospun food packaging materials.Food packaging is a multidisciplinary area that encompasses food science and engineering, microbiology, as well as chemistry, and ignited tremendous interest in maintaining the freshness and quality of foods and their raw materials from oxidation and microbial spoilage. With the advances in the packaging industry, they could be engineered as easy-to-open, resealable, active, as well as intelligent with the incorporation of sensory elements while offering desired barrier properties against oxygen and water vapor. In this regard, the use of the electrospinning approach allows producing nanofibrous packaging materials with large surface-to-volume ratios and enables the higher loading of active agents into packaging materials. Electrospun packaging materials have been produced from various polymers (i.e., synthetic and natural) and their (nano)composites, and were mainly exploited for the encapsulation of active agents for their use as active food packaging materials. The electrospinning process was also used for the deposition of electrospun fibers on films to enhance their performance (e.g., as reinforcement material, or to enhance barrier properties). They could be even engineered to provide nutraceuticals to food, or antioxidant, antimicrobial or antifungal protection to the packaged food. In this article, first, introductory descriptions of food packaging, barrier properties, and electrospinning are given. Afterward, active and intelligent food packaging materials are briefly discussed, and the use of electrospinning for the fabrication of active food packaging materials is elaborated. Particular interest has been given to the polymer-type used in the production of electrospun fibers and active properties of the resultant packaging materials (e.g., antioxidant, antibacterial, antifungal). Finally, this review paper concludes with a summary and future outlook towards the development of electrospun food packaging materials. [Display omitted] •A comprehensive review of functional electrospun nanofibers for food packaging.•Nanofibers with antioxidant, antibacterial and antifungal functionalities via electrospinning.•Bioactive agents are encapsulated in electrospun nanofibers for active food packaging. Food packaging is a multidisciplinary area that encompasses food science and engineering, microbiology, as well as chemistry, and ignited tremendous interest in maintaining the freshness and quality of foods and their raw materials from oxidation and microbial spoilage. With the advances in the packaging industry, they could be engineered as easy-to-open, resealable, active, as well as intelligent with the incorporation of sensory elements while offering desired barrier properties against oxygen and water vapor. In this regard, the use of the electrospinning approach allows producing nanofibrous packaging materials with large surface-to-volume ratios and enables the higher loading of active agents into packaging materials. Electrospun packaging materials have been produced from various polymers (i.e., synthetic and natural) and their (nano)composites, and were mainly exploited for the encapsulation of active agents for their use as active food packaging materials. The electrospinning process was also used for the deposition of electrospun fibers on films to enhance their performance (e.g., as reinforcement material, or to enhance barrier properties). They could be even engineered to provide nutraceuticals to food, or antioxidant, antimicrobial or antifungal protection to the packaged food. In this article, first, introductory descriptions of food packaging, barrier properties, and electrospinning are given. Afterward, active and intelligent food packaging materials are briefly discussed, and the use of electrospinning for the fabrication of active food packaging materials is elaborated. Particular interest has been given to the polymer-type used in the production of electrospun fibers and active properties of the resultant packaging materials (e.g., antioxidant, antibacterial, antifungal). Finally, this review paper concludes with a summary and future outlook towards the development of electrospun food packaging materials. |
| ArticleNumber | 108927 |
| Author | Uyar, Tamer Topuz, Fuat |
| Author_xml | – sequence: 1 givenname: Fuat orcidid: 0000-0002-9011-4495 surname: Topuz fullname: Topuz, Fuat email: fuat.topuz@rwth-aachen.de organization: Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 2 givenname: Tamer orcidid: 0000-0002-3989-4481 surname: Uyar fullname: Uyar, Tamer email: tu46@cornell.edu organization: Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32156376$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1v3CAQRVGqZpP2J6TysYd4CxhjUA5VFOWjUqRekjPFMKzYesEBu0r_fdjs5pLLXmY0o_fewHun6DjEAAidE7wkmPAf66WL0SbIS4qJLDshaXeEFkR0Td0R1h6jBZa8qaXk8gSd5rzGGPO2k5_RSUNJy5uOL9CfqzD5-OKtDtNFVYrvtZkgeT2Uyb5t3BxWZYQBzJRiHudQBR2i8z2kXLmYqu1TqlGbv3rlw6rS4zh4o4twyF_QJ6eHDF_3_Qw93d48Xt_XD7_vfl1fPdSGsXaqjcPCUMZ6AY5D0xItJXaCEAeGC9f3WjTGOoahwZhYLQwDQknX9dhayrvmDH3f6Y4pPs-QJ7Xx2cAw6ABxzooyjFlLJCOHocUZSqVoZYF-20PnfgNWjclvdPqv3g0sgMsdwBRncgKnjJ_efj4l7QdFsNrGpdZqH5faxqV2cRV2-4H9fuAQ7-eOB8XRfx6SysZDMGB9KiEpG_0BhVfHTrOn |
| CitedBy_id | crossref_primary_10_1016_j_carbpol_2022_120382 crossref_primary_10_1016_j_fpsl_2022_100970 crossref_primary_10_1016_j_ijbiomac_2024_137262 crossref_primary_10_1016_j_tifs_2022_08_003 crossref_primary_10_1016_j_carbpol_2022_119702 crossref_primary_10_1111_1541_4337_12990 crossref_primary_10_1007_s11947_025_03902_w crossref_primary_10_1016_j_fct_2020_111433 crossref_primary_10_3390_nano13132018 crossref_primary_10_1007_s11694_024_02417_w crossref_primary_10_1016_j_indcrop_2023_117773 crossref_primary_10_1016_j_ijbiomac_2021_10_182 crossref_primary_10_1002_slct_201903981 crossref_primary_10_1016_j_ijbiomac_2022_10_234 crossref_primary_10_1016_j_ijbiomac_2022_12_183 crossref_primary_10_1016_j_tifs_2021_03_014 crossref_primary_10_1016_j_bej_2024_109256 crossref_primary_10_1016_j_fbio_2021_101387 crossref_primary_10_1016_j_focha_2023_100304 crossref_primary_10_1016_j_tifs_2024_104617 crossref_primary_10_1016_j_foodhyd_2022_107572 crossref_primary_10_3390_foods11050697 crossref_primary_10_3390_polym15112418 crossref_primary_10_1016_j_fpsl_2022_100839 crossref_primary_10_3390_molecules26185498 crossref_primary_10_3390_polym15132800 crossref_primary_10_1016_j_jclepro_2022_134567 crossref_primary_10_1088_1742_6596_2114_1_012031 crossref_primary_10_1016_j_matdes_2021_109708 crossref_primary_10_1016_j_ijpharm_2022_121881 crossref_primary_10_3390_app11041808 crossref_primary_10_1016_j_foodchem_2024_142318 crossref_primary_10_1016_j_ijbiomac_2025_145724 crossref_primary_10_1016_j_lwt_2024_115730 crossref_primary_10_1002_jssc_202000148 crossref_primary_10_1016_j_foodchem_2020_127850 crossref_primary_10_3389_fchem_2022_1106230 crossref_primary_10_3390_coatings10090806 crossref_primary_10_3390_foods11193017 crossref_primary_10_1016_j_foodchem_2025_146193 crossref_primary_10_1016_j_ijbiomac_2024_138330 crossref_primary_10_3390_coatings12050644 crossref_primary_10_1016_j_ijbiomac_2025_140127 crossref_primary_10_3390_coatings11111344 crossref_primary_10_3390_coatings14121581 crossref_primary_10_3390_polym17040549 crossref_primary_10_1016_j_chemosphere_2021_133106 crossref_primary_10_26599_FSHW_2024_9250381 crossref_primary_10_3390_nano11071822 crossref_primary_10_1016_j_foodres_2025_117162 crossref_primary_10_1016_j_foodcont_2023_109777 crossref_primary_10_3390_antiox10091378 crossref_primary_10_3390_ma16041438 crossref_primary_10_1016_j_foodres_2025_116746 crossref_primary_10_1016_j_fpsl_2022_100892 crossref_primary_10_1002_app_56794 crossref_primary_10_1002_jsde_12609 crossref_primary_10_3390_su14116727 crossref_primary_10_1016_j_fbio_2023_103372 crossref_primary_10_3389_fnut_2023_1223638 crossref_primary_10_1016_j_foodhyd_2023_109031 crossref_primary_10_1007_s11947_024_03641_4 crossref_primary_10_1007_s11947_025_03903_9 crossref_primary_10_1016_j_molstruc_2024_139486 crossref_primary_10_1016_j_molliq_2025_127364 crossref_primary_10_1016_j_jfoodeng_2024_112163 crossref_primary_10_1016_j_foodhyd_2023_108864 crossref_primary_10_1016_j_ijbiomac_2023_125245 crossref_primary_10_1016_j_fpsl_2023_101234 crossref_primary_10_1016_j_ifset_2021_102804 crossref_primary_10_1016_j_lwt_2021_111310 crossref_primary_10_3390_molecules28083592 crossref_primary_10_1007_s11947_024_03517_7 crossref_primary_10_1016_j_foodchem_2021_130671 crossref_primary_10_3390_polym14194172 crossref_primary_10_3390_molecules27175490 crossref_primary_10_1002_pts_2809 crossref_primary_10_3390_foods12152881 crossref_primary_10_1038_s41598_025_88008_1 crossref_primary_10_1080_10408398_2021_1886038 crossref_primary_10_3390_polym17162201 crossref_primary_10_1007_s42114_021_00230_3 crossref_primary_10_3390_encyclopedia1020030 crossref_primary_10_1016_j_foodchem_2024_140329 crossref_primary_10_1108_IJRDM_08_2020_0301 crossref_primary_10_1016_j_carbpol_2024_122267 crossref_primary_10_3390_foods11131884 crossref_primary_10_1016_j_jece_2021_105107 crossref_primary_10_1111_jfpe_14690 crossref_primary_10_1016_j_jtice_2020_08_014 crossref_primary_10_3390_nano10122356 crossref_primary_10_1016_j_foodchem_2022_134994 crossref_primary_10_1016_j_scp_2024_101551 crossref_primary_10_1016_j_eurpolymj_2024_113623 crossref_primary_10_1016_j_colsurfa_2021_126135 crossref_primary_10_1016_j_carbpol_2025_124295 crossref_primary_10_3390_biom11050635 crossref_primary_10_1016_j_foodchem_2022_134990 crossref_primary_10_1007_s12393_021_09282_z crossref_primary_10_1002_masy_202000257 crossref_primary_10_1016_j_jfoodeng_2023_111680 crossref_primary_10_3390_molecules29174271 crossref_primary_10_1016_j_fbio_2022_101578 crossref_primary_10_1016_j_fct_2020_111825 crossref_primary_10_1007_s12393_021_09304_w crossref_primary_10_3390_polym15102318 crossref_primary_10_1051_bioconf_202411002011 crossref_primary_10_1007_s13399_024_06066_3 crossref_primary_10_1515_epoly_2023_0097 crossref_primary_10_1016_j_fbp_2022_08_002 crossref_primary_10_1016_j_foohum_2025_100712 crossref_primary_10_1016_j_foodcont_2021_107876 crossref_primary_10_1080_10408398_2020_1863327 crossref_primary_10_1007_s11947_023_03284_x crossref_primary_10_1016_j_ijbiomac_2023_123885 crossref_primary_10_3390_foods12081692 crossref_primary_10_1007_s10965_025_04278_3 crossref_primary_10_1016_j_carbpol_2021_118616 crossref_primary_10_1016_j_indcrop_2021_114300 crossref_primary_10_1039_D3RA07075A crossref_primary_10_1002_pol_20250247 crossref_primary_10_1016_j_fbio_2023_102633 crossref_primary_10_1016_j_eurpolymj_2024_113565 crossref_primary_10_1016_j_ijbiomac_2024_130210 crossref_primary_10_1002_slct_202304294 crossref_primary_10_3390_polym15102336 crossref_primary_10_3390_nano12071077 crossref_primary_10_1111_jfpp_15512 crossref_primary_10_1016_j_sjbs_2020_09_025 crossref_primary_10_1016_j_foodhyd_2023_109523 crossref_primary_10_3390_polym15132882 crossref_primary_10_1016_j_fochx_2025_102584 crossref_primary_10_1016_j_jclepro_2023_137499 crossref_primary_10_3389_fmicb_2022_857423 crossref_primary_10_1088_1742_6596_1681_1_012024 crossref_primary_10_1080_10408398_2021_1899128 crossref_primary_10_1016_j_porgcoat_2022_106794 crossref_primary_10_3390_polym13213779 crossref_primary_10_1177_00405175211055052 crossref_primary_10_3390_polym14010104 crossref_primary_10_3390_polym17081066 crossref_primary_10_3390_molecules26206307 crossref_primary_10_1002_fsn3_2601 crossref_primary_10_1016_j_ijfoodmicro_2024_110976 crossref_primary_10_1016_j_foodchem_2024_141852 crossref_primary_10_3390_coatings14121500 crossref_primary_10_1007_s10965_025_04521_x crossref_primary_10_1016_j_fpsl_2020_100581 crossref_primary_10_3390_agronomy13112734 crossref_primary_10_1111_1541_4337_12827 crossref_primary_10_1016_j_biortech_2020_124610 crossref_primary_10_1002_app_51930 crossref_primary_10_1016_j_ijbiomac_2024_138717 crossref_primary_10_1016_j_ijbiomac_2021_07_140 crossref_primary_10_1016_j_toxicon_2022_04_017 crossref_primary_10_1116_6_0002206 crossref_primary_10_1016_j_foodchem_2025_144059 crossref_primary_10_1016_j_fbio_2024_105557 crossref_primary_10_1016_j_foodchem_2024_140629 crossref_primary_10_3390_antiox10081264 crossref_primary_10_1016_j_crfs_2025_101104 crossref_primary_10_3390_molecules25173953 crossref_primary_10_1016_j_jfoodeng_2023_111635 crossref_primary_10_1016_j_porgcoat_2022_107305 crossref_primary_10_3390_ijms23116295 crossref_primary_10_3390_technologies11050150 crossref_primary_10_1016_j_jconrel_2020_07_038 crossref_primary_10_1016_j_foodres_2023_112970 crossref_primary_10_1016_j_jddst_2021_102693 crossref_primary_10_1016_j_foodhyd_2024_109795 crossref_primary_10_1016_j_ijbiomac_2022_11_114 crossref_primary_10_1111_1750_3841_16948 crossref_primary_10_1016_j_ijbiomac_2024_132834 crossref_primary_10_1080_15440478_2023_2301364 crossref_primary_10_1016_j_ijbiomac_2023_126857 crossref_primary_10_1016_j_ijbiomac_2024_138266 crossref_primary_10_1016_j_matpr_2022_09_224 crossref_primary_10_1002_fsn3_70190 crossref_primary_10_1007_s10570_023_05055_5 crossref_primary_10_3390_ma16175937 crossref_primary_10_1016_j_jallcom_2020_156471 crossref_primary_10_1016_j_mattod_2023_05_005 crossref_primary_10_1080_10408398_2022_2128035 crossref_primary_10_1016_j_foodhyd_2022_107546 crossref_primary_10_1016_j_carbpol_2025_123474 crossref_primary_10_1016_j_foodchem_2021_130481 crossref_primary_10_59761_RCR5102 crossref_primary_10_3390_foods13152378 crossref_primary_10_3390_coatings14040411 crossref_primary_10_1016_j_indcrop_2024_118842 crossref_primary_10_3389_fmats_2024_1406368 crossref_primary_10_1016_j_colsurfa_2024_134923 crossref_primary_10_1016_j_foodcont_2024_110359 crossref_primary_10_1016_j_ijbiomac_2025_145057 crossref_primary_10_1007_s12161_020_01876_3 crossref_primary_10_1016_j_carbpol_2020_116705 crossref_primary_10_1016_j_colsurfa_2023_131245 crossref_primary_10_1016_j_jiec_2022_06_012 crossref_primary_10_1007_s10924_025_03492_w crossref_primary_10_1007_s11483_022_09759_2 crossref_primary_10_1016_j_colsurfa_2021_126659 crossref_primary_10_1016_j_molstruc_2023_137195 crossref_primary_10_3390_polym14020286 crossref_primary_10_3390_molecules26061749 crossref_primary_10_1038_s43016_022_00523_w |
| Cites_doi | 10.3390/polym10050561 10.1016/j.eurpolymj.2018.04.012 10.1016/j.fpsl.2014.04.002 10.1016/j.jfoodeng.2013.11.022 10.1016/j.foodchem.2013.06.018 10.1007/s11051-014-2643-4 10.1016/j.foodcont.2012.01.022 10.1016/j.eurpolymj.2015.01.028 10.1016/j.foodhyd.2019.04.020 10.1021/nl203817r 10.1016/j.carbpol.2017.08.132 10.1016/j.coco.2018.12.002 10.1002/9781118462157.ch18 10.1021/acsomega.8b02662 10.3390/nano8110919 10.1002/pat.4137 10.1016/j.ijbiomac.2018.09.042 10.1016/j.jiec.2018.02.031 10.1016/j.tifs.2014.06.009 10.1007/978-94-009-0131-5_17 10.1016/j.profoo.2011.09.265 10.1007/s13726-016-0496-7 10.1016/j.ifset.2016.08.008 10.1007/s13197-016-2252-6 10.1016/j.fpsl.2018.08.006 10.4315/0362-028X-53.9.767 10.1016/B978-0-08-088504-9.00308-1 10.1016/j.foodhyd.2019.05.001 10.1002/app.44578 10.1039/C5RA14359D 10.1002/app.26445 10.1016/j.foodchem.2017.04.095 10.1177/0040517507080284 10.1021/jf203165k 10.3390/molecules24040767 10.1016/j.foodchem.2015.10.043 10.3390/nano9020262 10.1016/j.arabjc.2015.11.015 10.1007/s12560-016-9235-7 10.1002/star.201500154 10.1016/j.fpsl.2019.100329 10.1016/j.colsurfb.2014.04.006 10.1111/j.1365-2621.2003.tb06992.x 10.1021/acs.jafc.8b01493 10.1016/j.tifs.2013.01.004 10.1002/app.44858 10.1021/am402376c 10.1039/C6RA25977D 10.1016/j.lwt.2018.08.015 10.1016/j.matdes.2019.107885 10.1016/0260-8774(94)00029-9 10.1016/j.fpsl.2019.100357 10.1016/j.ijfoodmicro.2018.12.007 10.3390/nano7110383 10.1016/j.lwt.2019.108280 10.1007/s13197-014-1508-2 10.1016/j.cofs.2018.05.010 10.1016/j.ijfoodmicro.2018.09.024 10.1533/9780857092786.4.571 10.1016/j.tifs.2016.09.014 10.1016/j.fpsl.2019.100385 10.1088/2053-1591/ab5396 10.1016/j.ijbiomac.2018.07.028 10.1016/j.foodchem.2015.03.088 10.1016/j.carbpol.2017.09.043 10.1021/acs.accounts.7b00218 10.1016/j.bios.2010.11.045 10.1016/j.lwt.2017.01.065 10.3389/fmicb.2015.00611 10.1038/pj.2017.7 10.1016/j.foodhyd.2018.02.028 10.1016/j.compositesb.2019.107074 10.1016/j.foodres.2014.03.033 10.1016/j.tifs.2018.08.005 10.1016/j.carbpol.2012.11.040 10.1016/j.fpsl.2019.100390 10.1016/j.foodhyd.2012.12.007 10.1016/j.tifs.2016.10.019 10.1155/2015/750726 10.1021/acs.chemrev.8b00593 10.1111/jam.12158 10.1016/j.foodchem.2018.06.150 10.3390/nano7020042 10.1111/1541-4337.12343 10.1063/1.1647685 10.1016/S0924-2244(97)01051-0 10.1016/j.foodcont.2011.10.043 10.1007/s10853-015-9059-0 10.1016/j.ijbiomac.2018.03.002 10.1007/s10924-015-0713-z 10.1201/b12174 10.1002/app.40661 10.1016/j.jfoodeng.2017.08.008 10.3390/microorganisms5030037 10.1016/j.foodhyd.2019.02.015 10.1016/j.jcis.2016.08.021 10.1063/1.4952057 10.1021/jf402923c 10.1155/2016/4046061 10.3390/nano9030346 10.3390/nano8070469 10.1016/j.fct.2013.08.014 10.1016/j.ijbiomac.2014.08.041 10.1016/B978-0-08-102198-9.00013-2 10.3390/coatings8050173 10.1080/10408398.2012.692127 10.3390/molecules22040585 10.1016/j.eurpolymj.2019.01.006 10.1021/jf0528761 10.1016/j.matlet.2019.07.010 10.1021/ie303173w 10.1016/j.matlet.2011.04.039 10.1021/acsomega.9b00279 10.3390/ijms151222438 10.1016/j.actbio.2017.02.029 10.1016/j.polymer.2007.09.037 10.1016/j.ijbiomac.2017.06.095 10.1002/pts.2366 10.1016/j.matlet.2018.03.203 10.1016/j.foodchem.2019.125249 10.1016/j.lwt.2019.108293 10.1002/9781119160243.ch6 10.1016/j.foodchem.2012.01.040 10.1016/j.carbpol.2012.02.009 10.1007/s10853-017-1529-0 10.1016/j.eurpolymj.2016.04.029 10.3390/ijms19030745 10.1016/j.fbp.2016.10.007 10.1016/j.foodchem.2015.11.051 10.1016/j.carbpol.2017.11.063 10.1155/2014/360438 10.1016/j.carbpol.2013.03.079 10.1016/j.powtec.2007.01.035 10.1021/acs.jafc.8b03267 10.3390/nano9020227 10.1016/j.fpsl.2019.100314 10.1016/j.foodhyd.2018.08.056 10.1039/C6RA08465F 10.1002/jsfa.7737 10.1002/mabi.201300058 10.1016/j.foodhyd.2012.05.010 10.1111/1750-3841.13723 10.1016/j.foodhyd.2013.12.023 10.1016/j.ijbiomac.2018.05.224 10.1016/j.carbpol.2017.10.011 10.1016/j.fpsl.2018.08.004 10.1016/j.talanta.2015.07.086 10.1016/j.ijfoodmicro.2016.01.001 10.1016/j.foodres.2015.08.029 10.4081/ijfs.2017.6874 10.1016/j.polymer.2009.10.021 10.1016/j.foodhyd.2016.05.025 10.1002/fsn3.468 10.1007/s10853-017-1580-x 10.1021/acssensors.9b00440 10.1111/j.1750-3841.2007.00301.x 10.3390/nano8040199 10.1039/C6TB02441F 10.1016/j.ijbiomac.2018.06.079 10.1007/s10311-018-0810-z 10.1111/j.1472-765X.1990.tb00130.x 10.1016/j.foodhyd.2015.10.026 10.1007/s12221-015-5108-1 10.1016/j.fpsl.2018.12.005 10.3390/nano7070194 10.1080/10408390902773052 10.1016/j.tifs.2008.07.003 10.1016/S0014-3057(02)00333-6 10.1016/j.polymer.2019.121610 10.1016/j.ijfoodmicro.2017.11.019 10.1016/j.tifs.2019.05.013 10.1016/j.fbp.2018.05.001 10.1016/j.desal.2006.03.078 10.1016/j.tifs.2014.03.004 10.1016/j.jfoodeng.2016.07.012 10.1111/1541-4337.12322 10.1002/app.46117 10.3390/nano8100745 10.3389/fphys.2013.00242 10.1016/j.foodhyd.2016.09.028 10.1016/j.tifs.2016.02.008 10.1016/j.carbpol.2013.04.068 10.3390/pharmaceutics11010006 10.1016/B978-0-12-811441-4.00014-5 10.1016/j.tifs.2013.10.008 10.1021/acs.jafc.8b06226 10.1080/19440049.2017.1325520 10.1038/pj.2011.97 10.1016/j.eurpolymj.2015.10.036 10.1016/j.lwt.2017.04.003 10.3390/nano8030139 10.1016/j.jfoodeng.2018.02.016 10.1016/j.meatsci.2014.06.031 10.1016/j.ijbiomac.2015.08.047 10.1016/j.colsurfb.2016.05.008 10.1016/j.jfoodeng.2015.04.032 10.3390/nano8030129 10.1016/j.ifset.2014.09.012 10.1016/j.eurpolymj.2013.08.028 10.1016/j.carbpol.2017.10.071 10.1080/10408690490441578 10.1007/s10570-018-1648-z 10.4315/0362-028X-48.6.532 10.1016/j.promfg.2017.08.008 10.1111/1750-3841.14061 10.1016/j.foodcont.2015.06.005 10.1039/9781788012942-00238 10.1080/19440049.2017.1355115 10.3390/coatings9080525 10.3390/nano9020270 10.1007/s00289-016-1896-8 10.3168/jds.2015-10374 10.1016/j.ijpharm.2015.08.069 10.1016/j.matlet.2019.03.080 10.1016/B978-0-12-804303-5.00019-5 10.1016/j.nanoso.2018.03.013 10.1007/s11947-016-1772-4 10.1016/j.carbpol.2018.09.061 10.1002/app.45501 10.1002/app.45673 10.1002/app.42475 10.4028/www.scientific.net/JNanoR.56.80 10.1016/j.ijbiomac.2017.10.054 10.1039/C5RA01644D 10.1016/j.foodres.2018.10.021 10.1021/acsapm.8b00034 10.1021/jf400440b 10.1016/j.jfoodeng.2015.01.019 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.foodres.2019.108927 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1873-7145 |
| ExternalDocumentID | 32156376 10_1016_j_foodres_2019_108927 S0963996919308130 |
| Genre | Journal Article Review |
| GroupedDBID | --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALCJ AALRI AAMNW AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABMAC ABXDB ABYKQ ACDAQ ACGFO ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSZ T5K WUQ Y6R ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c445t-cf08c244b8ef6e351a990f811fec68fbba83cdf40e3001da8c4e12177b0dd2673 |
| ISICitedReferencesCount | 234 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521512900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0963-9969 1873-7145 |
| IngestDate | Sat Sep 27 20:32:54 EDT 2025 Thu Oct 02 06:03:03 EDT 2025 Thu Apr 03 07:08:22 EDT 2025 Sat Nov 29 07:06:47 EST 2025 Tue Nov 18 22:10:33 EST 2025 Fri Feb 23 02:48:20 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PBAT PP CDA PLAL PS HNTs PU CNFs P(3HB-4HB) Electrospinning Food packaging XRD Ca(OH)2 SPI CaO CO2TR WPI PEVOH CO@CNPs CMC SiO2 PBS Cur Pd-NPs MP H2O EGCG ATBC LCNFs PA 11 CEO L. innocua GEO RC L. monocytogenes AU WVTR FCV PCL WVPC PCM Nanofibers BC M. lysodeikticus Antifungal O2 Ag-NPs CO2 CNT GNP Antibacterial PHB CTAB HTCC LDPE TTO CHEO WG WVP CFU S. aureus MNV PLLA BCNW GA T4 phage bLF CA E. coli P. aeruginosa S. typhimurium OR OREC THY GO MSN PHBV Antioxidant MSMP NPs LAE β-CD PLGA Pin HP- β-CD S. enterica serovar Typhimurium GTE PVA ZnO PEO GRAS TP REO TEO |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c445t-cf08c244b8ef6e351a990f811fec68fbba83cdf40e3001da8c4e12177b0dd2673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-9011-4495 0000-0002-3989-4481 |
| OpenAccessLink | http://hdl.handle.net/10754/661308 |
| PMID | 32156376 |
| PQID | 2376229859 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2400451941 proquest_miscellaneous_2376229859 pubmed_primary_32156376 crossref_citationtrail_10_1016_j_foodres_2019_108927 crossref_primary_10_1016_j_foodres_2019_108927 elsevier_sciencedirect_doi_10_1016_j_foodres_2019_108927 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Canada |
| PublicationPlace_xml | – name: Canada |
| PublicationTitle | Food research international |
| PublicationTitleAlternate | Food Res Int |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lin, Dai, Cui (b0675) 2017; 178 Fan, Ren, Huang, Sun (b0405) 2016; 6 Wang, She, Chu, Liu, Jiang, Sun, Jiang (b1115) 2015; 50 Neoh, Ariyanto, Menéndez Galvan, Yoshii (b0845) 2017; 34 Shao, Yan, Chen, Xiao (b0995) 2018; 135 Alves, Costa, Hilliou, Larotonda, Gonçalves, Sereno, Coelhoso (b0040) 2006; 199 Torres-Giner, Echegoyen, Teruel-Juanes, Badia, Ribes-Greus, Lagaron (b1090) 2018; 8 Cui, Wu, Li, Lin (b0290) 2017; 81 Fabra, López-Rubio, Cabedo, Lagaron (b0370) 2016; 483 Aytac, Z., & Uyar, T. (2018). 13 - Applications of core-shell nanofibers: Drug and biomolecules release and gene therapy. In M. L. Focarete & A. Tampieri (Eds.), Core-Shell Nanostructures for Drug Delivery and Theranostics (pp. 375–404): Woodhead Publishing. Senthil Muthu Kumar, T., Senthil Kumar, K., Rajini, N., Siengchin, S., Ayrilmis, N., & Varada Rajulu, A. (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering, 175, 107074. Mascheroni, Fuenmayor, Cosio, Di Silvestro, Piergiovanni, Mannino, Schiraldi (b0765) 2013; 98 Zhu, Cui, Li, Lin (b1270) 2019; 21 Arkoun, Daigle, Heuzey, Ajji (b0060) 2017; 5 Yang, He, Xu, Yu (b1190) 2009; 50 Arrieta, López, López, Kenny, Peponi (b0085) 2015; 73 Lee (b0640) 2016; 57 Han, Ruiz-Garcia, Qian, Yang (b0505) 2018; 17 Wang, Yang, Li, Jiao (b1135) 2011; 26 Padrão, Machado, Casal, Lanceros-Méndez, Rodrigues, Dourado, Sencadas (b0870) 2015; 81 Cherpinski, Torres-Giner, Cabedo, Lagaron (b0255) 2017; 34 Altekruse, Swerdlow, Stern (b0030) 1998; 14 Anu Bhushani, Anandharamakrishnan (b0055) 2014; 38 Foltynowicz, Z. (2019). Nanoiron-based composite oxygen scavengers for food packaging. In Cirillo, G., Kozlowski, M.A., Spizzirri, U. G. (Ed.), Composites Materials for Food Packaging (pp. 209–234). Beverly, MA Scrivener Publishing. Fabra, Lopez-Rubio, Lagaron (b0380) 2014; 127 Haider, Haider, Kang (b0485) 2018; 11 Zhijiang, Cong, Ping, Yunming (b1250) 2018; 222 Anka, Balkus (b0050) 2013; 52 Fan, Jiang, Sun, Li, Ren, Liang, Huang (b0400) 2015; 16 Fonseca, de Oliveira, de Oliveira, da Rosa Zavareze, Dias, Lim (b0435) 2019; 116 Weiss, Kanjanapongkul, Wongsasulak, Yoovidhya (b1150) 2012 Castro-Mayorga, Randazzo, Fabra, Lagaron, Aznar, Sánchez (b0200) 2017; 79 Melendez-Rodriguez, Figueroa-Lopez, Bernardos, Martínez-Máñez, Cabedo, Torres-Giner, Lagaron (b0770) 2019; 9 Echegoyen, Fabra, Castro-Mayorga, Cherpinski, Lagaron (b0340) 2017; 60 Topuz, Uyar (b1065) 2018; 11 Tomasula, Sousa, Liou, Li, Bonnaillie, Liu (b1050) 2016; 99 Fabra, López-Rubio, Ambrosio-Martín, Lagaron (b0365) 2016; 61 Chalco-Sandoval, Fabra, López-Rubio, Lagaron (b0240) 2017; 192 Li, Wang, Chen, Jiang, Jiang, Li, Wang (b0660) 2018; 269 Lin, Yao, Yang, Wei, Li, Gong, Wu (b0710) 2008; 107 Neo, Swift, Ray, Gizdavic-Nikolaidis, Jin, Perera (b0840) 2013; 141 Celebioglu, Topuz, Uyar (b0210) 2019; 1 Kerry (b0600) 2008 Echegoyen, Nerín (b0345) 2013; 62 Fuenmayor, Mascheroni, Cosio, Piergiovanni, Benedetti, Ortenzi, Mannino (b0440) 2013; 32 Kuntzler, S. G., Almeida, A. C. A. d., Costa, J. A. V., & Morais, M. G. d. (2018). Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity. International Journal of Biological Macromolecules, 113, 1008–1014. Kuswandi (b0625) 2017 Mills (b0780) 2009 Park, Chinnan (b0880) 1995; 25 Xu, Liu, Zhang, Wang, Tan, Zhang (b1185) 2019; 247 Bhullar, Kaya, Jun (b0170) 2015; 23 Dey, Neogi (b0320) 2019; 90 Korehei, Kadla (b0605) 2013; 114 Aytac, Kusku, Durgun, Uyar (b0135) 2016; 63 Alp-Erbay, E., Yeşi̇lsu, A. F., & Türe, M. (2019). Fish gelatin antimicrobial electrospun nanofibers for active food-packaging applications. Journal of Nano Research, 56, 80–97. Nguyen Van Long, Joly, Dantigny (b0850) 2016; 220 Gaikwad, Singh, Ajji (b0450) 2019; 17 Kayaci, Uyar (b0595) 2012; 133 Shao, Niu, Chen, Sun (b0990) 2018; 107 Chalco-Sandoval, Fabra, López-Rubio, Lagaron (b0235) 2015; 164 Ignatova, Manolova, Rashkov (b0545) 2013; 13 Fabra, Busolo, Lopez-Rubio, Lagaron (b0355) 2013; 31 Tian, Tu, Shi, Wang, Deng, Li, Du (b1045) 2016; 145 Paster, Juven, Shaaya, Menasherov, Nitzan, Weisslowicz, Ravid (b0885) 1990; 11 Silva, F. T. d., Cunha, K. F. d., Fonseca, L. M., Antunes, M. D., Halal, S. L. M. E., Fiorentini, Â. M., Zavareze, E. d. R., & Dias, A. R. G. (2018). Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. International Journal of Biological Macromolecules, 118, 107–115. Yao, Zhang, Lim, Chen (b1200) 2017; 49 Korehei, Kadla (b0610) 2014; 100 Realini, Marcos (b0930) 2014; 98 Yildirim, Röcker, Pettersen, Nilsen-Nygaard, Ayhan, Rutkaite, Coma (b1215) 2018; 17 Marsh, Bugusu (b0760) 2007; 72 Moreira, J. B., Terra, A. L. M., Costa, J. A. V., & Morais, M. G. d. (2018). Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin. International Journal of Biological Macromolecules, 118, 1855–1862. Moreira, J. B., Lim, L.-T., Zavareze, E. d. R., Dias, A. R. G., Costa, J. A. V., & Morais, M. G. d. (2019). Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning. Food Hydrocolloids, 93, 131–136. Han, Steckl (b0500) 2013; 5 Wen, Zhu, Wu, Zong, Jing, Han (b1160) 2016; 59 Cui, Bai, Lin (b0280) 2018; 179 Fabra, López-Rubio, Lagaron (b0385) 2014; 39 Kayaci, Sen, Durgun, Uyar (b0585) 2014; 62 Kayaci, Umu, Tekinay, Uyar (b0590) 2013; 61 Corradini, Curti, Meniqueti, Martins, Rubira, Muniz (b0275) 2014; 15 Gruenwald, Freder, Armbruester (b0475) 2010; 50 Cui, Bai, Rashed, Lin (b0285) 2018; 266 Estevez-Areco, Guz, Candal, Goyanes (b0350) 2018; 18 Wen, Li, Si, Wang, Li, Yu, Ding (b1165) 2015; 144 Wang, Hao, Wang, Chen, Jiang, Jiang (b1110) 2017; 63 Agarwal, Raheja, Natarajan, Chandra (b0005) 2014; 26 María José Fabra, A. L.-R., & Lagaron, a. J. M. (2016). Nanostructured multilayers for food packaging by electrohydrodynamic processing. In Miguel Ângelo Parente Ribeiro Cerqueira, Ricardo Nuno Correia Pereira, Óscar Leandro da Silva Ramos, José António Couto Teixeira & A. A. Vicente (Eds.), Edible Food Packaging - Materials and Processing Technologies. Boca Raton: CRC Press - Taylor & Francis Group. Powers, Berkowitz (b0915) 1990; 53 Wang, He, Liu, Yan, Ning, Long (b1140) 2019; 254 Marcos, Sárraga, Castellari, Kappen, Schennink, Arnau (b0750) 2014; 1 Lee, Chang, Lee, Song, Chang, Han (b0645) 2018; 83 Wang, Liu, Jiang, Chai, Li, Cheng, Leng (b1120) 2011; 59 Azeredo, Barud, Farinas, Vasconcellos, Claro (b0155) 2019; 3 Schmatz, D. A., Costa, J. A. V., & Morais, M. G. d. (2019). A novel nanocomposite for food packaging developed by electrospinning and electrospraying. Food Packaging and Shelf Life, 20, 100314. Hwang, Lee, Kong, Seo, Choi (b0535) 2012; 12 Tang, Zhou, Lan, Huang, Luo, Ji, Wang (b1030) 2019; 67 Jiang, Wang, Chu, Ma, Sun, Jiang (b0560) 2015; 72 Siracusa, Rocculi, Romani, Rosa (b1010) 2008; 19 Katsogiannis, Vladisavljević, Georgiadou (b0575) 2015; 69 Wang, Mu, Li, Lin, Lin, Pang (b1125) 2019; 113 Kara, Xiao, Sarker, Jin, Sousa, Liu, Liu (b0570) 2016; 133 Rooney (b0950) 1995 Yang, Li, Yu, Wang, Williams, Zhang (b1195) 2019; 203 Yao, Chen, Ahmad, Huang, Chang, Li (b1210) 2017; 82 Arkoun, Daigle, Holley, Heuzey, Ajji (b0070) 2018; 31 Fabra, Lopez-Rubio, Lagaron (b0375) 2013; 32 Müller, Schmid (b0815) 2019; 8 Perera, Balchin, Baldwin, Stanley, Tian (b0895) 2003; 68 Topuz, Uyar (b1060) 2017; 80 Celebioglu, Uyar (b0220) 2011; 65 Uyar, T. Kny, E. (2017). Electrospun Materials for Tissue Engineering and Biomedical Applications: Research, Design and Commercialization. 1st ed. Woodhead Publishing (Elsevier). Maftoonazad, Ramaswamy (b0740) 2018; 23 Sharif, Golmakani, Niakousari, Hosseini, Ghorani, Lopez-Rubio (b1000) 2018; 8 Zhang, Feng, Zhang (b1235) 2018; 80 Niu, Zhan, Shao, Xiang, Sun, Chen, Gao (b0855) 2019 Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic bilayer coating based on annealed electrospun ultrathin poly(ε-caprolactone) fibers and electrosprayed nanostructured silica microparticles for easy emptying packaging applications. Coatings, 8 (5). Leyva Salas, Mounier, Valence, Coton, Thierry, Coton (b0655) 2017; 5 Aydogdu, Sumnu, Sahin (b0100) 2018; 181 Topuz, Uyar (b1070) 2018; 3 Aytac, Keskin, Tekinay, Uyar (b0130) 2017; 134 Sundaray, Subramanian, Natarajan, Xiang, Chang, Fann (b1020) 2004; 84 Aytac, Kusku, Durgun, Uyar (b0140) 2016; 197 Vergis, Gokulakrishnan, Agarwal, Kumar (b1105) 2015; 55 Yousefi, H., Su, H.-M., Imani, S. M., Alkhaldi, K., M. Filipe, C. D., & Didar, T. F. (2019). Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sensors, 4 (4), 808–821. Kayaci, Ertas, Uyar (b0580) 2013; 61 Cherpinski, Torres-Giner, Cabedo, Méndez, Lagaron (b0260) 2018; 135 Fabra, Castro-Mayorga, Randazzo, Lagarón, López-Rubio, Aznar, Sánchez (b0360) 2016; 8 Hamsici, Cinar, Celebioglu, Uyar, Tekinay, Guler (b0490) 2017; 5 Feng, Wen, Yang, Li, Lou, Zong, Wu (b0410) 2017; 7 Peng, Liu, Ramakrishna (b0890) 2017; 134 Liu, Liang, Wang, Qin, Zhang (b0720) 2018; 10 Homaeigohar, Davoudpour, Habibi, Elbahri (b0530) 2017; 7 Wang, Wang, Liu, Wang, Jiang, Li, Jiang (b1130) 2018; 181 Noruzi (b0860) 2016; 96 Balogh, Cselkó, Démuth, Verreck, Mensch, Marosi, Nagy (b0165) 2015; 495 Tian, Deng, Huang, Liu, Yi, Dong (b1040) 2019 Camerlo, Vebert-Nardin, Rossi, Popa (b0190) 2013; 49 Castro-Mayorga, Fabra, Pourrahimi, Olsson, Lagaron (b0195) 2017; 101 Hernández-López, Rodríguez-Carpena, Lemus-Flores, Galindo-García, Estévez (b0525) 2016; 53 Munteanu, Aytac, Pricope, Uyar, Vasile (b0820) 2014; 16 Cerqueira, Fabra, Castro-Mayorga, Bourbon, Pastrana, Vicente, Lagaron (b0225) 2016; 9 Lin, Yin, Liu, Li, Ren, Sun, Huang (b0705) 2018; 63 Clavijo-Grimaldo, Ponce-Zapata, Casadiego-Torrado (b0270) 2019; 75 Wei, Sun, Liu, Xiong, Qin (b1145) 2019; 179 Radusin, Torres-Giner, Stupar, Ristic, Miletic, Novakovic, Lagaron (b0925) 2019; 21 Pérez-Masiá, López-Rubio, Lagarón (b0900) 2013; 30 Topuz, Satilmis, Uyar (b1055) 2019; 178 I. S. Arvanitoyannis, G. O. (201 Cherpinski (10.1016/j.foodres.2019.108927_b0265) 2018; 25 Arkoun (10.1016/j.foodres.2019.108927_b0065) 2017; 22 10.1016/j.foodres.2019.108927_b0620 10.1016/j.foodres.2019.108927_b0745 Nazari (10.1016/j.foodres.2019.108927_b0825) 2019 Chalco-Sandoval (10.1016/j.foodres.2019.108927_b0235) 2015; 164 Gruenwald (10.1016/j.foodres.2019.108927_b0475) 2010; 50 Kerry (10.1016/j.foodres.2019.108927_b0600) 2008 Yang (10.1016/j.foodres.2019.108927_b1195) 2019; 203 10.1016/j.foodres.2019.108927_b1035 Liu (10.1016/j.foodres.2019.108927_b0720) 2018; 10 Arkoun (10.1016/j.foodres.2019.108927_b0070) 2018; 31 Han (10.1016/j.foodres.2019.108927_b0495) 2017; 53 Kayaci (10.1016/j.foodres.2019.108927_b0590) 2013; 61 Tang (10.1016/j.foodres.2019.108927_b1030) 2019; 67 Fonseca (10.1016/j.foodres.2019.108927_b0435) 2019; 116 Radusin (10.1016/j.foodres.2019.108927_b0925) 2019; 21 Zhu (10.1016/j.foodres.2019.108927_b1265) 2019; 6 Jun (10.1016/j.foodres.2019.108927_b0565) 2018; 19 10.1016/j.foodres.2019.108927_b0755 10.1016/j.foodres.2019.108927_b0635 Li (10.1016/j.foodres.2019.108927_b0660) 2018; 269 Torres-Giner (10.1016/j.foodres.2019.108927_b1080) 2011 Xu (10.1016/j.foodres.2019.108927_b1185) 2019; 247 Yang (10.1016/j.foodres.2019.108927_b1190) 2009; 50 Gaikwad (10.1016/j.foodres.2019.108927_b0450) 2019; 17 Ge (10.1016/j.foodres.2019.108927_b0460) 2012; 26 Yao (10.1016/j.foodres.2019.108927_b1205) 2016; 191 Lin (10.1016/j.foodres.2019.108927_b0700) 2018; 29 Hwang (10.1016/j.foodres.2019.108927_b0535) 2012; 12 Lee (10.1016/j.foodres.2019.108927_b0650) 2007; 77 Echegoyen (10.1016/j.foodres.2019.108927_b0340) 2017; 60 Topuz (10.1016/j.foodres.2019.108927_b1065) 2018; 11 Cerqueira (10.1016/j.foodres.2019.108927_b0225) 2016; 9 Siracusa (10.1016/j.foodres.2019.108927_b1010) 2008; 19 Topuz (10.1016/j.foodres.2019.108927_b1070) 2018; 3 Han (10.1016/j.foodres.2019.108927_b0505) 2018; 17 Topuz (10.1016/j.foodres.2019.108927_b1060) 2017; 80 Neo (10.1016/j.foodres.2019.108927_b0840) 2013; 141 Müller (10.1016/j.foodres.2019.108927_b0815) 2019; 8 Echegoyen (10.1016/j.foodres.2019.108927_b0345) 2013; 62 Liu (10.1016/j.foodres.2019.108927_b0725) 2018; 91 Vanderroost (10.1016/j.foodres.2019.108927_b1095) 2014; 39 Kara (10.1016/j.foodres.2019.108927_b0570) 2016; 133 Clavijo-Grimaldo (10.1016/j.foodres.2019.108927_b0270) 2019; 75 Cacciotti (10.1016/j.foodres.2019.108927_b0180) 2016; 1738 Cui (10.1016/j.foodres.2019.108927_b0290) 2017; 81 Heras-Mozos (10.1016/j.foodres.2019.108927_b0520) 2019; 290 Wang (10.1016/j.foodres.2019.108927_b1110) 2017; 63 Celebioglu (10.1016/j.foodres.2019.108927_b0215) 2019; 4 Homaeigohar (10.1016/j.foodres.2019.108927_b0530) 2017; 7 Agarwal (10.1016/j.foodres.2019.108927_b0005) 2014; 26 Zhijiang (10.1016/j.foodres.2019.108927_b1250) 2018; 222 10.1016/j.foodres.2019.108927_b0095 Xue (10.1016/j.foodres.2019.108927_b1175) 2019; 119 Celebioglu (10.1016/j.foodres.2019.108927_b0220) 2011; 65 Celebioglu (10.1016/j.foodres.2019.108927_b0210) 2019; 1 Lin (10.1016/j.foodres.2019.108927_b0705) 2018; 63 Mascheroni (10.1016/j.foodres.2019.108927_b0765) 2013; 98 Cai (10.1016/j.foodres.2019.108927_b0185) 2017; 52 Hernández-López (10.1016/j.foodres.2019.108927_b0525) 2016; 53 Han (10.1016/j.foodres.2019.108927_b0510) 2005 10.1016/j.foodres.2019.108927_b0785 10.1016/j.foodres.2019.108927_b0665 Lin (10.1016/j.foodres.2019.108927_b0680) 2018; 18 Deng (10.1016/j.foodres.2019.108927_b0310) 2012; 89 10.1016/j.foodres.2019.108927_b0420 10.1016/j.foodres.2019.108927_b0540 Peng (10.1016/j.foodres.2019.108927_b0890) 2017; 134 Lin (10.1016/j.foodres.2019.108927_b0695) 2018; 97 Paster (10.1016/j.foodres.2019.108927_b0885) 1990; 11 Altekruse (10.1016/j.foodres.2019.108927_b0030) 1998; 14 Liu (10.1016/j.foodres.2019.108927_b0730) 2019; 121 Neo (10.1016/j.foodres.2019.108927_b0835) 2018 Alehosseini (10.1016/j.foodres.2019.108927_b0010) 2019; 113 Cherpinski (10.1016/j.foodres.2019.108927_b0245) 2018; 8 Padrão (10.1016/j.foodres.2019.108927_b0870) 2015; 81 Niu (10.1016/j.foodres.2019.108927_b0855) 2019 He (10.1016/j.foodres.2019.108927_b0515) 2019; 22 10.1016/j.foodres.2019.108927_b0790 Bugatti (10.1016/j.foodres.2019.108927_b0175) 2018; 8 10.1016/j.foodres.2019.108927_b0670 Arrieta (10.1016/j.foodres.2019.108927_b0085) 2015; 73 10.1016/j.foodres.2019.108927_b1085 10.1016/j.foodres.2019.108927_b0795 Aytac (10.1016/j.foodres.2019.108927_b0115) 2014; 120 10.1016/j.foodres.2019.108927_b0430 Jenab (10.1016/j.foodres.2019.108927_b0555) 2017; 26 Daniels (10.1016/j.foodres.2019.108927_b0305) 1985; 48 Tian (10.1016/j.foodres.2019.108927_b1045) 2016; 145 Cui (10.1016/j.foodres.2019.108927_b0285) 2018; 266 Zhang (10.1016/j.foodres.2019.108927_b1245) 2017; 177 Fuenmayor (10.1016/j.foodres.2019.108927_b0440) 2013; 32 Nguyen Van Long (10.1016/j.foodres.2019.108927_b0850) 2016; 220 Cherpinski (10.1016/j.foodres.2019.108927_b0260) 2018; 135 Fan (10.1016/j.foodres.2019.108927_b0400) 2015; 16 10.1016/j.foodres.2019.108927_b0445 Lin (10.1016/j.foodres.2019.108927_b0685) 2019; 19 Pittarate (10.1016/j.foodres.2019.108927_b0905) 2011; 43 Liu (10.1016/j.foodres.2019.108927_b0735) 2017; 7 Mousavi Khaneghah (10.1016/j.foodres.2019.108927_b0810) 2018; 111 Aruchamy (10.1016/j.foodres.2019.108927_b0090) 2018; 16 Hamsici (10.1016/j.foodres.2019.108927_b0490) 2017; 5 Estevez-Areco (10.1016/j.foodres.2019.108927_b0350) 2018; 18 Liu (10.1016/j.foodres.2019.108927_b0715) 2018; 66 Pan (10.1016/j.foodres.2019.108927_b0875) 2019; 300 Chalco-Sandoval (10.1016/j.foodres.2019.108927_b0240) 2017; 192 Noruzi (10.1016/j.foodres.2019.108927_b0860) 2016; 96 Lee (10.1016/j.foodres.2019.108927_b0645) 2018; 83 Corradini (10.1016/j.foodres.2019.108927_b0275) 2014; 15 Fabra (10.1016/j.foodres.2019.108927_b0385) 2014; 39 Yao (10.1016/j.foodres.2019.108927_b1210) 2017; 82 Castro Mayorga (10.1016/j.foodres.2019.108927_b0205) 2018; 135 Samanta (10.1016/j.foodres.2019.108927_b0965) 2016; 69 Pérez-Masiá (10.1016/j.foodres.2019.108927_b0900) 2013; 30 Wang (10.1016/j.foodres.2019.108927_b1120) 2011; 59 Lee (10.1016/j.foodres.2019.108927_b0640) 2016; 57 Lin (10.1016/j.foodres.2019.108927_b0710) 2008; 107 10.1016/j.foodres.2019.108927_b0455 Melendez-Rodriguez (10.1016/j.foodres.2019.108927_b0770) 2019; 9 Anka (10.1016/j.foodres.2019.108927_b0050) 2013; 52 Azeredo (10.1016/j.foodres.2019.108927_b0155) 2019; 3 Dumitriu (10.1016/j.foodres.2019.108927_b0335) 2017; 12 Feng (10.1016/j.foodres.2019.108927_b0410) 2017; 7 Castro-Mayorga (10.1016/j.foodres.2019.108927_b0195) 2017; 101 Fabra (10.1016/j.foodres.2019.108927_b0390) 2016; 55 Rokbani (10.1016/j.foodres.2019.108927_b0945) 2018; 8 Xin (10.1016/j.foodres.2019.108927_b1170) 2013; 92 Altan (10.1016/j.foodres.2019.108927_b0025) 2018; 81 Bailén (10.1016/j.foodres.2019.108927_b0160) 2006; 54 Ignatova (10.1016/j.foodres.2019.108927_b0545) 2013; 13 Kayaci (10.1016/j.foodres.2019.108927_b0595) 2012; 133 Aytac (10.1016/j.foodres.2019.108927_b0130) 2017; 134 Castro-Mayorga (10.1016/j.foodres.2019.108927_b0200) 2017; 79 Yildirim (10.1016/j.foodres.2019.108927_b1215) 2018; 17 Kayaci (10.1016/j.foodres.2019.108927_b0585) 2014; 62 Korehei (10.1016/j.foodres.2019.108927_b0610) 2014; 100 Nedovic (10.1016/j.foodres.2019.108927_b0830) 2011; 1 Arrieta (10.1016/j.foodres.2019.108927_b0080) 2018; 103 Cherpinski (10.1016/j.foodres.2019.108927_b0255) 2017; 34 Feng (10.1016/j.foodres.2019.108927_b0415) 2019; 9 Realini (10.1016/j.foodres.2019.108927_b0930) 2014; 98 Jaworek (10.1016/j.foodres.2019.108927_b0550) 2007; 176 Wen (10.1016/j.foodres.2019.108927_b1155) 2016; 196 Arrieta (10.1016/j.foodres.2019.108927_b0075) 2019; 9 Puligundla (10.1016/j.foodres.2019.108927_b0920) 2012; 25 Robertson (10.1016/j.foodres.2019.108927_b0940) 2014 Haider (10.1016/j.foodres.2019.108927_b0485) 2018; 11 Shao (10.1016/j.foodres.2019.108927_b0985) 2019; 22 Lin (10.1016/j.foodres.2019.108927_b0690) 2019; 292 Lan (10.1016/j.foodres.2019.108927_b0630) 2019; 24 Moreno (10.1016/j.foodres.2019.108927_b0805) 2019; 95 Ghaani (10.1016/j.foodres.2019.108927_b0465) 2016; 51 Figueroa-Lopez (10.1016/j.foodres.2019.108927_b0425) 2018; 8 Neoh (10.1016/j.foodres.2019.108927_b0845) 2017; 34 Zhang (10.1016/j.foodres.2019.108927_b1240) 2017; 7 Marsh (10.1016/j.foodres.2019.108927_b0760) 2007; 72 Yao (10.1016/j.foodres.2019.108927_b1200) 2017; 49 Topuz (10.1016/j.foodres.2019.108927_b1075) 2019; 12 10.1016/j.foodres.2019.108927_b0910 Aydogdu (10.1016/j.foodres.2019.108927_b0100) 2018; 181 Aydogdu (10.1016/j.foodres.2019.108927_b0110) 2019; 112 Aydogdu (10.1016/j.foodres.2019.108927_b0105) 2019; 95 Wang (10.1016/j.foodres.2019.108927_b1130) 2018; 181 Katsogiannis (10.1016/j.foodres.2019.108927_b0575) 2015; 69 Wang (10.1016/j.foodres.2019.108927_b1140) 2019; 254 Rooney (10.1016/j.foodres.2019.108927_b0955) 2005 Kuswandi (10.1016/j.foodres.2019.108927_b0625) 2017 Camerlo (10.1016/j.foodres.2019.108927_b0190) 2013; 49 10.1016/j.foodres.2019.108927_b0800 Fabra (10.1016/j.foodres.2019.108927_b0360) 2016; 8 Vergis (10.1016/j.foodres.2019.108927_b1105) 2015; 55 Aytac (10.1016/j.foodres.2019.108927_b0140) 2016; 197 Dias Antunes (10.1016/j.foodres.2019.108927_b0325) 2017; 104 Alehosseini (10.1016/j.foodres.2019.108927_b0015) 2019; 87 Zhou (10.1016/j.foodres.2019.108927_b1260) 2015; 5 Díez-Pascual (10.1016/j.foodres.2019.108927_b0330) 2015; 5 Maftoonazad (10.1016/j.foodres.2019.108927_b0740) 2018; 23 Deng (10.1016/j.foodres.2019.108927_b0315) 2018; 66 Xue (10.1016/j.foodres.2019.108927_b1180) 2017; 50 Tomasula (10.1016/j.foodres.2019.108927_b1050) 2016; 99 Balogh (10.1016/j.foodres.2019.108927_b0165) 2015; 495 Munteanu (10.1016/j.foodres.2019.108927_b0820) 2014; 16 10.1016/j.foodres.2019.108927_b1225 Fabra (10.1016/j.foodres.2019.108927_b0395) 2016; 68 Wei (10.1016/j.foodres.2019.108927_b1145) 2019; 179 10.1016/j.foodres.2019.108927_b1100 Dai (10.1016/j.foodres.2019.108927_b0295) 2015; 77 Wang (10.1016/j.foodres.2019.108927_b1125) 2019; 113 Aytac (10.1016/j.foodres.2019.108927_b0145) 2016; 79 Salević (10.1016/j.foodres.2019.108927_b0960) 2019; 2 Wang (10.1016/j.foodres.2019.108927_b1115) 2015; 50 Wen (10.1016/j.foodres.2019.108927_b1165) 2015; 144 Cherpinski (10.1016/j.foodres.2019.108927_b0250) 2019; 9 Rooney (10.1016/j.foodres.2 |
| References_xml | – year: 2006 ident: b0935 article-title: Food Packaging: Princible and Practice Second Edition – volume: 22 start-page: 100390 year: 2019 ident: b0515 article-title: Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging publication-title: Food Packaging and Shelf Life – volume: 8 start-page: 469 year: 2018 ident: b0245 article-title: Electrospun oxygen scavenging films of poly(3-hydroxybutyrate) containing palladium nanoparticles for active packaging applications publication-title: Nanomaterials (Basel, Switzerland) – volume: 5 start-page: 93095 year: 2015 end-page: 93107 ident: b0330 article-title: Antimicrobial and sustainable food packaging based on poly(butylene adipate-co-terephthalate) and electrospun chitosan nanofibers publication-title: RSC Advances – volume: 91 start-page: 389 year: 2018 end-page: 394 ident: b0725 article-title: Physico- and bio-activities of nanoscale regenerated cellulose nonwoven immobilized with lysozyme publication-title: Materials Science and Engineering: C – volume: 8 start-page: 16 year: 2019 ident: b0815 article-title: Intelligent packaging in the food sector: A brief overview publication-title: Foods (Basel, Switzerland) – volume: 12 start-page: 33 year: 2019 end-page: 38 ident: b1075 article-title: Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite publication-title: Composites Communications – volume: 25 start-page: 1291 year: 2018 end-page: 1307 ident: b0265 article-title: Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique publication-title: Cellulose – volume: 90 start-page: 26 year: 2019 end-page: 34 ident: b0320 article-title: Oxygen scavengers for food packaging applications: A review publication-title: Trends in Food Science & Technology – volume: 69 start-page: 284 year: 2015 end-page: 295 ident: b0575 article-title: Porous electrospun polycaprolactone (PCL) fibres by phase separation publication-title: European Polymer Journal – volume: 97 start-page: 711 year: 2018 end-page: 718 ident: b0695 article-title: Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken publication-title: LWT – volume: 144 start-page: 1146 year: 2015 end-page: 1154 ident: b1165 article-title: Ready-to-use strip for l-ascorbic acid visual detection based on polyaniline/polyamide 66 nano-fibers/nets membranes publication-title: Talanta – volume: 199 start-page: 331 year: 2006 end-page: 333 ident: b0040 article-title: Design of biodegradable composite films for food packaging publication-title: Desalination – volume: 103 start-page: 145 year: 2018 end-page: 157 ident: b0080 article-title: Electrospun PVA fibers loaded with antioxidant fillers extracted from Durvillaea antarctica algae and their effect on plasticized PLA bionanocomposites publication-title: European Polymer Journal – volume: 16 start-page: 2643 year: 2014 ident: b0820 article-title: Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity publication-title: Journal of Nanoparticle Research – volume: 52 start-page: 14004 year: 2017 end-page: 14010 ident: b0185 article-title: Electrospinning of very long and highly aligned fibers publication-title: Journal of Materials Science – reference: Lim, L. T. (2015). Encapsulation of bioactive compounds using electrospinning and electrospraying technologies. In Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients (pp. 297–317). – volume: 16 start-page: 1751 year: 2015 end-page: 1758 ident: b0400 article-title: Preparation and characterization of electrospun antimicrobial fibrous membranes based on polyhydroxybutyrate (PHB) publication-title: Fibers and Polymers – volume: 179 start-page: 107885 year: 2019 ident: b1145 article-title: Mass production of nanofibers from needleless electrospinning by a novel annular spinneret publication-title: Materials & Design – reference: Yousefi, H., Su, H.-M., Imani, S. M., Alkhaldi, K., M. Filipe, C. D., & Didar, T. F. (2019). Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sensors, 4 (4), 808–821. – volume: 116 start-page: 1318 year: 2019 end-page: 1326 ident: b0435 article-title: Electrospinning of native and anionic corn starch fibers with different amylose contents publication-title: Food Research International – year: 2019 ident: b0855 article-title: Electrospinning of zein-ethyl cellulose hybrid nanofibers with improved water resistance for food preservation publication-title: International Journal of Biological – reference: Moreira, J. B., Lim, L.-T., Zavareze, E. d. R., Dias, A. R. G., Costa, J. A. V., & Morais, M. G. d. (2018). Microalgae protein heating in acid/basic solution for nanofibers production by free surface electrospinning. Journal of Food Engineering, 230, 49–54. – volume: 300 start-page: 125249 year: 2019 ident: b0875 article-title: Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging publication-title: Food Chemistry – volume: 8 start-page: 745 year: 2018 ident: b1090 article-title: Electrospun poly(ethylene-co-vinyl alcohol)/graphene nanoplatelets composites of interest in intelligent food packaging applications publication-title: Nanomaterials (Basel, Switzerland) – volume: 26 start-page: 424 year: 2014 end-page: 430 ident: b0005 article-title: Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread publication-title: Innovative Food Science & Emerging Technologies – volume: 23 start-page: 416 year: 2015 end-page: 423 ident: b0170 article-title: Development of bioactive packaging structure using melt electrospinning publication-title: Journal of Polymers and the Environment – reference: Kuntzler, S. G., Almeida, A. C. A. d., Costa, J. A. V., & Morais, M. G. d. (2018). Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity. International Journal of Biological Macromolecules, 113, 1008–1014. – volume: 99 start-page: 1837 year: 2016 end-page: 1845 ident: b1050 article-title: Short communication: Electrospinning of casein/pullulan blends for food-grade applications1 publication-title: Journal of Dairy Science – reference: Vellora Thekkae Padil, V., Nguyen, N. H. A., Sevcu, A., Cernik, M. (2015). Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles. Journal of Nanomaterials, 2015, 10. – volume: 101 start-page: 32 year: 2017 end-page: 44 ident: b0195 article-title: The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications publication-title: Food and Bioproducts Processing – volume: 135 start-page: 45501 year: 2018 ident: b0260 article-title: Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber-based food packaging applications publication-title: Journal of Applied Polymer Science – volume: 5 start-page: 865 year: 2017 end-page: 874 ident: b0060 article-title: Antibacterial electrospun chitosan-based nanofibers: A bacterial membrane perforator publication-title: Food Science & Nutrition – volume: 495 start-page: 75 year: 2015 end-page: 80 ident: b0165 article-title: Alternating current electrospinning for preparation of fibrous drug delivery systems publication-title: International Journal of Pharmaceutics – reference: Schmatz, D. A., Costa, J. A. V., & Morais, M. G. d. (2019). A novel nanocomposite for food packaging developed by electrospinning and electrospraying. Food Packaging and Shelf Life, 20, 100314. – volume: 32 start-page: 1771 year: 2013 end-page: 1776 ident: b0440 article-title: Encapsulation of R-(+)-limonene in edible electrospun nanofibers publication-title: Chemical Engineering Transactions – volume: 61 start-page: 8156 year: 2013 end-page: 8165 ident: b0580 article-title: Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers publication-title: Journal of Agricultural and Food Chemistry – volume: 54 start-page: 2229 year: 2006 end-page: 2235 ident: b0160 article-title: Use of activated carbon inside modified atmosphere packages to maintain tomato fruit quality during cold storage publication-title: Journal of Agricultural and Food Chemistry – volume: 7 start-page: 42 year: 2017 ident: b1240 article-title: Electrospun nanofibres containing antimicrobial plant extracts publication-title: Nanomaterials (Basel, Switzerland) – volume: 55 start-page: 1320 year: 2015 end-page: 1323 ident: b1105 article-title: Essential oils as natural food antimicrobial agents: A review publication-title: Critical Reviews in Food Science and Nutrition – volume: 119 start-page: 5298 year: 2019 end-page: 5415 ident: b1175 article-title: Electrospinning and electrospun nanofibers: Methods, materials, and applications publication-title: Chemical Reviews – volume: 133 year: 2016 ident: b0570 article-title: Antibacterial poly(lactic acid) (PLA) films grafted with electrospun PLA/allyl isothiocyanate fibers for food packaging publication-title: Journal of Applied Polymer Science – volume: 1 start-page: 54 year: 2019 end-page: 62 ident: b0210 article-title: Water-insoluble hydrophilic electrospun fibrous mat of cyclodextrin–epichlorohydrin polymer as highly effective sorbent publication-title: ACS Applied Polymer Materials – reference: Lim, L. T. (2011). 4.52 - Active and intelligent packaging materials. In M. Moo-Young (Ed.), Comprehensive Biotechnology (Second Edition) (pp. 629–644). Burlington: Academic Press. – volume: 141 start-page: 3192 year: 2013 end-page: 3200 ident: b0840 article-title: Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials publication-title: Food Chemistry – volume: 9 start-page: 1874 year: 2016 end-page: 1884 ident: b0225 article-title: Use of electrospinning to develop antimicrobial biodegradable multilayer systems: Encapsulation of cinnamaldehyde and their physicochemical characterization publication-title: Food and Bioprocess Technology – volume: 80 start-page: 371 year: 2017 end-page: 378 ident: b1060 article-title: Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon publication-title: Materials Science and Engineering: C – volume: 18 start-page: 21 year: 2018 end-page: 30 ident: b0680 article-title: Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef publication-title: Food Packaging and Shelf Life – volume: 95 start-page: 245 year: 2019 end-page: 255 ident: b0105 article-title: Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material publication-title: Food Hydrocolloids – volume: 135 start-page: 46117 year: 2018 ident: b0995 article-title: Electrospun poly(vinyl alcohol)/permutite fibrous film loaded with cinnamaldehyde for active food packaging publication-title: Journal of Applied Polymer Science – volume: 50 start-page: 5846 year: 2009 end-page: 5850 ident: b1190 article-title: Bubble-electrospinning for fabricating nanofibers publication-title: Polymer – volume: 11 start-page: 33 year: 1990 end-page: 37 ident: b0885 article-title: Inhibitory effect of oregano and thyme essential oils on moulds and foodborne bacteria publication-title: Letters in Applied Microbiology – volume: 107 start-page: 1908 year: 2018 end-page: 1914 ident: b0990 article-title: Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation publication-title: International Journal of Biological Macromolecules – volume: 8 start-page: 125 year: 2016 end-page: 132 ident: b0360 article-title: Efficacy of cinnamaldehyde against enteric viruses and its activity after incorporation into biodegradable multilayer systems of interest in food packaging publication-title: Food and Environmental Virology – volume: 191 start-page: 115 year: 2016 end-page: 123 ident: b1205 article-title: Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning publication-title: Journal of Food Engineering – volume: 52 start-page: 4600 year: 2015 end-page: 4606 ident: b0045 article-title: Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products publication-title: Journal of Food Science and Technology – reference: Senthil Muthu Kumar, T., Senthil Kumar, K., Rajini, N., Siengchin, S., Ayrilmis, N., & Varada Rajulu, A. (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering, 175, 107074. – volume: 92 start-page: 1880 year: 2013 end-page: 1886 ident: b1170 article-title: Cytotoxicity and antibacterial ability of scaffolds immobilized by polysaccharide/layered silicate composites publication-title: Carbohydrate Polymers – volume: 5 start-page: 37 year: 2017 ident: b0655 article-title: Antifungal microbial agents for food biopreservation – A review publication-title: Microorganisms – volume: 7 start-page: 194 year: 2017 ident: b0735 article-title: Development of poly(lactic acid)/chitosan fibers loaded with essential oil for antimicrobial applications publication-title: Nanomaterials (Basel, Switzerland) – volume: 1 start-page: 1806 year: 2011 end-page: 1815 ident: b0830 article-title: An overview of encapsulation technologies for food applications publication-title: Procedia Food Science – volume: 17 start-page: 165 year: 2018 end-page: 199 ident: b1215 article-title: Active packaging applications for food publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 55 start-page: 11 year: 2016 end-page: 18 ident: b0390 article-title: Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications publication-title: Food Hydrocolloids – volume: 113 start-page: 108280 year: 2019 ident: b0010 article-title: Stabilization of a saffron extract through its encapsulation within electrospun/electrosprayed zein structures publication-title: LWT – volume: 73 start-page: 433 year: 2015 end-page: 446 ident: b0085 article-title: Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties publication-title: European Polymer Journal – reference: Zehetmeyer, G., Meira, S. M. M., Scheibel, J. M., de Brito da Silva, C., Rodembusch, F. S., Brandelli, A., & Soares, R. M. D. (2017). Biodegradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers. Polymer Bulletin, 74 (8), 3243–3268. – reference: María José Fabra, A. L.-R., & Lagaron, a. J. M. (2016). Nanostructured multilayers for food packaging by electrohydrodynamic processing. In Miguel Ângelo Parente Ribeiro Cerqueira, Ricardo Nuno Correia Pereira, Óscar Leandro da Silva Ramos, José António Couto Teixeira & A. A. Vicente (Eds.), Edible Food Packaging - Materials and Processing Technologies. Boca Raton: CRC Press - Taylor & Francis Group. – volume: 7 start-page: 1572 year: 2017 end-page: 1580 ident: b0410 article-title: Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme publication-title: RSC Advances – volume: 68 start-page: 603 year: 2016 end-page: 610 ident: b0395 article-title: Development of multilayer corn starch-based food packaging structures containing β-carotene by means of the electro-hydrodynamic processing publication-title: Starch – Stärke – volume: 44 start-page: 185 year: 2004 end-page: 193 ident: b0865 article-title: Active food packaging technologies publication-title: Critical Reviews in Food Science and Nutrition – volume: 181 start-page: 885 year: 2018 end-page: 892 ident: b1130 article-title: Montmorillonite@chitosan-poly (ethylene oxide) nanofibrous membrane enhancing poly (vinyl alcohol-co-ethylene) composite film publication-title: Carbohydrate Polymers – volume: 8 start-page: 199 year: 2018 ident: b0425 article-title: Antibacterial and barrier properties of gelatin coated by electrospun polycaprolactone ultrathin fibers containing black pepper oleoresin of interest in active food biopackaging applications publication-title: Nanomaterials (Basel, Switzerland) – reference: I. S. Arvanitoyannis, G. O. (2012). Active and intelligent packaging. In I. S. Arvanitoyannis (Ed.), Modified atmosphere and active packaging technologies (pp. 628–654). Boca Raton, Florida, U.S.A.: CRC Press. – volume: 62 start-page: 424 year: 2014 end-page: 431 ident: b0585 article-title: Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol publication-title: Food Research International – volume: 66 start-page: 9498 year: 2018 end-page: 9506 ident: b0715 article-title: Hydrophobic ethylcellulose/gelatin nanofibers containing zinc oxide nanoparticles for antimicrobial packaging publication-title: Journal of Agricultural and Food Chemistry – volume: 8 start-page: 228 year: 1997 end-page: 237 ident: b0775 article-title: Oxygen and aroma barrier properties of edible films: A review publication-title: Trends in Food Science & Technology – volume: 178 start-page: 131 year: 2017 end-page: 140 ident: b0675 article-title: Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes publication-title: Carbohydrate Polymers – volume: 19 start-page: 634 year: 2008 end-page: 643 ident: b1010 article-title: Biodegradable polymers for food packaging: A review publication-title: Trends in Food Science & Technology – volume: 292 start-page: 21 year: 2019 end-page: 30 ident: b0690 article-title: Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging publication-title: International Journal of Food Microbiology – reference: Foltynowicz, Z. (2019). Nanoiron-based composite oxygen scavengers for food packaging. In Cirillo, G., Kozlowski, M.A., Spizzirri, U. G. (Ed.), Composites Materials for Food Packaging (pp. 209–234). Beverly, MA Scrivener Publishing. – start-page: 232 year: 2014 end-page: 249 ident: b0940 article-title: Food Packaging publication-title: Encyclopedia of Agriculture and Food Systems – volume: 75 start-page: 241 year: 2019 end-page: 246 ident: b0270 article-title: Control of bacterial proliferation and formation of biofilm in membranes for food packaging manufactured by electrospinning publication-title: Chemical Engineering Transactions – volume: 176 start-page: 18 year: 2007 end-page: 35 ident: b0550 article-title: Micro- and nanoparticle production by electrospraying publication-title: Powder Technology – volume: 39 start-page: 47 year: 2014 end-page: 62 ident: b1095 article-title: Intelligent food packaging: The next generation publication-title: Trends in Food Science & Technology – volume: 8 start-page: 129 year: 2018 ident: b0945 article-title: Combined effect of ultrasound stimulations and autoclaving on the enhancement of antibacterial activity of ZnO and SiO₂/ZnO nanoparticles publication-title: Nanomaterials (Basel, Switzerland) – volume: 26 start-page: 2953 year: 2011 end-page: 2959 ident: b1135 article-title: Three-step electrodeposition synthesis of self-doped polyaniline nanofiber-supported flower-like Au microspheres for high-performance biosensing of DNA hybridization recognition publication-title: Biosensors and Bioelectronics – volume: 63 start-page: 231 year: 2016 end-page: 239 ident: b0135 article-title: Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid publication-title: Materials Science and Engineering: C – volume: 197 start-page: 864 year: 2016 end-page: 871 ident: b0140 article-title: Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility publication-title: Food Chemistry – reference: Moreira, J. B., Lim, L.-T., Zavareze, E. d. R., Dias, A. R. G., Costa, J. A. V., & Morais, M. G. d. (2019). Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning. Food Hydrocolloids, 93, 131–136. – volume: 32 start-page: 106 year: 2013 end-page: 114 ident: b0375 article-title: High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein publication-title: Food Hydrocolloids – volume: 95 start-page: 496 year: 2019 end-page: 505 ident: b0805 article-title: Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts publication-title: Food Hydrocolloids – reference: Fernandez-Saiz, P. (2011). 20 – Chitosan polysaccharide in food packaging applications. In J.-M. Lagarón (Ed.), Multifunctional and Nanoreinforced Polymers for Food Packaging (pp. 571–593): Woodhead Publishing. – volume: 247 start-page: 19 year: 2019 end-page: 24 ident: b1185 article-title: Controllable generation of nanofibers through a magnetic-field-assisted electrospinning design publication-title: Materials Letters – volume: 31 start-page: 185 year: 2018 end-page: 195 ident: b0070 article-title: Chitosan-based nanofibers as bioactive meat packaging materials publication-title: Packaging Technology and Science – volume: 12 start-page: 802 year: 2012 end-page: 807 ident: b0535 article-title: Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes publication-title: Nano Letters – volume: 1738 start-page: 270018 year: 2016 ident: b0180 article-title: Poly(lactic) acid fibers loaded with mesoporous silica for potential applications in the active food packaging publication-title: AIP Conference Proceedings – reference: Ayala, A., Munoz, M., & S, A. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 31. – volume: 178 start-page: 121610 year: 2019 ident: b1055 article-title: Electrospinning of uniform nanofibers of Polymers of Intrinsic Microporosity (PIM-1): The influence of solution conductivity and relative humidity publication-title: Polymer – volume: 49 start-page: 449 year: 2017 ident: b1200 article-title: Investigation of isothiocyanate release from electrospun modified poly(L-lactic acid)/mustard powder composite fibers publication-title: Polymer Journal – volume: 16 start-page: 45 year: 2018 end-page: 58 ident: b0090 article-title: Electrospun nanofibers, nanocomposites and characterization of art: Insight on establishing fibers as product publication-title: Nano-Structures & Nano-Objects – reference: Fuertes, G., Soto, I., Carrasco, R., Vargas, M., Sabattin, J., & Lagos, C. (2016). Intelligent packaging systems: Sensors and nanosensors to monitor food quality and safety. Journal of Sensors, 2016, 8. – year: 2017 ident: b0625 article-title: Freshness sensors for food packaging publication-title: Reference Module in Food – volume: 81 start-page: 608 year: 2015 end-page: 614 ident: b0870 article-title: Antibacterial performance of bovine lactoferrin-fish gelatine electrospun membranes publication-title: International Journal of Biological Macromolecules – volume: 66 start-page: 6219 year: 2018 end-page: 6226 ident: b0315 article-title: Electrospun chitosan/poly(ethylene oxide)/lauric arginate nanofibrous film with enhanced antimicrobial activity publication-title: Journal of Agricultural and Food Chemistry – volume: 134 year: 2017 ident: b0890 article-title: Recent development of centrifugal electrospinning publication-title: Journal of Applied Polymer Science – volume: 192 start-page: 122 year: 2017 end-page: 128 ident: b0240 article-title: Use of phase change materials to develop electrospun coatings of interest in food packaging applications publication-title: Journal of Food Engineering – volume: 9 start-page: 227 year: 2019 ident: b0770 article-title: Electrospun antimicrobial films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles publication-title: Nanomaterials (Basel, Switzerland) – reference: Pizzimenti, S., Ciamporcero, E., Daga, M., Pettazzoni, P., Arcaro, A., Cetrangolo, G., Minelli, R., Dianzani, C., Lepore, A., Gentile, F., & Barrera, G. (2013). Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Frontiers in Physiology, 4, 242–242. – volume: 25 start-page: 328 year: 2012 end-page: 333 ident: b0920 article-title: Carbon dioxide sensors for intelligent food packaging applications publication-title: Food Control – volume: 26 start-page: 188 year: 2012 end-page: 193 ident: b0460 article-title: Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation publication-title: Food Control – reference: Tavakoli, H., Rastegar, H., Taherian, M., Samadi, M., & Rostami, H. (2017). The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Italian journal of food safety, 6 (4), 6874–6874. – volume: 52 start-page: 3473 year: 2013 end-page: 3480 ident: b0050 article-title: Novel nanofiltration hollow fiber membrane produced via electrospinning publication-title: Industrial & Engineering Chemistry Research – start-page: 109 year: 2018 end-page: 146 ident: b0835 article-title: Chapter 4 – Fabrication of functional electrospun nanostructures for food applications publication-title: Role of Materials Science in Food Bioengineering – volume: 61 start-page: 3901 year: 2013 end-page: 3908 ident: b0590 article-title: Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes publication-title: Journal of Agricultural and Food Chemistry – volume: 184 start-page: 167 year: 2015 end-page: 175 ident: b0480 article-title: Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis publication-title: Food Chemistry – volume: 23 start-page: 49 year: 2018 end-page: 56 ident: b0740 article-title: Novel techniques in food processing: Bionanocomposites publication-title: Current Opinion in Food Science – volume: 53 start-page: 242 year: 2017 end-page: 249 ident: b0495 article-title: Long-term antimicrobial effect of nisin released from electrospun triaxial fiber membranes publication-title: Acta Biomaterialia – volume: 266 start-page: 69 year: 2018 end-page: 78 ident: b0285 article-title: The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber publication-title: International Journal of Food Microbiology – volume: 6 start-page: 125001 year: 2019 ident: b1265 article-title: Fabrication of perfect CMCS/PVA nanofibers for keeping food fresh via an in situ mixing electrospinning publication-title: Materials Research Express – volume: 13 start-page: 860 year: 2013 end-page: 872 ident: b0545 article-title: Electrospun antibacterial chitosan-based fibers publication-title: Macromolecular Bioscience – volume: 72 start-page: R39 year: 2007 end-page: R55 ident: b0760 article-title: Food packaging-roles, materials, and environmental issues publication-title: Journal of Food Science – volume: 11 year: 2018 ident: b1065 article-title: Electrospinning of cyclodextrin functional nanofibers for drug delivery applications publication-title: Pharmaceutics – volume: 127 start-page: 1 year: 2014 end-page: 9 ident: b0380 article-title: Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters publication-title: Journal of Food Engineering – volume: 9 start-page: 525 year: 2019 ident: b0415 article-title: Physico-mechanical and antibacterial properties of PLA/TiO publication-title: Coatings – volume: 62 start-page: 16 year: 2013 end-page: 22 ident: b0345 article-title: Nanoparticle release from nano-silver antimicrobial food containers publication-title: Food and Chemical Toxicology – volume: 82 start-page: 1412 year: 2017 end-page: 1422 ident: b1210 article-title: Essential oil bioactive fibrous membranes prepared via coaxial electrospinning publication-title: Journal of Food Science – reference: Aytac, Z., & Uyar, T. (2018). 13 - Applications of core-shell nanofibers: Drug and biomolecules release and gene therapy. In M. L. Focarete & A. Tampieri (Eds.), Core-Shell Nanostructures for Drug Delivery and Theranostics (pp. 375–404): Woodhead Publishing. – volume: 217 start-page: 1 year: 2018 end-page: 10 ident: b0035 article-title: Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material publication-title: Journal of Food Engineering – volume: 164 start-page: 55 year: 2015 end-page: 62 ident: b0235 article-title: Development of polystyrene-based films with temperature buffering capacity for smart food packaging publication-title: Journal of Food Engineering – volume: 203 start-page: 228 year: 2019 end-page: 237 ident: b1195 article-title: Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning publication-title: Carbohydrate Polymers – volume: 135 start-page: 45673 year: 2018 ident: b0205 article-title: Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications publication-title: Journal of Applied Polymer Science – reference: Sisler, E. C., Dupille, E., & Serek, M. (1996). Effect of 1-methylcyclopropene and methylenecyclopropane on ethylene binding and ethylene action on cut carnations. In A. R. Smith, A. W. Berry, N. V. J. Harpham, I. E. Moshkov, G. V. Novikova, O. N. Kulaeva & M. A. Hall (Eds.), Plant Hormone Signal Perception and Transduction: Proceedings of the International Symposium on Plant Hormone Signal Perception and Transduction, Moscow, Russia, September 4–10, 1994 (pp. 127–134). Dordrecht: Springer Netherlands. – volume: 81 start-page: 48 year: 2018 end-page: 59 ident: b0025 article-title: Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging publication-title: Food Hydrocolloids – volume: 72 start-page: 502 year: 2015 end-page: 509 ident: b0560 article-title: Synthesis of antimicrobial Nisin-phosphorylated soybean protein isolate/poly(l-lactic acid)/ZrO2 membranes publication-title: International Journal of Biological Macromolecules – reference: Uyar, T. Kny, E. (2017). Electrospun Materials for Tissue Engineering and Biomedical Applications: Research, Design and Commercialization. 1st ed. Woodhead Publishing (Elsevier). – volume: 14 start-page: 31 year: 1998 end-page: 40 ident: b0030 article-title: Campylobacter Jejuni publication-title: Veterinary Clinics of North America: Food Animal Practice – volume: 12 start-page: 59 year: 2017 end-page: 65 ident: b0335 article-title: Functionalized coatings by electrospinning for anti-oxidant food packaging publication-title: Procedia Manufacturing – start-page: 455 year: 2019 end-page: 516 ident: b1040 article-title: Chapter 15 - Electrospun nanofibers for food and food packaging technology publication-title: Electrospinning: Nanofabrication and Applications – volume: 98 start-page: 17 year: 2013 end-page: 25 ident: b0765 article-title: Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release publication-title: Carbohydrate Polymers – reference: Torres-Giner, S., Busolo, M., Cherpinski, A., & Lagaron, J. M. (2018). Chapter 10 Electrospinning in the Packaging Industry. In Electrospinning: From Basic Research to Commercialization (pp. 238-260): The Royal Society of Chemistry. – volume: 1 start-page: 140 year: 2014 end-page: 150 ident: b0750 article-title: Development of biodegradable films with antioxidant properties based on polyesters containing α-tocopherol and olive leaf extract for food packaging applications publication-title: Food Packaging and Shelf Life – volume: 111 start-page: 1 year: 2018 end-page: 19 ident: b0810 article-title: Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions publication-title: Food and Bioproducts Processing – volume: 34 start-page: 1690 year: 2017 end-page: 1702 ident: b0845 article-title: Controlled release of 1-methylcyclopropene from its functionalised electrospun fibres under constant and linearly ramped humidity publication-title: Food Additives & Contaminants: Part A – volume: 11 start-page: 1165 year: 2018 end-page: 1188 ident: b0485 article-title: A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology publication-title: Arabian Journal of Chemistry – volume: 133 start-page: 641 year: 2012 end-page: 649 ident: b0595 article-title: Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin publication-title: Food Chemistry – volume: 68 start-page: 1910 year: 2003 end-page: 1914 ident: b0895 article-title: Effect of 1-methylcyclopropene on the quality of fresh-cut apple slices publication-title: Journal of Food Science – volume: 98 start-page: 404 year: 2014 end-page: 419 ident: b0930 article-title: Active and intelligent packaging systems for a modern society publication-title: Meat Science – volume: 87 start-page: 758 year: 2019 end-page: 771 ident: b0015 article-title: Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications publication-title: Food Hydrocolloids – volume: 100 start-page: 150 year: 2014 end-page: 157 ident: b0610 article-title: Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers publication-title: Carbohydrate Polymers – start-page: 33 year: 2008 end-page: 59 ident: b0600 article-title: Smart packaging of meat and poultry products publication-title: Smart packaging technologies for fast moving consumer goods – volume: 30 start-page: 182 year: 2013 end-page: 191 ident: b0900 article-title: Development of zein-based heat-management structures for smart food packaging publication-title: Food Hydrocolloids – volume: 104 start-page: 874 year: 2017 end-page: 882 ident: b0325 article-title: Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex publication-title: International Journal of Biological Macromolecules – volume: 22 start-page: 585 year: 2017 ident: b0065 article-title: Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria publication-title: Molecules (Basel, Switzerland) – volume: 89 start-page: 307 year: 2012 end-page: 313 ident: b0310 article-title: Quaternized chitosan-layered silicate intercalated composites based nanofibrous mats and their antibacterial activity publication-title: Carbohydrate Polymers – volume: 9 start-page: 262 year: 2019 ident: b0250 article-title: Oxygen-scavenging multilayered biopapers containing palladium nanoparticles obtained by the electrospinning coating technique publication-title: Nanomaterials (Basel, Switzerland) – start-page: 80 year: 2005 end-page: 107 ident: b0510 article-title: Antimicrobial packaging systems publication-title: Innovations in Food Packaging – volume: 48 start-page: 6823 year: 2007 end-page: 6833 ident: b0300 article-title: Electrospinning of polymer melts: Phenomenological observations publication-title: Polymer – volume: 31 start-page: 79 year: 2013 end-page: 87 ident: b0355 article-title: Nanostructured biolayers in food packaging publication-title: Trends in Food Science & Technology – volume: 79 start-page: 503 year: 2017 end-page: 510 ident: b0200 article-title: Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems publication-title: LWT - Food Science and Technology – volume: 29 start-page: 481 year: 2018 end-page: 489 ident: b0700 article-title: Preparation and characterization of PHB/PBAT-based biodegradable antibacterial hydrophobic nanofibrous membranes publication-title: Polymers for Advanced Technologies – volume: 113 start-page: 108293 year: 2019 ident: b1125 article-title: Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films publication-title: LWT – volume: 48 start-page: 532 year: 1985 end-page: 537 ident: b0305 article-title: A review of effects of carbon dioxide on microbial growth and food quality publication-title: Journal of Food Protection – reference: Silva, F. T. d., Cunha, K. F. d., Fonseca, L. M., Antunes, M. D., Halal, S. L. M. E., Fiorentini, Â. M., Zavareze, E. d. R., & Dias, A. R. G. (2018). Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. International Journal of Biological Macromolecules, 118, 107–115. – start-page: 1 year: 1995 end-page: 37 ident: b0950 article-title: Overview of active food packaging publication-title: Active Food Packaging – volume: 120 start-page: 125 year: 2014 end-page: 131 ident: b0115 article-title: Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers publication-title: Colloids and Surfaces B: Biointerfaces – volume: 83 start-page: 682 year: 2018 end-page: 688 ident: b0645 article-title: Ascorbic acid-based oxygen scavenger in active food packaging system for raw meatloaf publication-title: Journal of Food Science – volume: 19 start-page: 86 year: 2019 end-page: 93 ident: b0685 article-title: Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese publication-title: Food Packaging and Shelf Life – volume: 61 start-page: 261 year: 2016 end-page: 268 ident: b0365 article-title: Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging publication-title: Food Hydrocolloids – volume: 6 start-page: 42600 year: 2016 end-page: 42610 ident: b0405 article-title: Cytocompatible antibacterial fibrous membranes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer publication-title: RSC Advances – volume: 9 start-page: 346 year: 2019 ident: b0075 article-title: Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin publication-title: Nanomaterials (Basel, Switzerland) – volume: 196 start-page: 996 year: 2016 end-page: 1004 ident: b1155 article-title: Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging publication-title: Food Chemistry – volume: 8 start-page: 919 year: 2018 ident: b1000 article-title: Active food packaging coatings based on hybrid electrospun gliadin nanofibers containing ferulic acid/hydroxypropyl-beta-cyclodextrin inclusion complexes publication-title: Nanomaterials (Basel, Switzerland) – volume: 114 start-page: 1425 year: 2013 end-page: 1434 ident: b0605 article-title: Incorporation of T4 bacteriophage in electrospun fibres publication-title: Journal of Applied Microbiology – volume: 7 start-page: 383 year: 2017 ident: b0530 article-title: The electrospun ceramic hollow nanofibers publication-title: Nanomaterials (Basel, Switzerland) – start-page: 371 year: 2009 end-page: 388 ident: b0780 article-title: Oxygen indicators in food packaging publication-title: Sensors for Environment, Health and Security – volume: 67 start-page: 2227 year: 2019 end-page: 2234 ident: b1030 article-title: Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging publication-title: Journal of Agricultural and Food Chemistry – start-page: 362 year: 2012 end-page: 397 ident: b1150 article-title: 13 - Electrospun fibers: Fabrication, functionalities and potential food industry applications publication-title: Nanotechnology in the Food, Beverage and Nutraceutical Industries – volume: 80 start-page: 175 year: 2018 end-page: 186 ident: b1235 article-title: Emulsion electrospinning: Fundamentals, food applications and prospects publication-title: Trends in Food Science & Technology – volume: 63 start-page: 437 year: 2017 end-page: 446 ident: b1110 article-title: Release kinetics and antibacterial activity of curcumin loaded zein fibers publication-title: Food Hydrocolloids – volume: 26 start-page: 31 year: 2017 end-page: 39 ident: b0555 article-title: Manufacturing and structural analysis of antimicrobial kefiran/polyethylene oxide nanofibers for food packaging publication-title: Iranian Polymer Journal – volume: 17 start-page: 609 year: 2019 end-page: 628 ident: b0450 article-title: Moisture absorbers for food packaging applications publication-title: Environmental Chemistry Letters – volume: 177 start-page: 203 year: 2017 end-page: 209 ident: b1245 article-title: O-acylation of chitosan nanofibers by short-chain and long-chain fatty acids publication-title: Carbohydrate Polymers – volume: 8 start-page: 139 year: 2018 ident: b0175 article-title: Antimicrobial membranes of bio-based PA 11 and HNTs filled with lysozyme obtained by an electrospinning process publication-title: Nanomaterials (Basel, Switzerland) – reference: Alp-Erbay, E., Yeşi̇lsu, A. F., & Türe, M. (2019). Fish gelatin antimicrobial electrospun nanofibers for active food-packaging applications. Journal of Nano Research, 56, 80–97. – volume: 112 start-page: 477 year: 2019 end-page: 486 ident: b0110 article-title: Nanostructured poly(lactic acid)/soy protein/HPMC films by electrospinning for potential applications in food industry publication-title: European Polymer Journal – reference: Moreira, J. B., Morais, M. G. d., Morais, E. G. d., Vaz, B. d. S., & Costa, J. A. V. (2018). Chapter 14 – Electrospun polymeric nanofibers in food packaging. In A. M. Grumezescu & A. M. Holban (Eds.), Impact of Nanoscience in the Food Industry (pp. 387–417): Academic Press. – volume: 50 start-page: 822 year: 2010 end-page: 834 ident: b0475 article-title: Cinnamon and health publication-title: Critical Reviews in Food Science and Nutrition – start-page: 63 year: 2005 end-page: 79 ident: b0955 article-title: 5 - Introduction to active food packaging technologies publication-title: Innovations in Food Packaging – start-page: 108 year: 2011 end-page: 125 ident: b1080 article-title: Electrospun nanofibers for food packaging applications publication-title: Multifunctional and Nanoreinforced Polymers for Food Packaging – start-page: 21 year: 2019 ident: b0825 article-title: Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging publication-title: Food Packaging and Shelf Life – volume: 3 start-page: 18311 year: 2018 end-page: 18322 ident: b1070 article-title: Influence of hydrogen-bonding additives on electrospinning of cyclodextrin nanofibers publication-title: ACS Omega – volume: 5 start-page: 35948 year: 2015 end-page: 35957 ident: b1260 article-title: Flexible Janus nanofibers: A feasible route to realize simultaneously tuned magnetism and enhanced color-tunable luminescence bifunctionality publication-title: RSC Advances – volume: 131 year: 2014 ident: b0230 article-title: Electrospun heat management polymeric materials of interest in food refrigeration and packaging publication-title: Journal of Applied Polymer Science – volume: 2 start-page: 270 year: 2019 ident: b0960 article-title: Physicochemical, antioxidant and antimicrobial properties of electrospun poly(ε-caprolactone) films containing a solid dispersion of sage ( publication-title: Nanomaterials – volume: 38 start-page: 21 year: 2014 end-page: 33 ident: b0055 article-title: Electrospinning and electrospraying techniques: Potential food based applications publication-title: Trends in Food Science & Technology – reference: Kuntzler, S. G., Costa, J. A. V., & Morais, M. G. d. (2018). Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity. International Journal of Biological Macromolecules, 117, 800–806. – volume: 18 start-page: 42 year: 2018 end-page: 50 ident: b0350 article-title: Release kinetics of rosemary (Rosmarinus officinalis) polyphenols from polyvinyl alcohol (PVA) electrospun nanofibers in several food simulants publication-title: Food Packaging and Shelf Life – volume: 17 start-page: 860 year: 2018 end-page: 877 ident: b0505 article-title: Food packaging: A comprehensive review and future trends publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 96 start-page: 4663 year: 2016 end-page: 4678 ident: b0860 article-title: Electrospun nanofibres in agriculture and the food industry: A review publication-title: Journal of the Science of Food and Agriculture – volume: 181 start-page: 234 year: 2018 end-page: 246 ident: b0100 article-title: A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: morphology and physicochemical properties publication-title: Carbohydrate Polymers – volume: 57 start-page: 146 year: 2016 end-page: 155 ident: b0640 article-title: Carbon dioxide absorbers for food packaging applications publication-title: Trends in Food Science & Technology – volume: 145 start-page: 643 year: 2016 end-page: 652 ident: b1045 article-title: Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate publication-title: Colloids and Surfaces B: Biointerfaces – volume: 483 start-page: 84 year: 2016 end-page: 92 ident: b0370 article-title: Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design publication-title: Journal of Colloid and Interface Science – volume: 53 start-page: 2788 year: 2016 end-page: 2796 ident: b0525 article-title: Antioxidant protection of proteins and lipids in processed pork loin chops through feed supplementation with avocado publication-title: Journal of Food Science and Technology – volume: 25 start-page: 497 year: 1995 end-page: 507 ident: b0880 article-title: Gas and water vapor barrier properties of edible films from protein and cellulosic materials publication-title: Journal of Food Engineering – volume: 121 start-page: 1329 year: 2019 end-page: 1336 ident: b0730 article-title: Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation publication-title: International Journal of Biological Macromolecules – volume: 59 start-page: 366 year: 2016 end-page: 376 ident: b1160 article-title: Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging publication-title: Food Control – reference: Garcı, x, a-López, D., Picazo, O., Merino, J. C., & Pastor, J. M. (2003). Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion. European Polymer Journal, 39 (5), 945–950. – volume: 50 start-page: 5068 year: 2015 end-page: 5078 ident: b1115 article-title: Preparation, antimicrobial and release behaviors of nisin-poly (vinyl alcohol)/wheat gluten/ZrO2 nanofibrous membranes publication-title: Journal of Materials Science – volume: 84 start-page: 1222 year: 2004 end-page: 1224 ident: b1020 article-title: Electrospinning of continuous aligned polymer fibers publication-title: Applied Physics Letters – reference: Zhong, T., Oporto, G. S., & Jaczynski, J. (2017). 19 - Antimicrobial food packaging with cellulose-copper nanoparticles embedded in thermoplastic resins. In A. M. Grumezescu (Ed.), Food Preservation (pp. 671–702): Academic Press. – volume: 21 start-page: 100357 year: 2019 ident: b0925 article-title: Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. publication-title: Food Packaging and Shelf Life – volume: 34 start-page: 1817 year: 2017 end-page: 1830 ident: b0255 article-title: Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications publication-title: Food Additives & Contaminants: Part A – volume: 60 start-page: 71 year: 2017 end-page: 79 ident: b0340 article-title: High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint publication-title: Trends in Food Science & Technology – volume: 51 start-page: 1 year: 2016 end-page: 11 ident: b0465 article-title: An overview of the intelligent packaging technologies in the food sector publication-title: Trends in Food Science & Technology – volume: 19 start-page: 745 year: 2018 ident: b0565 article-title: Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication publication-title: International Journal of Molecular Sciences – volume: 59 start-page: 12411 year: 2011 end-page: 12419 ident: b1120 article-title: Synergistic antimicrobial activities of natural essential oils with chitosan films publication-title: Journal of Agricultural and Food Chemistry – reference: Moreira, J. B., Terra, A. L. M., Costa, J. A. V., & Morais, M. G. d. (2018). Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin. International Journal of Biological Macromolecules, 118, 1855–1862. – volume: 77 start-page: 467 year: 2015 end-page: 475 ident: b0295 article-title: Release of allyl isothiocyanate from mustard seed meal powder entrapped in electrospun PLA–PEO nonwovens publication-title: Food Research International – volume: 53 start-page: 1527 year: 2018 end-page: 1539 ident: b0125 article-title: Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex publication-title: Journal of Materials Science – volume: 269 start-page: 142 year: 2018 end-page: 149 ident: b0660 article-title: Butylated hydroxyanisole encapsulated in gelatin fiber mats: Volatile release kinetics, functional effectiveness and application to strawberry preservation publication-title: Food Chemistry – volume: 254 start-page: 5 year: 2019 end-page: 8 ident: b1140 article-title: A newly reaction curing mechanism in conjugate electrospinning process publication-title: Materials Letters – volume: 63 start-page: 303 year: 2018 end-page: 311 ident: b0705 article-title: Biodegradable polyhydroxybutyrate/poly-ε-caprolactone fibrous membranes modified by silica composite hydrol for super hydrophobic and outstanding antibacterial application publication-title: Journal of Industrial and Engineering Chemistry – volume: 69 start-page: 685 year: 2016 end-page: 691 ident: b0965 article-title: Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions publication-title: Materials Science and Engineering: C – volume: 65 start-page: 2291 year: 2011 end-page: 2294 ident: b0220 article-title: Electrospun porous cellulose acetate fibers from volatile solvent mixture publication-title: Materials Letters – volume: 10 year: 2018 ident: b0720 article-title: Electrospun antimicrobial polylactic acid/tea polyphenol nanofibers for food-packaging applications publication-title: Polymers – volume: 5 start-page: 8241 year: 2013 end-page: 8245 ident: b0500 article-title: Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules publication-title: ACS Applied Materials & Interfaces – volume: 50 start-page: 1976 year: 2017 end-page: 1987 ident: b1180 article-title: Electrospun nanofibers: New concepts, materials, and applications publication-title: Accounts of Chemical Research – volume: 49 start-page: 3806 year: 2013 end-page: 3813 ident: b0190 article-title: Fragrance encapsulation in polymeric matrices by emulsion electrospinning publication-title: European Polymer Journal – volume: 35 start-page: 42 year: 2014 end-page: 51 ident: b0470 article-title: Advances in antioxidant active food packaging publication-title: Trends in Food Science & Technology – volume: 22 start-page: 100385 year: 2019 ident: b0985 article-title: Preparation of zein nanofibers with cinnamaldehyde encapsulated in surfactants at critical micelle concentration for active food packaging publication-title: Food Packaging and Shelf Life – volume: 21 start-page: 100329 year: 2019 ident: b1270 article-title: A novel polyethylene oxide/Dendrobium officinale nanofiber: Preparation, characterization and application in pork packaging publication-title: Food Packaging and Shelf Life – volume: 24 start-page: 767 year: 2019 ident: b0630 article-title: Electrospun polyvinyl alcohol/d-limonene fibers prepared by ultrasonic processing for antibacterial active packaging material publication-title: Molecules (Basel, Switzerland) – volume: 4 start-page: 7850 year: 2019 end-page: 7860 ident: b0215 article-title: Efficient removal of polycyclic aromatic hydrocarbons and heavy metals from water by electrospun nanofibrous polycyclodextrin membranes publication-title: ACS Omega – volume: 5 start-page: 517 year: 2017 end-page: 524 ident: b0490 article-title: Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth publication-title: Journal of Materials Chemistry B – volume: 3 year: 2019 ident: b0155 article-title: Bacterial cellulose as a raw material for food and food packaging applications publication-title: Frontiers in Sustainable Food Systems – volume: 220 start-page: 73 year: 2016 end-page: 90 ident: b0850 article-title: Active packaging with antifungal activities publication-title: International Journal of Food Microbiology – volume: 53 start-page: 767 year: 1990 end-page: 771 ident: b0915 article-title: Efficacy of an oxygen scavenger to modify the atmosphere and prevent mold growth on meal, ready-to-eat pouched bread publication-title: Journal of Food Protection – volume: 107 start-page: 909 year: 2008 end-page: 917 ident: b0710 article-title: Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinning publication-title: Journal of Applied Polymer Science – volume: 77 start-page: 696 year: 2007 end-page: 702 ident: b0650 article-title: Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration publication-title: Textile Research Journal – reference: Malhotra, B., Keshwani, A., & Kharkwal, H. (2015). Antimicrobial food packaging: potential and pitfalls. Frontiers in Microbiology, 6, 611–611. – volume: 222 start-page: 146 year: 2018 end-page: 149 ident: b1250 article-title: Preparation, characterization and antibacterial activity of biodegradable polyindole/bacterial cellulose conductive nanocomposite fiber membrane publication-title: Materials Letters – volume: 233 start-page: 117 year: 2017 end-page: 124 ident: b0120 article-title: Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging publication-title: Food Chemistry – volume: 79 start-page: 140 year: 2016 end-page: 149 ident: b0145 article-title: Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers publication-title: European Polymer Journal – volume: 15 start-page: 22438 year: 2014 end-page: 22470 ident: b0275 article-title: Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials publication-title: International Journal of Molecular Sciences – volume: 179 start-page: 360 year: 2018 end-page: 369 ident: b0280 article-title: Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging publication-title: Carbohydrate Polymers – volume: 37 start-page: 74 year: 2016 end-page: 83 ident: b1220 article-title: A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin publication-title: Innovative Food Science & Emerging Technologies – volume: 81 start-page: 233 year: 2017 end-page: 242 ident: b0290 article-title: Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles publication-title: LWT - Food Science and Technology – reference: Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic bilayer coating based on annealed electrospun ultrathin poly(ε-caprolactone) fibers and electrosprayed nanostructured silica microparticles for easy emptying packaging applications. Coatings, 8 (5). – volume: 43 start-page: 978 year: 2011 ident: b0905 article-title: Effects of poly(ethylene oxide) and ZnO nanoparticles on the morphology, tensile and thermal properties of cellulose acetate nanocomposite fibrous film publication-title: Polymer Journal – volume: 134 year: 2017 ident: b0130 article-title: Antioxidant α-tocopherol/γ-cyclodextrin–inclusion complex encapsulated poly(lactic acid) electrospun nanofibrous web for food packaging publication-title: Journal of Applied Polymer Science – volume: 39 start-page: 77 year: 2014 end-page: 84 ident: b0385 article-title: On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts publication-title: Food Hydrocolloids – volume: 290 start-page: 42 year: 2019 end-page: 48 ident: b0520 article-title: Development and optimization of antifungal packaging for sliced pan loaf based on garlic as active agent and bread aroma as aroma corrector publication-title: International Journal of Food Microbiology – volume: 10 issue: 5 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0720 article-title: Electrospun antimicrobial polylactic acid/tea polyphenol nanofibers for food-packaging applications publication-title: Polymers doi: 10.3390/polym10050561 – start-page: 371 year: 2009 ident: 10.1016/j.foodres.2019.108927_b0780 article-title: Oxygen indicators in food packaging – volume: 103 start-page: 145 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0080 article-title: Electrospun PVA fibers loaded with antioxidant fillers extracted from Durvillaea antarctica algae and their effect on plasticized PLA bionanocomposites publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2018.04.012 – volume: 1 start-page: 140 issue: 2 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0750 article-title: Development of biodegradable films with antioxidant properties based on polyesters containing α-tocopherol and olive leaf extract for food packaging applications publication-title: Food Packaging and Shelf Life doi: 10.1016/j.fpsl.2014.04.002 – volume: 127 start-page: 1 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0380 article-title: Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2013.11.022 – volume: 141 start-page: 3192 issue: 3 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0840 article-title: Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials publication-title: Food Chemistry doi: 10.1016/j.foodchem.2013.06.018 – volume: 16 start-page: 2643 issue: 10 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0820 article-title: Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-014-2643-4 – volume: 26 start-page: 188 issue: 1 year: 2012 ident: 10.1016/j.foodres.2019.108927_b0460 article-title: Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation publication-title: Food Control doi: 10.1016/j.foodcont.2012.01.022 – volume: 63 start-page: 231 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0135 article-title: Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid publication-title: Materials Science and Engineering: C – volume: 69 start-page: 284 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0575 article-title: Porous electrospun polycaprolactone (PCL) fibres by phase separation publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2015.01.028 – volume: 95 start-page: 245 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0105 article-title: Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.04.020 – volume: 12 start-page: 802 issue: 2 year: 2012 ident: 10.1016/j.foodres.2019.108927_b0535 article-title: Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes publication-title: Nano Letters doi: 10.1021/nl203817r – volume: 177 start-page: 203 year: 2017 ident: 10.1016/j.foodres.2019.108927_b1245 article-title: O-acylation of chitosan nanofibers by short-chain and long-chain fatty acids publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.08.132 – volume: 12 start-page: 33 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1075 article-title: Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite publication-title: Composites Communications doi: 10.1016/j.coco.2018.12.002 – ident: 10.1016/j.foodres.2019.108927_b0670 doi: 10.1002/9781118462157.ch18 – volume: 3 start-page: 18311 issue: 12 year: 2018 ident: 10.1016/j.foodres.2019.108927_b1070 article-title: Influence of hydrogen-bonding additives on electrospinning of cyclodextrin nanofibers publication-title: ACS Omega doi: 10.1021/acsomega.8b02662 – volume: 8 start-page: 919 issue: 11 year: 2018 ident: 10.1016/j.foodres.2019.108927_b1000 article-title: Active food packaging coatings based on hybrid electrospun gliadin nanofibers containing ferulic acid/hydroxypropyl-beta-cyclodextrin inclusion complexes publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano8110919 – volume: 29 start-page: 481 issue: 1 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0700 article-title: Preparation and characterization of PHB/PBAT-based biodegradable antibacterial hydrophobic nanofibrous membranes publication-title: Polymers for Advanced Technologies doi: 10.1002/pat.4137 – volume: 121 start-page: 1329 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0730 article-title: Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.09.042 – volume: 63 start-page: 303 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0705 article-title: Biodegradable polyhydroxybutyrate/poly-ε-caprolactone fibrous membranes modified by silica composite hydrol for super hydrophobic and outstanding antibacterial application publication-title: Journal of Industrial and Engineering Chemistry doi: 10.1016/j.jiec.2018.02.031 – volume: 39 start-page: 47 issue: 1 year: 2014 ident: 10.1016/j.foodres.2019.108927_b1095 article-title: Intelligent food packaging: The next generation publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2014.06.009 – ident: 10.1016/j.foodres.2019.108927_b1015 doi: 10.1007/978-94-009-0131-5_17 – volume: 1 start-page: 1806 year: 2011 ident: 10.1016/j.foodres.2019.108927_b0830 article-title: An overview of encapsulation technologies for food applications publication-title: Procedia Food Science doi: 10.1016/j.profoo.2011.09.265 – volume: 75 start-page: 241 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0270 article-title: Control of bacterial proliferation and formation of biofilm in membranes for food packaging manufactured by electrospinning publication-title: Chemical Engineering Transactions – volume: 26 start-page: 31 issue: 1 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0555 article-title: Manufacturing and structural analysis of antimicrobial kefiran/polyethylene oxide nanofibers for food packaging publication-title: Iranian Polymer Journal doi: 10.1007/s13726-016-0496-7 – volume: 37 start-page: 74 year: 2016 ident: 10.1016/j.foodres.2019.108927_b1220 article-title: A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2016.08.008 – volume: 53 start-page: 2788 issue: 6 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0525 article-title: Antioxidant protection of proteins and lipids in processed pork loin chops through feed supplementation with avocado publication-title: Journal of Food Science and Technology doi: 10.1007/s13197-016-2252-6 – volume: 18 start-page: 42 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0350 article-title: Release kinetics of rosemary (Rosmarinus officinalis) polyphenols from polyvinyl alcohol (PVA) electrospun nanofibers in several food simulants publication-title: Food Packaging and Shelf Life doi: 10.1016/j.fpsl.2018.08.006 – volume: 53 start-page: 767 issue: 9 year: 1990 ident: 10.1016/j.foodres.2019.108927_b0915 article-title: Efficacy of an oxygen scavenger to modify the atmosphere and prevent mold growth on meal, ready-to-eat pouched bread publication-title: Journal of Food Protection doi: 10.4315/0362-028X-53.9.767 – ident: 10.1016/j.foodres.2019.108927_b0665 doi: 10.1016/B978-0-08-088504-9.00308-1 – volume: 95 start-page: 496 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0805 article-title: Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.05.001 – year: 2019 ident: 10.1016/j.foodres.2019.108927_b0855 article-title: Electrospinning of zein-ethyl cellulose hybrid nanofibers with improved water resistance for food preservation publication-title: International Journal of Biological – volume: 134 issue: 10 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0890 article-title: Recent development of centrifugal electrospinning publication-title: Journal of Applied Polymer Science doi: 10.1002/app.44578 – volume: 5 start-page: 93095 issue: 113 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0330 article-title: Antimicrobial and sustainable food packaging based on poly(butylene adipate-co-terephthalate) and electrospun chitosan nanofibers publication-title: RSC Advances doi: 10.1039/C5RA14359D – volume: 107 start-page: 909 issue: 2 year: 2008 ident: 10.1016/j.foodres.2019.108927_b0710 article-title: Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinning publication-title: Journal of Applied Polymer Science doi: 10.1002/app.26445 – volume: 233 start-page: 117 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0120 article-title: Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.04.095 – volume: 77 start-page: 696 issue: 9 year: 2007 ident: 10.1016/j.foodres.2019.108927_b0650 article-title: Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration publication-title: Textile Research Journal doi: 10.1177/0040517507080284 – volume: 59 start-page: 12411 issue: 23 year: 2011 ident: 10.1016/j.foodres.2019.108927_b1120 article-title: Synergistic antimicrobial activities of natural essential oils with chitosan films publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf203165k – volume: 24 start-page: 767 issue: 4 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0630 article-title: Electrospun polyvinyl alcohol/d-limonene fibers prepared by ultrasonic processing for antibacterial active packaging material publication-title: Molecules (Basel, Switzerland) doi: 10.3390/molecules24040767 – start-page: 109 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0835 article-title: Chapter 4 – Fabrication of functional electrospun nanostructures for food applications – volume: 196 start-page: 996 year: 2016 ident: 10.1016/j.foodres.2019.108927_b1155 article-title: Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging publication-title: Food Chemistry doi: 10.1016/j.foodchem.2015.10.043 – volume: 9 start-page: 262 issue: 2 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0250 article-title: Oxygen-scavenging multilayered biopapers containing palladium nanoparticles obtained by the electrospinning coating technique publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano9020262 – volume: 11 start-page: 1165 issue: 8 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0485 article-title: A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology publication-title: Arabian Journal of Chemistry doi: 10.1016/j.arabjc.2015.11.015 – volume: 8 start-page: 125 issue: 2 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0360 article-title: Efficacy of cinnamaldehyde against enteric viruses and its activity after incorporation into biodegradable multilayer systems of interest in food packaging publication-title: Food and Environmental Virology doi: 10.1007/s12560-016-9235-7 – volume: 68 start-page: 603 issue: 7–8 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0395 article-title: Development of multilayer corn starch-based food packaging structures containing β-carotene by means of the electro-hydrodynamic processing publication-title: Starch – Stärke doi: 10.1002/star.201500154 – volume: 21 start-page: 100329 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1270 article-title: A novel polyethylene oxide/Dendrobium officinale nanofiber: Preparation, characterization and application in pork packaging publication-title: Food Packaging and Shelf Life doi: 10.1016/j.fpsl.2019.100329 – volume: 120 start-page: 125 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0115 article-title: Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2014.04.006 – volume: 68 start-page: 1910 issue: 6 year: 2003 ident: 10.1016/j.foodres.2019.108927_b0895 article-title: Effect of 1-methylcyclopropene on the quality of fresh-cut apple slices publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.2003.tb06992.x – volume: 66 start-page: 6219 issue: 24 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0315 article-title: Electrospun chitosan/poly(ethylene oxide)/lauric arginate nanofibrous film with enhanced antimicrobial activity publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b01493 – start-page: 21 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0825 article-title: Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging publication-title: Food Packaging and Shelf Life – volume: 31 start-page: 79 issue: 1 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0355 article-title: Nanostructured biolayers in food packaging publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2013.01.004 – volume: 134 issue: 21 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0130 article-title: Antioxidant α-tocopherol/γ-cyclodextrin–inclusion complex encapsulated poly(lactic acid) electrospun nanofibrous web for food packaging publication-title: Journal of Applied Polymer Science doi: 10.1002/app.44858 – volume: 5 start-page: 8241 issue: 16 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0500 article-title: Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am402376c – volume: 91 start-page: 389 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0725 article-title: Physico- and bio-activities of nanoscale regenerated cellulose nonwoven immobilized with lysozyme publication-title: Materials Science and Engineering: C – volume: 7 start-page: 1572 issue: 3 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0410 article-title: Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme publication-title: RSC Advances doi: 10.1039/C6RA25977D – volume: 97 start-page: 711 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0695 article-title: Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken publication-title: LWT doi: 10.1016/j.lwt.2018.08.015 – volume: 179 start-page: 107885 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1145 article-title: Mass production of nanofibers from needleless electrospinning by a novel annular spinneret publication-title: Materials & Design doi: 10.1016/j.matdes.2019.107885 – volume: 25 start-page: 497 issue: 4 year: 1995 ident: 10.1016/j.foodres.2019.108927_b0880 article-title: Gas and water vapor barrier properties of edible films from protein and cellulosic materials publication-title: Journal of Food Engineering doi: 10.1016/0260-8774(94)00029-9 – volume: 80 start-page: 371 year: 2017 ident: 10.1016/j.foodres.2019.108927_b1060 article-title: Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon publication-title: Materials Science and Engineering: C – volume: 21 start-page: 100357 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0925 article-title: Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. publication-title: Food Packaging and Shelf Life doi: 10.1016/j.fpsl.2019.100357 – volume: 292 start-page: 21 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0690 article-title: Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2018.12.007 – volume: 7 start-page: 383 issue: 11 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0530 article-title: The electrospun ceramic hollow nanofibers publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano7110383 – volume: 113 start-page: 108280 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0010 article-title: Stabilization of a saffron extract through its encapsulation within electrospun/electrosprayed zein structures publication-title: LWT doi: 10.1016/j.lwt.2019.108280 – volume: 52 start-page: 4600 issue: 7 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0045 article-title: Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products publication-title: Journal of Food Science and Technology doi: 10.1007/s13197-014-1508-2 – volume: 23 start-page: 49 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0740 article-title: Novel techniques in food processing: Bionanocomposites publication-title: Current Opinion in Food Science doi: 10.1016/j.cofs.2018.05.010 – volume: 290 start-page: 42 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0520 article-title: Development and optimization of antifungal packaging for sliced pan loaf based on garlic as active agent and bread aroma as aroma corrector publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2018.09.024 – ident: 10.1016/j.foodres.2019.108927_b0420 doi: 10.1533/9780857092786.4.571 – volume: 57 start-page: 146 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0640 article-title: Carbon dioxide absorbers for food packaging applications publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2016.09.014 – volume: 22 start-page: 100385 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0985 article-title: Preparation of zein nanofibers with cinnamaldehyde encapsulated in surfactants at critical micelle concentration for active food packaging publication-title: Food Packaging and Shelf Life doi: 10.1016/j.fpsl.2019.100385 – ident: 10.1016/j.foodres.2019.108927_b0755 – volume: 6 start-page: 125001 issue: 12 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1265 article-title: Fabrication of perfect CMCS/PVA nanofibers for keeping food fresh via an in situ mixing electrospinning publication-title: Materials Research Express doi: 10.1088/2053-1591/ab5396 – ident: 10.1016/j.foodres.2019.108927_b0800 doi: 10.1016/j.ijbiomac.2018.07.028 – volume: 184 start-page: 167 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0480 article-title: Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis publication-title: Food Chemistry doi: 10.1016/j.foodchem.2015.03.088 – volume: 178 start-page: 131 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0675 article-title: Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.09.043 – volume: 8 start-page: 16 issue: 1 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0815 article-title: Intelligent packaging in the food sector: A brief overview publication-title: Foods (Basel, Switzerland) – volume: 50 start-page: 1976 issue: 8 year: 2017 ident: 10.1016/j.foodres.2019.108927_b1180 article-title: Electrospun nanofibers: New concepts, materials, and applications publication-title: Accounts of Chemical Research doi: 10.1021/acs.accounts.7b00218 – volume: 32 start-page: 1771 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0440 article-title: Encapsulation of R-(+)-limonene in edible electrospun nanofibers publication-title: Chemical Engineering Transactions – volume: 26 start-page: 2953 issue: 6 year: 2011 ident: 10.1016/j.foodres.2019.108927_b1135 article-title: Three-step electrodeposition synthesis of self-doped polyaniline nanofiber-supported flower-like Au microspheres for high-performance biosensing of DNA hybridization recognition publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2010.11.045 – volume: 79 start-page: 503 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0200 article-title: Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems publication-title: LWT - Food Science and Technology doi: 10.1016/j.lwt.2017.01.065 – ident: 10.1016/j.foodres.2019.108927_b0745 doi: 10.3389/fmicb.2015.00611 – start-page: 80 year: 2005 ident: 10.1016/j.foodres.2019.108927_b0510 article-title: Antimicrobial packaging systems – volume: 49 start-page: 449 year: 2017 ident: 10.1016/j.foodres.2019.108927_b1200 article-title: Investigation of isothiocyanate release from electrospun modified poly(L-lactic acid)/mustard powder composite fibers publication-title: Polymer Journal doi: 10.1038/pj.2017.7 – volume: 81 start-page: 48 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0025 article-title: Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.02.028 – ident: 10.1016/j.foodres.2019.108927_b0975 doi: 10.1016/j.compositesb.2019.107074 – volume: 62 start-page: 424 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0585 article-title: Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol publication-title: Food Research International doi: 10.1016/j.foodres.2014.03.033 – volume: 80 start-page: 175 year: 2018 ident: 10.1016/j.foodres.2019.108927_b1235 article-title: Emulsion electrospinning: Fundamentals, food applications and prospects publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2018.08.005 – volume: 92 start-page: 1880 issue: 2 year: 2013 ident: 10.1016/j.foodres.2019.108927_b1170 article-title: Cytotoxicity and antibacterial ability of scaffolds immobilized by polysaccharide/layered silicate composites publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2012.11.040 – volume: 22 start-page: 100390 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0515 article-title: Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging publication-title: Food Packaging and Shelf Life doi: 10.1016/j.fpsl.2019.100390 – volume: 32 start-page: 106 issue: 1 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0375 article-title: High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2012.12.007 – volume: 60 start-page: 71 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0340 article-title: High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2016.10.019 – ident: 10.1016/j.foodres.2019.108927_b1100 doi: 10.1155/2015/750726 – volume: 119 start-page: 5298 issue: 8 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1175 article-title: Electrospinning and electrospun nanofibers: Methods, materials, and applications publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.8b00593 – volume: 114 start-page: 1425 issue: 5 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0605 article-title: Incorporation of T4 bacteriophage in electrospun fibres publication-title: Journal of Applied Microbiology doi: 10.1111/jam.12158 – volume: 269 start-page: 142 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0660 article-title: Butylated hydroxyanisole encapsulated in gelatin fiber mats: Volatile release kinetics, functional effectiveness and application to strawberry preservation publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.06.150 – volume: 7 start-page: 42 issue: 2 year: 2017 ident: 10.1016/j.foodres.2019.108927_b1240 article-title: Electrospun nanofibres containing antimicrobial plant extracts publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano7020042 – volume: 17 start-page: 860 issue: 4 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0505 article-title: Food packaging: A comprehensive review and future trends publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12343 – volume: 84 start-page: 1222 issue: 7 year: 2004 ident: 10.1016/j.foodres.2019.108927_b1020 article-title: Electrospinning of continuous aligned polymer fibers publication-title: Applied Physics Letters doi: 10.1063/1.1647685 – volume: 8 start-page: 228 issue: 7 year: 1997 ident: 10.1016/j.foodres.2019.108927_b0775 article-title: Oxygen and aroma barrier properties of edible films: A review publication-title: Trends in Food Science & Technology doi: 10.1016/S0924-2244(97)01051-0 – volume: 25 start-page: 328 issue: 1 year: 2012 ident: 10.1016/j.foodres.2019.108927_b0920 article-title: Carbon dioxide sensors for intelligent food packaging applications publication-title: Food Control doi: 10.1016/j.foodcont.2011.10.043 – volume: 50 start-page: 5068 issue: 14 year: 2015 ident: 10.1016/j.foodres.2019.108927_b1115 article-title: Preparation, antimicrobial and release behaviors of nisin-poly (vinyl alcohol)/wheat gluten/ZrO2 nanofibrous membranes publication-title: Journal of Materials Science doi: 10.1007/s10853-015-9059-0 – ident: 10.1016/j.foodres.2019.108927_b0615 doi: 10.1016/j.ijbiomac.2018.03.002 – volume: 23 start-page: 416 issue: 3 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0170 article-title: Development of bioactive packaging structure using melt electrospinning publication-title: Journal of Polymers and the Environment doi: 10.1007/s10924-015-0713-z – ident: 10.1016/j.foodres.2019.108927_b0540 doi: 10.1201/b12174 – start-page: 455 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1040 article-title: Chapter 15 - Electrospun nanofibers for food and food packaging technology – volume: 131 issue: 16 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0230 article-title: Electrospun heat management polymeric materials of interest in food refrigeration and packaging publication-title: Journal of Applied Polymer Science doi: 10.1002/app.40661 – volume: 217 start-page: 1 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0035 article-title: Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2017.08.008 – volume: 5 start-page: 37 issue: 3 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0655 article-title: Antifungal microbial agents for food biopreservation – A review publication-title: Microorganisms doi: 10.3390/microorganisms5030037 – ident: 10.1016/j.foodres.2019.108927_b0790 doi: 10.1016/j.foodhyd.2019.02.015 – volume: 483 start-page: 84 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0370 article-title: Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2016.08.021 – volume: 1738 start-page: 270018 issue: 1 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0180 article-title: Poly(lactic) acid fibers loaded with mesoporous silica for potential applications in the active food packaging publication-title: AIP Conference Proceedings doi: 10.1063/1.4952057 – volume: 3 issue: 7 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0155 article-title: Bacterial cellulose as a raw material for food and food packaging applications publication-title: Frontiers in Sustainable Food Systems – volume: 61 start-page: 8156 issue: 34 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0580 article-title: Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf402923c – ident: 10.1016/j.foodres.2019.108927_b0445 doi: 10.1155/2016/4046061 – volume: 9 start-page: 346 issue: 3 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0075 article-title: Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano9030346 – volume: 8 start-page: 469 issue: 7 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0245 article-title: Electrospun oxygen scavenging films of poly(3-hydroxybutyrate) containing palladium nanoparticles for active packaging applications publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano8070469 – volume: 62 start-page: 16 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0345 article-title: Nanoparticle release from nano-silver antimicrobial food containers publication-title: Food and Chemical Toxicology doi: 10.1016/j.fct.2013.08.014 – volume: 72 start-page: 502 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0560 article-title: Synthesis of antimicrobial Nisin-phosphorylated soybean protein isolate/poly(l-lactic acid)/ZrO2 membranes publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2014.08.041 – ident: 10.1016/j.foodres.2019.108927_b0150 doi: 10.1016/B978-0-08-102198-9.00013-2 – ident: 10.1016/j.foodres.2019.108927_b0635 doi: 10.3390/coatings8050173 – volume: 55 start-page: 1320 issue: 10 year: 2015 ident: 10.1016/j.foodres.2019.108927_b1105 article-title: Essential oils as natural food antimicrobial agents: A review publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2012.692127 – volume: 22 start-page: 585 issue: 4 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0065 article-title: Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria publication-title: Molecules (Basel, Switzerland) doi: 10.3390/molecules22040585 – volume: 112 start-page: 477 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0110 article-title: Nanostructured poly(lactic acid)/soy protein/HPMC films by electrospinning for potential applications in food industry publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2019.01.006 – volume: 54 start-page: 2229 issue: 6 year: 2006 ident: 10.1016/j.foodres.2019.108927_b0160 article-title: Use of activated carbon inside modified atmosphere packages to maintain tomato fruit quality during cold storage publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf0528761 – volume: 254 start-page: 5 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1140 article-title: A newly reaction curing mechanism in conjugate electrospinning process publication-title: Materials Letters doi: 10.1016/j.matlet.2019.07.010 – volume: 52 start-page: 3473 issue: 9 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0050 article-title: Novel nanofiltration hollow fiber membrane produced via electrospinning publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie303173w – volume: 65 start-page: 2291 issue: 14 year: 2011 ident: 10.1016/j.foodres.2019.108927_b0220 article-title: Electrospun porous cellulose acetate fibers from volatile solvent mixture publication-title: Materials Letters doi: 10.1016/j.matlet.2011.04.039 – volume: 4 start-page: 7850 issue: 4 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0215 article-title: Efficient removal of polycyclic aromatic hydrocarbons and heavy metals from water by electrospun nanofibrous polycyclodextrin membranes publication-title: ACS Omega doi: 10.1021/acsomega.9b00279 – volume: 15 start-page: 22438 issue: 12 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0275 article-title: Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms151222438 – volume: 53 start-page: 242 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0495 article-title: Long-term antimicrobial effect of nisin released from electrospun triaxial fiber membranes publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2017.02.029 – start-page: 1 year: 1995 ident: 10.1016/j.foodres.2019.108927_b0950 article-title: Overview of active food packaging – volume: 48 start-page: 6823 issue: 23 year: 2007 ident: 10.1016/j.foodres.2019.108927_b0300 article-title: Electrospinning of polymer melts: Phenomenological observations publication-title: Polymer doi: 10.1016/j.polymer.2007.09.037 – volume: 69 start-page: 685 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0965 article-title: Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions publication-title: Materials Science and Engineering: C – volume: 104 start-page: 874 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0325 article-title: Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2017.06.095 – volume: 31 start-page: 185 issue: 4 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0070 article-title: Chitosan-based nanofibers as bioactive meat packaging materials publication-title: Packaging Technology and Science doi: 10.1002/pts.2366 – volume: 222 start-page: 146 year: 2018 ident: 10.1016/j.foodres.2019.108927_b1250 article-title: Preparation, characterization and antibacterial activity of biodegradable polyindole/bacterial cellulose conductive nanocomposite fiber membrane publication-title: Materials Letters doi: 10.1016/j.matlet.2018.03.203 – volume: 300 start-page: 125249 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0875 article-title: Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging publication-title: Food Chemistry doi: 10.1016/j.foodchem.2019.125249 – volume: 113 start-page: 108293 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1125 article-title: Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films publication-title: LWT doi: 10.1016/j.lwt.2019.108293 – start-page: 362 year: 2012 ident: 10.1016/j.foodres.2019.108927_b1150 article-title: 13 - Electrospun fibers: Fabrication, functionalities and potential food industry applications – ident: 10.1016/j.foodres.2019.108927_b0430 doi: 10.1002/9781119160243.ch6 – volume: 133 start-page: 641 issue: 3 year: 2012 ident: 10.1016/j.foodres.2019.108927_b0595 article-title: Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin publication-title: Food Chemistry doi: 10.1016/j.foodchem.2012.01.040 – volume: 89 start-page: 307 issue: 2 year: 2012 ident: 10.1016/j.foodres.2019.108927_b0310 article-title: Quaternized chitosan-layered silicate intercalated composites based nanofibrous mats and their antibacterial activity publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2012.02.009 – volume: 52 start-page: 14004 issue: 24 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0185 article-title: Electrospinning of very long and highly aligned fibers publication-title: Journal of Materials Science doi: 10.1007/s10853-017-1529-0 – volume: 79 start-page: 140 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0145 article-title: Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2016.04.029 – volume: 19 start-page: 745 issue: 3 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0565 article-title: Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms19030745 – volume: 101 start-page: 32 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0195 article-title: The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications publication-title: Food and Bioproducts Processing doi: 10.1016/j.fbp.2016.10.007 – volume: 197 start-page: 864 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0140 article-title: Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility publication-title: Food Chemistry doi: 10.1016/j.foodchem.2015.11.051 – volume: 181 start-page: 885 year: 2018 ident: 10.1016/j.foodres.2019.108927_b1130 article-title: Montmorillonite@chitosan-poly (ethylene oxide) nanofibrous membrane enhancing poly (vinyl alcohol-co-ethylene) composite film publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.11.063 – ident: 10.1016/j.foodres.2019.108927_b0095 doi: 10.1155/2014/360438 – volume: 100 start-page: 150 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0610 article-title: Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2013.03.079 – volume: 176 start-page: 18 issue: 1 year: 2007 ident: 10.1016/j.foodres.2019.108927_b0550 article-title: Micro- and nanoparticle production by electrospraying publication-title: Powder Technology doi: 10.1016/j.powtec.2007.01.035 – volume: 66 start-page: 9498 issue: 36 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0715 article-title: Hydrophobic ethylcellulose/gelatin nanofibers containing zinc oxide nanoparticles for antimicrobial packaging publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b03267 – volume: 9 start-page: 227 issue: 2 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0770 article-title: Electrospun antimicrobial films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano9020227 – ident: 10.1016/j.foodres.2019.108927_b0970 doi: 10.1016/j.fpsl.2019.100314 – volume: 87 start-page: 758 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0015 article-title: Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.08.056 – volume: 6 start-page: 42600 issue: 48 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0405 article-title: Cytocompatible antibacterial fibrous membranes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer publication-title: RSC Advances doi: 10.1039/C6RA08465F – volume: 96 start-page: 4663 issue: 14 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0860 article-title: Electrospun nanofibres in agriculture and the food industry: A review publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.7737 – volume: 13 start-page: 860 issue: 7 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0545 article-title: Electrospun antibacterial chitosan-based fibers publication-title: Macromolecular Bioscience doi: 10.1002/mabi.201300058 – volume: 30 start-page: 182 issue: 1 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0900 article-title: Development of zein-based heat-management structures for smart food packaging publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2012.05.010 – volume: 82 start-page: 1412 issue: 6 year: 2017 ident: 10.1016/j.foodres.2019.108927_b1210 article-title: Essential oil bioactive fibrous membranes prepared via coaxial electrospinning publication-title: Journal of Food Science doi: 10.1111/1750-3841.13723 – volume: 39 start-page: 77 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0385 article-title: On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2013.12.023 – ident: 10.1016/j.foodres.2019.108927_b0620 doi: 10.1016/j.ijbiomac.2018.05.224 – volume: 179 start-page: 360 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0280 article-title: Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.10.011 – volume: 18 start-page: 21 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0680 article-title: Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef publication-title: Food Packaging and Shelf Life doi: 10.1016/j.fpsl.2018.08.004 – volume: 144 start-page: 1146 year: 2015 ident: 10.1016/j.foodres.2019.108927_b1165 article-title: Ready-to-use strip for l-ascorbic acid visual detection based on polyaniline/polyamide 66 nano-fibers/nets membranes publication-title: Talanta doi: 10.1016/j.talanta.2015.07.086 – volume: 220 start-page: 73 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0850 article-title: Active packaging with antifungal activities publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2016.01.001 – ident: 10.1016/j.foodres.2019.108927_b1025 – volume: 77 start-page: 467 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0295 article-title: Release of allyl isothiocyanate from mustard seed meal powder entrapped in electrospun PLA–PEO nonwovens publication-title: Food Research International doi: 10.1016/j.foodres.2015.08.029 – ident: 10.1016/j.foodres.2019.108927_b1035 doi: 10.4081/ijfs.2017.6874 – volume: 50 start-page: 5846 issue: 24 year: 2009 ident: 10.1016/j.foodres.2019.108927_b1190 article-title: Bubble-electrospinning for fabricating nanofibers publication-title: Polymer doi: 10.1016/j.polymer.2009.10.021 – volume: 61 start-page: 261 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0365 article-title: Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.05.025 – volume: 5 start-page: 865 issue: 4 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0060 article-title: Antibacterial electrospun chitosan-based nanofibers: A bacterial membrane perforator publication-title: Food Science & Nutrition doi: 10.1002/fsn3.468 – volume: 53 start-page: 1527 issue: 2 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0125 article-title: Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex publication-title: Journal of Materials Science doi: 10.1007/s10853-017-1580-x – start-page: 63 year: 2005 ident: 10.1016/j.foodres.2019.108927_b0955 article-title: 5 - Introduction to active food packaging technologies – ident: 10.1016/j.foodres.2019.108927_b1225 doi: 10.1021/acssensors.9b00440 – volume: 72 start-page: R39 issue: 3 year: 2007 ident: 10.1016/j.foodres.2019.108927_b0760 article-title: Food packaging-roles, materials, and environmental issues publication-title: Journal of Food Science doi: 10.1111/j.1750-3841.2007.00301.x – volume: 8 start-page: 199 issue: 4 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0425 article-title: Antibacterial and barrier properties of gelatin coated by electrospun polycaprolactone ultrathin fibers containing black pepper oleoresin of interest in active food biopackaging applications publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano8040199 – volume: 5 start-page: 517 issue: 3 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0490 article-title: Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth publication-title: Journal of Materials Chemistry B doi: 10.1039/C6TB02441F – ident: 10.1016/j.foodres.2019.108927_b1005 doi: 10.1016/j.ijbiomac.2018.06.079 – volume: 17 start-page: 609 issue: 2 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0450 article-title: Moisture absorbers for food packaging applications publication-title: Environmental Chemistry Letters doi: 10.1007/s10311-018-0810-z – volume: 11 start-page: 33 issue: 1 year: 1990 ident: 10.1016/j.foodres.2019.108927_b0885 article-title: Inhibitory effect of oregano and thyme essential oils on moulds and foodborne bacteria publication-title: Letters in Applied Microbiology doi: 10.1111/j.1472-765X.1990.tb00130.x – volume: 55 start-page: 11 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0390 article-title: Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2015.10.026 – volume: 16 start-page: 1751 issue: 8 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0400 article-title: Preparation and characterization of electrospun antimicrobial fibrous membranes based on polyhydroxybutyrate (PHB) publication-title: Fibers and Polymers doi: 10.1007/s12221-015-5108-1 – volume: 19 start-page: 86 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0685 article-title: Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese publication-title: Food Packaging and Shelf Life doi: 10.1016/j.fpsl.2018.12.005 – volume: 7 start-page: 194 issue: 7 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0735 article-title: Development of poly(lactic acid)/chitosan fibers loaded with essential oil for antimicrobial applications publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano7070194 – volume: 50 start-page: 822 issue: 9 year: 2010 ident: 10.1016/j.foodres.2019.108927_b0475 article-title: Cinnamon and health publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408390902773052 – volume: 19 start-page: 634 issue: 12 year: 2008 ident: 10.1016/j.foodres.2019.108927_b1010 article-title: Biodegradable polymers for food packaging: A review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2008.07.003 – ident: 10.1016/j.foodres.2019.108927_b0455 doi: 10.1016/S0014-3057(02)00333-6 – volume: 178 start-page: 121610 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1055 article-title: Electrospinning of uniform nanofibers of Polymers of Intrinsic Microporosity (PIM-1): The influence of solution conductivity and relative humidity publication-title: Polymer doi: 10.1016/j.polymer.2019.121610 – volume: 266 start-page: 69 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0285 article-title: The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2017.11.019 – volume: 90 start-page: 26 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0320 article-title: Oxygen scavengers for food packaging applications: A review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2019.05.013 – volume: 111 start-page: 1 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0810 article-title: Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions publication-title: Food and Bioproducts Processing doi: 10.1016/j.fbp.2018.05.001 – volume: 199 start-page: 331 issue: 1 year: 2006 ident: 10.1016/j.foodres.2019.108927_b0040 article-title: Design of biodegradable composite films for food packaging publication-title: Desalination doi: 10.1016/j.desal.2006.03.078 – volume: 38 start-page: 21 issue: 1 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0055 article-title: Electrospinning and electrospraying techniques: Potential food based applications publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2014.03.004 – volume: 191 start-page: 115 year: 2016 ident: 10.1016/j.foodres.2019.108927_b1205 article-title: Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2016.07.012 – volume: 17 start-page: 165 issue: 1 year: 2018 ident: 10.1016/j.foodres.2019.108927_b1215 article-title: Active packaging applications for food publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12322 – volume: 135 start-page: 46117 issue: 16 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0995 article-title: Electrospun poly(vinyl alcohol)/permutite fibrous film loaded with cinnamaldehyde for active food packaging publication-title: Journal of Applied Polymer Science doi: 10.1002/app.46117 – volume: 8 start-page: 745 issue: 10 year: 2018 ident: 10.1016/j.foodres.2019.108927_b1090 article-title: Electrospun poly(ethylene-co-vinyl alcohol)/graphene nanoplatelets composites of interest in intelligent food packaging applications publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano8100745 – ident: 10.1016/j.foodres.2019.108927_b0910 doi: 10.3389/fphys.2013.00242 – volume: 63 start-page: 437 year: 2017 ident: 10.1016/j.foodres.2019.108927_b1110 article-title: Release kinetics and antibacterial activity of curcumin loaded zein fibers publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.09.028 – volume: 51 start-page: 1 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0465 article-title: An overview of the intelligent packaging technologies in the food sector publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2016.02.008 – start-page: 232 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0940 article-title: Food Packaging – volume: 98 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0765 article-title: Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2013.04.068 – volume: 11 issue: 1 year: 2018 ident: 10.1016/j.foodres.2019.108927_b1065 article-title: Electrospinning of cyclodextrin functional nanofibers for drug delivery applications publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11010006 – ident: 10.1016/j.foodres.2019.108927_b0795 doi: 10.1016/B978-0-12-811441-4.00014-5 – volume: 35 start-page: 42 issue: 1 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0470 article-title: Advances in antioxidant active food packaging publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2013.10.008 – volume: 67 start-page: 2227 issue: 8 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1030 article-title: Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b06226 – volume: 34 start-page: 1690 issue: 10 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0845 article-title: Controlled release of 1-methylcyclopropene from its functionalised electrospun fibres under constant and linearly ramped humidity publication-title: Food Additives & Contaminants: Part A doi: 10.1080/19440049.2017.1325520 – volume: 43 start-page: 978 year: 2011 ident: 10.1016/j.foodres.2019.108927_b0905 article-title: Effects of poly(ethylene oxide) and ZnO nanoparticles on the morphology, tensile and thermal properties of cellulose acetate nanocomposite fibrous film publication-title: Polymer Journal doi: 10.1038/pj.2011.97 – volume: 73 start-page: 433 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0085 article-title: Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2015.10.036 – volume: 81 start-page: 233 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0290 article-title: Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles publication-title: LWT - Food Science and Technology doi: 10.1016/j.lwt.2017.04.003 – volume: 8 start-page: 139 issue: 3 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0175 article-title: Antimicrobial membranes of bio-based PA 11 and HNTs filled with lysozyme obtained by an electrospinning process publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano8030139 – ident: 10.1016/j.foodres.2019.108927_b0785 doi: 10.1016/j.jfoodeng.2018.02.016 – volume: 98 start-page: 404 issue: 3 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0930 article-title: Active and intelligent packaging systems for a modern society publication-title: Meat Science doi: 10.1016/j.meatsci.2014.06.031 – volume: 81 start-page: 608 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0870 article-title: Antibacterial performance of bovine lactoferrin-fish gelatine electrospun membranes publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2015.08.047 – volume: 145 start-page: 643 year: 2016 ident: 10.1016/j.foodres.2019.108927_b1045 article-title: Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2016.05.008 – volume: 164 start-page: 55 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0235 article-title: Development of polystyrene-based films with temperature buffering capacity for smart food packaging publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2015.04.032 – volume: 8 start-page: 129 issue: 3 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0945 article-title: Combined effect of ultrasound stimulations and autoclaving on the enhancement of antibacterial activity of ZnO and SiO₂/ZnO nanoparticles publication-title: Nanomaterials (Basel, Switzerland) doi: 10.3390/nano8030129 – volume: 26 start-page: 424 year: 2014 ident: 10.1016/j.foodres.2019.108927_b0005 article-title: Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2014.09.012 – volume: 49 start-page: 3806 issue: 12 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0190 article-title: Fragrance encapsulation in polymeric matrices by emulsion electrospinning publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2013.08.028 – volume: 181 start-page: 234 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0100 article-title: A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: morphology and physicochemical properties publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.10.071 – volume: 44 start-page: 185 issue: 3 year: 2004 ident: 10.1016/j.foodres.2019.108927_b0865 article-title: Active food packaging technologies publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408690490441578 – year: 2006 ident: 10.1016/j.foodres.2019.108927_b0935 – volume: 25 start-page: 1291 issue: 2 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0265 article-title: Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique publication-title: Cellulose doi: 10.1007/s10570-018-1648-z – year: 2017 ident: 10.1016/j.foodres.2019.108927_b0625 article-title: Freshness sensors for food packaging – volume: 48 start-page: 532 issue: 6 year: 1985 ident: 10.1016/j.foodres.2019.108927_b0305 article-title: A review of effects of carbon dioxide on microbial growth and food quality publication-title: Journal of Food Protection doi: 10.4315/0362-028X-48.6.532 – volume: 12 start-page: 59 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0335 article-title: Functionalized coatings by electrospinning for anti-oxidant food packaging publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2017.08.008 – volume: 83 start-page: 682 issue: 3 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0645 article-title: Ascorbic acid-based oxygen scavenger in active food packaging system for raw meatloaf publication-title: Journal of Food Science doi: 10.1111/1750-3841.14061 – volume: 59 start-page: 366 year: 2016 ident: 10.1016/j.foodres.2019.108927_b1160 article-title: Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging publication-title: Food Control doi: 10.1016/j.foodcont.2015.06.005 – ident: 10.1016/j.foodres.2019.108927_b1085 doi: 10.1039/9781788012942-00238 – volume: 34 start-page: 1817 issue: 10 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0255 article-title: Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications publication-title: Food Additives & Contaminants: Part A doi: 10.1080/19440049.2017.1355115 – volume: 9 start-page: 525 issue: 8 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0415 article-title: Physico-mechanical and antibacterial properties of PLA/TiO2 composite materials synthesized via electrospinning and solution casting processes publication-title: Coatings doi: 10.3390/coatings9080525 – volume: 2 start-page: 270 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0960 article-title: Physicochemical, antioxidant and antimicrobial properties of electrospun poly(ε-caprolactone) films containing a solid dispersion of sage (Salvia officinalis L.) extract publication-title: Nanomaterials doi: 10.3390/nano9020270 – ident: 10.1016/j.foodres.2019.108927_b1230 doi: 10.1007/s00289-016-1896-8 – volume: 99 start-page: 1837 issue: 3 year: 2016 ident: 10.1016/j.foodres.2019.108927_b1050 article-title: Short communication: Electrospinning of casein/pullulan blends for food-grade applications1 publication-title: Journal of Dairy Science doi: 10.3168/jds.2015-10374 – volume: 495 start-page: 75 issue: 1 year: 2015 ident: 10.1016/j.foodres.2019.108927_b0165 article-title: Alternating current electrospinning for preparation of fibrous drug delivery systems publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2015.08.069 – volume: 247 start-page: 19 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1185 article-title: Controllable generation of nanofibers through a magnetic-field-assisted electrospinning design publication-title: Materials Letters doi: 10.1016/j.matlet.2019.03.080 – start-page: 33 year: 2008 ident: 10.1016/j.foodres.2019.108927_b0600 article-title: Smart packaging of meat and poultry products – ident: 10.1016/j.foodres.2019.108927_b1255 doi: 10.1016/B978-0-12-804303-5.00019-5 – volume: 16 start-page: 45 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0090 article-title: Electrospun nanofibers, nanocomposites and characterization of art: Insight on establishing fibers as product publication-title: Nano-Structures & Nano-Objects doi: 10.1016/j.nanoso.2018.03.013 – volume: 9 start-page: 1874 issue: 11 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0225 article-title: Use of electrospinning to develop antimicrobial biodegradable multilayer systems: Encapsulation of cinnamaldehyde and their physicochemical characterization publication-title: Food and Bioprocess Technology doi: 10.1007/s11947-016-1772-4 – volume: 203 start-page: 228 year: 2019 ident: 10.1016/j.foodres.2019.108927_b1195 article-title: Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.09.061 – volume: 135 start-page: 45501 issue: 24 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0260 article-title: Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber-based food packaging applications publication-title: Journal of Applied Polymer Science doi: 10.1002/app.45501 – start-page: 108 year: 2011 ident: 10.1016/j.foodres.2019.108927_b1080 article-title: Electrospun nanofibers for food packaging applications – volume: 135 start-page: 45673 issue: 2 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0205 article-title: Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications publication-title: Journal of Applied Polymer Science doi: 10.1002/app.45673 – volume: 133 issue: 2 year: 2016 ident: 10.1016/j.foodres.2019.108927_b0570 article-title: Antibacterial poly(lactic acid) (PLA) films grafted with electrospun PLA/allyl isothiocyanate fibers for food packaging publication-title: Journal of Applied Polymer Science doi: 10.1002/app.42475 – ident: 10.1016/j.foodres.2019.108927_b0020 doi: 10.4028/www.scientific.net/JNanoR.56.80 – volume: 107 start-page: 1908 year: 2018 ident: 10.1016/j.foodres.2019.108927_b0990 article-title: Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2017.10.054 – volume: 14 start-page: 31 issue: 1 year: 1998 ident: 10.1016/j.foodres.2019.108927_b0030 article-title: Campylobacter Jejuni publication-title: Veterinary Clinics of North America: Food Animal Practice – volume: 5 start-page: 35948 issue: 45 year: 2015 ident: 10.1016/j.foodres.2019.108927_b1260 article-title: Flexible Janus nanofibers: A feasible route to realize simultaneously tuned magnetism and enhanced color-tunable luminescence bifunctionality publication-title: RSC Advances doi: 10.1039/C5RA01644D – volume: 116 start-page: 1318 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0435 article-title: Electrospinning of native and anionic corn starch fibers with different amylose contents publication-title: Food Research International doi: 10.1016/j.foodres.2018.10.021 – volume: 1 start-page: 54 issue: 1 year: 2019 ident: 10.1016/j.foodres.2019.108927_b0210 article-title: Water-insoluble hydrophilic electrospun fibrous mat of cyclodextrin–epichlorohydrin polymer as highly effective sorbent publication-title: ACS Applied Polymer Materials doi: 10.1021/acsapm.8b00034 – volume: 61 start-page: 3901 issue: 16 year: 2013 ident: 10.1016/j.foodres.2019.108927_b0590 article-title: Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf400440b – volume: 192 start-page: 122 year: 2017 ident: 10.1016/j.foodres.2019.108927_b0240 article-title: Use of phase change materials to develop electrospun coatings of interest in food packaging applications publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2015.01.019 |
| SSID | ssj0006579 |
| Score | 2.6740777 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
•A comprehensive review of functional electrospun nanofibers for food packaging.•Nanofibers with antioxidant, antibacterial and antifungal... Food packaging is a multidisciplinary area that encompasses food science and engineering, microbiology, as well as chemistry, and ignited tremendous interest... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 108927 |
| SubjectTerms | active food packaging Anti-Bacterial Agents - chemistry Antibacterial Antifungal Antifungal Agents - chemistry antimicrobial packaging Antioxidant antioxidants Antioxidants - chemistry dietary supplements Electrospinning encapsulation Food packaging Food Packaging - methods food spoilage food-packaging materials foods freshness microbiology Nanofibers Nanofibers - chemistry oxidation oxygen packing houses Polyesters - chemistry polymers raw materials water vapor |
| Title | Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications |
| URI | https://dx.doi.org/10.1016/j.foodres.2019.108927 https://www.ncbi.nlm.nih.gov/pubmed/32156376 https://www.proquest.com/docview/2376229859 https://www.proquest.com/docview/2400451941 |
| Volume | 130 |
| WOSCitedRecordID | wos000521512900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-7145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006579 issn: 0963-9969 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfYhsQ4IBgwyscUJMSlZCTOl32sUCtAVeGQotyC7dhaB2RhbVD573mOnY9JGxsHLklj2YmT36_2e8_P7yH0SgFrqPBg9KNMgYLiK5cDM9xYcqqoXvdq9sJ8mSeLBcky-tlm6Vs36QSSsiTbLa3-K9RQBmDrrbP_AHd3UyiA3wA6HAF2ON4I-In2X9yuCmYiCsBpxU1IZhsWQJfAdAZTw9gmwVlXdTkuWQnP5XpDr3Y9VDrcMSjU30wao-FC91CgnelqNmLQSRN8orMv9gbsqm7M1LOadU42y9_GsztlP6x_sDU9YG_gsWJtiHHggsJELwyngTeutOsixYl76SBt7AWnx_pFoIPav47aBv2s1K7ELz7ls-V8nqfTLH1d_XR1vjC9rm6Tp-ygPZxEFMazvcmHafaxm4XjyMZZtF3sd2-9vfTJV8klV-kdjfyR3kf3rOLgTAzgD9AtWR6gO-2-8vUBujsILfkQfR3Q4I1zgQRwVTg9CZwBCZyeBA6QwNFv4HQkcIYkeISWs2n67r1rs2m4IgyjjSuURwQIc5xIFcsg8hkIIor4vpIiJopzRgJRqNCTAYguBSMilD4orAn3igLHSfAY7ZZnpXyCHM6Y4kWEQdQD8RVHLBCSY5zEvvCYFHiEwvZb5sKGmtcZT77nrU_haW4hyDUEuYFghI67ZpWJtXJdA9IClVuB0QiCOVDtuqYvW2BzGFD1Khkr5VkNlWDKxZiSiP6lTmjiMoX-CB0aVnQ9DkCIjuEeT2_Q-hna7_9Xz9Hu5ryWL9Bt8WuzWp8foZ0kI0eW2H8AzkCxlw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidant%2C+antibacterial+and+antifungal+electrospun+nanofibers+for+food+packaging+applications&rft.jtitle=Food+research+international&rft.au=Topuz%2C+Fuat&rft.au=Uyar%2C+Tamer&rft.date=2020-04-01&rft.issn=0963-9969&rft.volume=130+p.108927-&rft_id=info:doi/10.1016%2Fj.foodres.2019.108927&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-9969&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-9969&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-9969&client=summon |