An Improved Chaos Sparrow Search Optimization Algorithm Using Adaptive Weight Modification and Hybrid Strategies

Sparrow Search Algorithm (SSA) is a kind of novel swarm intelligence algorithm, which has been applied in-to various domains because of its unique characteristics, such as strong global search capability, few adjustable parameters, and a clear structure. However, the SSA still has some inherent weak...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 10; p. 1
Main Authors: Zhang, Xuan-Yu, Zhou, Kai-Qing, Li, Peng-Cheng, Xiang, Yin-Hong, Zain, Azlan Mohd, Sarkheyli-Hagele, Arezoo
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sparrow Search Algorithm (SSA) is a kind of novel swarm intelligence algorithm, which has been applied in-to various domains because of its unique characteristics, such as strong global search capability, few adjustable parameters, and a clear structure. However, the SSA still has some inherent weaknesses that hinder its further development, such as poor population diversity, weak local searchability, and falling into local optimal easily. This manuscript proposes an improved chaos sparrow search optimization algorithm (ICSSOA) to overcome the mentioned shortcomings of the standard SSA. Firstly, the Cubic chaos mapping is introduced to increase the population diversity in the initialization stage. Then, an adaptive weight is employed to automatically adjust the search step for balancing the global search performance and the local search capability in different phases. Finally, a hybrid strategy of Levy flight and reverse learning is presented to perturb the position of individuals in the population according to the random strategy, and a greedy strategy is utilized to select individuals with higher fitness values to decrease the possibility of falling into the local optimum. The experiments are divided into two modules. The former investigates the performance of the proposed approach through 20 benchmark functions optimization using the ICSSOA, standard SSA, and other four SSA variants. In the latter experiment, the selected 20 functions are also optimized by the ICSSOA and other classic swarm intelligence algorithms, namely ACO, PSO, GWO, and WOA. Experimental results and corresponding statistical analysis revealed that only one function optimization test using the ICSSOA was slightly lower than the CSSOA and the WOA among the 20-function optimization. In most cases, both the solution accuracy and convergence speed are higher than other algorithms. It further indicates that the ICSSOA has an outstanding ability to jump out of the local optimum.
AbstractList Sparrow Search Algorithm (SSA) is a kind of novel swarm intelligence algorithm, which has been applied in-to various domains because of its unique characteristics, such as strong global search capability, few adjustable parameters, and a clear structure. However, the SSA still has some inherent weaknesses that hinder its further development, such as poor population diversity, weak local searchability, and falling into local optima easily. This manuscript proposes an improved chaos sparrow search optimization algorithm (ICSSOA) to overcome the mentioned shortcomings of the standard SSA. Firstly, the Cubic chaos mapping is introduced to increase the population diversity in the initialization stage. Then, an adaptive weight is employed to automatically adjust the search step for balancing the global search performance and the local search capability in different phases. Finally, a hybrid strategy of Levy flight and reverse learning is presented to perturb the position of individuals in the population according to the random strategy, and a greedy strategy is utilized to select individuals with higher fitness values to decrease the possibility of falling into the local optimum. The experiments are divided into two modules. The former investigates the performance of the proposed approach through 20 benchmark functions optimization using the ICSSOA, standard SSA, and other four SSA variants. In the latter experiment, the selected 20 functions are also optimized by the ICSSOA and other classic swarm intelligence algorithms, namely ACO, PSO, GWO, and WOA. Experimental results and corresponding statistical analysis revealed that only one function optimization test using the ICSSOA was slightly lower than the CSSOA and the WOA among the 20-function optimization. In most cases, the values for both accuracy and convergence speed are higher than other algorithms. The results also indicate that the ICSSOA has an outstanding ability to jump out of the local optimum.
Sparrow Search Algorithm (SSA) is a kind of novel swarm intelligence algorithm, which has been applied in-to various domains because of its unique characteristics, such as strong global search capability, few adjustable parameters, and a clear structure. However, the SSA still has some inherent weaknesses that hinder its further development, such as poor population diversity, weak local searchability, and falling into local optimal easily. This manuscript proposes an improved chaos sparrow search optimization algorithm (ICSSOA) to overcome the mentioned shortcomings of the standard SSA. Firstly, the Cubic chaos mapping is introduced to increase the population diversity in the initialization stage. Then, an adaptive weight is employed to automatically adjust the search step for balancing the global search performance and the local search capability in different phases. Finally, a hybrid strategy of Levy flight and reverse learning is presented to perturb the position of individuals in the population according to the random strategy, and a greedy strategy is utilized to select individuals with higher fitness values to decrease the possibility of falling into the local optimum. The experiments are divided into two modules. The former investigates the performance of the proposed approach through 20 benchmark functions optimization using the ICSSOA, standard SSA, and other four SSA variants. In the latter experiment, the selected 20 functions are also optimized by the ICSSOA and other classic swarm intelligence algorithms, namely ACO, PSO, GWO, and WOA. Experimental results and corresponding statistical analysis revealed that only one function optimization test using the ICSSOA was slightly lower than the CSSOA and the WOA among the 20-function optimization. In most cases, both the solution accuracy and convergence speed are higher than other algorithms. It further indicates that the ICSSOA has an outstanding ability to jump out of the local optimum.
Author Sarkheyli-Hagele, Arezoo
Xiang, Yin-Hong
Zhou, Kai-Qing
Zhang, Xuan-Yu
Li, Peng-Cheng
Zain, Azlan Mohd
Author_xml – sequence: 1
  givenname: Xuan-Yu
  surname: Zhang
  fullname: Zhang, Xuan-Yu
  organization: School of Information Science and Engineering, Jishou University, Jishou, Hunan, China
– sequence: 2
  givenname: Kai-Qing
  surname: Zhou
  fullname: Zhou, Kai-Qing
  organization: School of Information Science and Engineering, Jishou University, Jishou, Hunan, China
– sequence: 3
  givenname: Peng-Cheng
  surname: Li
  fullname: Li, Peng-Cheng
  organization: School of Information Science and Engineering, Jishou University, Jishou, Hunan, China
– sequence: 4
  givenname: Yin-Hong
  surname: Xiang
  fullname: Xiang, Yin-Hong
  organization: School of Information Science and Engineering, Jishou University, Jishou, Hunan, China
– sequence: 5
  givenname: Azlan Mohd
  orcidid: 0000-0003-2004-3289
  surname: Zain
  fullname: Zain, Azlan Mohd
  organization: UTM Big Data Center, University Teknologi Malaysia, Skudai, Johor, Malaysia
– sequence: 6
  givenname: Arezoo
  surname: Sarkheyli-Hagele
  fullname: Sarkheyli-Hagele, Arezoo
  organization: Department of Computer Science and Media Technology, Internet of Things and People Research Center, Malmö University, Malmö, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-55407$$DView record from Swedish Publication Index
BookMark eNqFkU9v0zAYxiM0JMbYJ9jFElda_Ld2jlEYrNLQDmVwtGzndeqqiYOTbhqfHreZJuCCD7b1-nl-tt_nbXHWxx6K4orgJSG4_FjV9fVms6SY0iWjmMtSvSrOKVmVCybY6uyP_Zvichx3OA-VS0KeF0PVo3U3pPgADaq3Jo5oM5iU4iPagElui-6GKXThl5lC7FG1b2MK07ZD92PoW1Q1Jh8_APoBod1O6Gtsgg9uFpu-QTdPNoUGbaZkJmgDjO-K197sR7h8Xi-K-8_X3-qbxe3dl3Vd3S4c52JaOMXAutJb3HjslHJeOuo9GG4p9paViljhrOTOee6ldM4SBkAcNZR5IdhFsZ65TTQ7PaTQmfSkown6VIip1SZNwe1BG1WCs4JJrihXNs9EKSq8pA2xBsrM-jCzxkcYDvYv2qfwvTrROnPQQnAss_z9LM9t_XmAcdK7eEh9_q2mkqwYl0wdH8hmlUtxHBP4FyzB-hisnoPVx2D1c7DZVf7jcmE6tTt3OOz_472avQEAXm4rlVSMCvYbWY21Kw
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11760_024_03144_x
crossref_primary_10_3389_fnbot_2023_1190977
crossref_primary_10_3390_s23177513
crossref_primary_10_1016_j_cie_2023_109425
crossref_primary_10_1109_ACCESS_2024_3402652
crossref_primary_10_3390_electronics13142839
crossref_primary_10_1371_journal_pone_0297380
crossref_primary_10_1109_ACCESS_2023_3275010
crossref_primary_10_3390_app14156626
crossref_primary_10_1007_s13042_024_02227_y
crossref_primary_10_1177_14759217241271044
crossref_primary_10_3390_s24134333
crossref_primary_10_1016_j_mtcomm_2024_110327
crossref_primary_10_1016_j_geog_2025_03_002
crossref_primary_10_1016_j_infrared_2024_105688
crossref_primary_10_3389_fpls_2024_1354290
crossref_primary_10_1007_s12206_024_0607_x
crossref_primary_10_1080_15325008_2023_2298280
crossref_primary_10_3390_su15042944
crossref_primary_10_3390_math11194037
crossref_primary_10_1109_ACCESS_2024_3449998
crossref_primary_10_1109_JSEN_2024_3405940
crossref_primary_10_1016_j_compgeo_2023_106036
crossref_primary_10_1108_RS_10_2023_0037
crossref_primary_10_3390_electronics13193951
Cites_doi 10.3390/s21041224
10.1016/j.eswa.2021.115637
10.1016/j.ins.2021.02.024
10.1007/s00500-022-06741-5
10.1109/ACCESS.2021.3130640
10.1155/2021/3946958
10.1007/s11721-007-0002-0
10.1007/s10489-021-02972-5
10.1177/0954411920987964
10.1007/s11042-016-3907-z
10.3390/electronics11050704
10.1007/s11721-007-0009-6
10.1016/j.knosys.2021.106924
10.1155/2021/6622935
10.1504/IJCAT.2021.121524
10.1016/j.knosys.2022.108626
10.1007/s11721-008-0022-4
10.1109/ACCESS.2021.3075547
10.1007/978-3-319-93025-1_3
10.1155/2021/5556780
10.1016/j.ijhydene.2020.12.107
10.1587/transinf.E96.D.2309
10.1016/j.advengsoft.2013.12.007
10.1016/j.asoc.2014.06.034
10.1142/S0218127402005492
10.1016/j.advengsoft.2016.01.008
10.1080/21642583.2019.1708830
10.1109/ACCESS.2021.3128433
10.1016/j.compind.2019.06.004
10.3390/s20051420
10.1109/ACCESS.2021.3052960
10.1016/j.eswa.2021.116158
10.3390/su13094896
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1109/ACCESS.2022.3204798
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList


Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_a89ecb53748248b48218825f72d1bae9
oai_DiVA_org_mau_55407
10_1109_ACCESS_2022_3204798
9878325
Genre orig-research
GrantInformation_xml – fundername: Jishou University Graduate Research and Innovation Project
  grantid: JDY21067
– fundername: National Natural Science Foundation of China
  grantid: No. 62066016
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hunan Province, China
  grantid: 2020JJ5458
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ABAZT
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c445t-c83ebc9fb0df0c88cf7c2ffea4b20fb3981b5cb74ccf4f77ccb13ee1c2a23f553
IEDL.DBID DOA
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857703700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Mon Dec 08 04:16:39 EST 2025
Thu Aug 21 06:58:39 EDT 2025
Sun Nov 30 05:23:37 EST 2025
Sat Nov 29 06:32:22 EST 2025
Tue Nov 18 20:53:17 EST 2025
Tue Nov 25 14:44:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-c83ebc9fb0df0c88cf7c2ffea4b20fb3981b5cb74ccf4f77ccb13ee1c2a23f553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2004-3289
OpenAccessLink https://doaj.org/article/a89ecb53748248b48218825f72d1bae9
PQID 2716347385
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2716347385
swepub_primary_oai_DiVA_org_mau_55407
crossref_citationtrail_10_1109_ACCESS_2022_3204798
doaj_primary_oai_doaj_org_article_a89ecb53748248b48218825f72d1bae9
crossref_primary_10_1109_ACCESS_2022_3204798
ieee_primary_9878325
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
Mao (ref24) 2021; 15
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
Lv (ref9) 2021; 43
ref18
Lv (ref23) 2020; 12
Andi (ref8) 2021; 41
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref7
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.3390/s21041224
– ident: ref18
  doi: 10.1016/j.eswa.2021.115637
– ident: ref19
  doi: 10.1016/j.ins.2021.02.024
– ident: ref21
  doi: 10.1007/s00500-022-06741-5
– ident: ref36
  doi: 10.1109/ACCESS.2021.3130640
– ident: ref13
  doi: 10.1155/2021/3946958
– ident: ref28
  doi: 10.1007/s11721-007-0002-0
– ident: ref22
  doi: 10.1007/s10489-021-02972-5
– ident: ref7
  doi: 10.1177/0954411920987964
– ident: ref34
  doi: 10.1007/s11042-016-3907-z
– ident: ref1
  doi: 10.3390/electronics11050704
– ident: ref2
  doi: 10.1007/s11721-007-0009-6
– ident: ref12
  doi: 10.1016/j.knosys.2021.106924
– ident: ref15
  doi: 10.1155/2021/6622935
– volume: 15
  start-page: 1155
  issue: 6
  year: 2021
  ident: ref24
  article-title: Improved sparrow algorithm combining Cauchy mutation and opposition-based learning
  publication-title: J. Frontiers Comput. Sci. Technol.
– ident: ref35
  doi: 10.1504/IJCAT.2021.121524
– ident: ref17
  doi: 10.1016/j.knosys.2022.108626
– ident: ref32
  doi: 10.1007/s11721-008-0022-4
– ident: ref10
  doi: 10.1109/ACCESS.2021.3075547
– volume: 43
  start-page: 318
  issue: 2
  year: 2021
  ident: ref9
  article-title: Multi-threshold image segmentation based on improved sparrow search algorithm
  publication-title: Syst. Eng. Electron.
– ident: ref30
  doi: 10.1007/978-3-319-93025-1_3
– ident: ref14
  doi: 10.1155/2021/5556780
– volume: 12
  start-page: 1
  year: 2020
  ident: ref23
  article-title: Chaos sparrow search optimization algorithm
  publication-title: J. Beijing Univ. Aeronaut. Astronaut.
– ident: ref6
  doi: 10.1016/j.ijhydene.2020.12.107
– ident: ref31
  doi: 10.1587/transinf.E96.D.2309
– ident: ref27
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref37
  doi: 10.1016/j.asoc.2014.06.034
– ident: ref33
  doi: 10.1142/S0218127402005492
– ident: ref29
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref5
  doi: 10.1080/21642583.2019.1708830
– ident: ref16
  doi: 10.1109/ACCESS.2021.3128433
– ident: ref20
  doi: 10.1016/j.compind.2019.06.004
– ident: ref4
  doi: 10.3390/s20051420
– ident: ref26
  doi: 10.1109/ACCESS.2021.3052960
– ident: ref3
  doi: 10.1016/j.eswa.2021.116158
– volume: 41
  start-page: 2128
  issue: 7
  year: 2021
  ident: ref8
  article-title: Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm
  publication-title: J. Comput. Appl.
– ident: ref11
  doi: 10.3390/su13094896
SSID ssj0000816957
Score 2.372036
Snippet Sparrow Search Algorithm (SSA) is a kind of novel swarm intelligence algorithm, which has been applied in-to various domains because of its unique...
SourceID doaj
swepub
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive algorithms
Adaptive weighting modification
Ant colony optimization
Chaos
Convergence
cubic chaos mapping
levy flight
Optimization
Optimization algorithms
reverse learning
Search algorithms
Search problems
Sociology
Sparrow search algorithm
Statistical analysis
Statistics
Swarm intelligence
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FYdy4NGCCBTkA9yaNnHs2DmGhaoHKEhA6c3ys63U3az2gcS_x6-NuhJC4hJFkePE-sb2zHjmG4C3mLeKa1mVtXa0JJayUmHnStnWhrYGcxprRl5-YhcX_Oqq-7oDx2MujLU2Bp_Zk3Abz_LNoNfBVXbq7WMvgHQXdhlrU67W6E8JBSQ6yjKxUF11p_1k4sfgTUCMTxocqNT51uYTOfpzUZVt_fI-Z2jcZ84e_98fPoFHWZ9EfRKAp7BjZwfw8B7L4AHsB4Uy8TEfwryfoeRIsAZNbuSwRN_mkYgRpchj9MUvItOcnYn6u-thcbu6maIYW4B6I-dhgUQ_o0sVfR5MiDVKjeXMoPPfIQUMbUhv7fIZ_Dj7-H1yXuaqC6UmhK5KzRurdOdUZVylOdeOaY-elUThyqmm84ou1YoRrR1xjGmt6sbaWmOJG0dp8xz2ZsPMvgBksZcD4pzfHTlRrZQeNmrCQSVhXi9gBeANHEJnSvJQGeNORNOk6kTCUAQMRcawgOPxpXli5Ph38_cB57FpoNOODzxuIs9OIXlntaKBigcTrvy19pYHdQybWknbFXAYsB47yTAXcLSRGpGn_lJgb4E2JJAEFfAuSdLWxz_cXvbx41O5FjTwH778e--vYD8MJPl7jmBvtVjb1_BA__Iis3gTpf8PteAE2w
  priority: 102
  providerName: IEEE
Title An Improved Chaos Sparrow Search Optimization Algorithm Using Adaptive Weight Modification and Hybrid Strategies
URI https://ieeexplore.ieee.org/document/9878325
https://www.proquest.com/docview/2716347385
https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-55407
https://doaj.org/article/a89ecb53748248b48218825f72d1bae9
Volume 10
WOSCitedRecordID wos000857703700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4kAPFY9WDVDkQ3trIHHs2D6mC4gD0EotlJvlZ1mJza52FyQu_e31a1e7l3LpJYfIiR_fZMbjzHwDwCfEWsW0rMpaO1JiS2ipkHOlbGtDWoMYiTUj767ozQ27v-ffV0p9hZiwRA-cFu5UMm61IoElBWGm_LX2m0LiKDK1kjam7lWUrzhTUQezuuWEZpqhuuKn3WDgZ-QdQoROGhSI1dmaKYqM_bnEyvpuc5VBNFqdix3wNm8XYZeGuQs2bL8H3qyQCO6DSdfDdDRgDRw8yPEM_phEakWYYonhN68WRjnfEnaPv8fT4fxhBGO0AOyMnASVB3_FQ1J4PTYheig1lr2Bly8hqQsuaGzt7B24vTj_Obgscx2FUmNM5qVmjVWaO1UZV2nGtKPa42ElVqhyquF-60q0olhrhx2lWqu6sbbWSKLGEdK8B5v9uLcfALTII4ud8_aOYdVKSWlLTPj1iKm39LQAaLGkQmeS8VDr4lFEZ6PiIuEgAg4i41CAL8uHJolj49_Nvwaslk0DQXa84cVGZLERr4lNAfYD0suXcEa9biMFOFogL_LHPBPI-5QNDrQ_BficpGGt87PhXRc7H8knQQKj4cH_GOIh2A7TTuc9R2BzPn2yH8GWfp4PZ9PjKO_-ev3n_DhmLf4FWGEFCw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkQ58GhBBAr4ALemTRw7do5hoVrEdkGilN4s27FppW6y2gcS_x7b8UZdCSFxiaLIcWJ9Y3tmPPMNwFvMS8W1zNJcW5oSQ1mqsLWpLPOGlg3mNNSMvJiw6ZRfXlZfd-BoyIUxxoTgM3Psb8NZftPptXeVnTj72AkgvQN3KSE467O1Bo-KLyFRURaphfKsOqlHIzcKZwRifFxgT6bOt7afwNIfy6psa5i3WUPDTnP66P_-8TE8jBolqnsReAI7pt2HB7d4Bvdhz6uUPSPzAczrFvWuBNOg0ZXslujbPFAxoj72GH1xy8gs5mei-uZnt7heXc1QiC5AdSPnfolEP4JTFZ11jY826hvLtkHj3z4JDG1ob83yKXw__Xg-Gqex7kKqCaGrVPPCKF1ZlTU205xry7TDz0iicGZVUTlVl2rFiNaWWMa0VnlhTK6xxIWltHgGu23XmueADHaSQKx1-yMnqpSSsZI2_qiSMKcZsATwBg6hIym5r41xI4JxklWix1B4DEXEMIGj4aV5z8nx7-bvPc5DU0-oHR443EScn0LyymhFPRkPJly5a-5sD2oZbnIlTZXAgcd66CTCnMDhRmpEnPxLgZ0NWhBPE5TAu16Stj7-4fqiDh-fybWgngHxxd97fwP3x-dnEzH5NP38Evb8oHrvzyHsrhZr8wru6V9OfBavw0z4A2EiCCI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Chaos+Sparrow+Search+Optimization+Algorithm+Using+Adaptive+Weight+Modification+and+Hybrid+Strategies&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Xuan-Yu&rft.au=Zhou%2C+Kai-Qing&rft.au=Li%2C+Peng-Cheng&rft.au=Xiang%2C+Yin-Hong&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=96159&rft.epage=96179&rft_id=info:doi/10.1109%2FACCESS.2022.3204798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3204798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon