Structural analysis of network traffic matrix via relaxed principal component pursuit

The network traffic matrix is widely used in network operation and management. It is therefore of crucial importance to analyze the components and the structure of the network traffic matrix, for which several mathematical approaches such as Principal Component Analysis (PCA) were proposed. In this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer networks (Amsterdam, Netherlands : 1999) Ročník 56; číslo 7; s. 2049 - 2067
Hlavní autoři: Wang, Zhe, Hu, Kai, Xu, Ke, Yin, Baolin, Dong, Xiaowen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 03.05.2012
Elsevier Sequoia S.A
Témata:
ISSN:1389-1286, 1872-7069
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The network traffic matrix is widely used in network operation and management. It is therefore of crucial importance to analyze the components and the structure of the network traffic matrix, for which several mathematical approaches such as Principal Component Analysis (PCA) were proposed. In this paper, we first argue that PCA performs poorly for analyzing traffic matrix that is polluted by large volume anomalies, and then propose a new decomposition model for the network traffic matrix. According to this model, we carry out the structural analysis by decomposing the network traffic matrix into three sub-matrices, namely, the deterministic traffic, the anomaly traffic and the noise traffic matrix, which is similar to the Robust Principal Component Analysis (RPCA) problem previously studied in [13]. Based on the Relaxed Principal Component Pursuit (Relaxed PCP) method and the Accelerated Proximal Gradient (APG) algorithm, we present an iterative approach for decomposing a traffic matrix, and demonstrate its efficiency and flexibility by experimental results. Finally, we further discuss several features of the deterministic and noise traffic. Our study develops a novel method for the problem of structural analysis of the traffic matrix, which is robust against pollution of large volume anomalies.
AbstractList The network traffic matrix is widely used in network operation and management. It is therefore of crucial importance to analyze the components and the structure of the network traffic matrix, for which several mathematical approaches such as Principal Component Analysis (PCA) were proposed. In this paper, we first argue that PCA performs poorly for analyzing traffic matrix that is polluted by large volume anomalies, and then propose a new decomposition model for the network traffic matrix. According to this model, we carry out the structural analysis by decomposing the network traffic matrix into three sub-matrices, namely, the deterministic traffic, the anomaly traffic and the noise traffic matrix, which is similar to the Robust Principal Component Analysis (RPCA) problem previously studied in [13]. Based on the Relaxed Principal Component Pursuit (Relaxed PCP) method and the Accelerated Proximal Gradient (APG) algorithm, we present an iterative approach for decomposing a traffic matrix, and demonstrate its efficiency and flexibility by experimental results. Finally, we further discuss several features of the deterministic and noise traffic. Our study develops a novel method for the problem of structural analysis of the traffic matrix, which is robust against pollution of large volume anomalies. [PUBLICATION ABSTRACT]
The network traffic matrix is widely used in network operation and management. It is therefore of crucial importance to analyze the components and the structure of the network traffic matrix, for which several mathematical approaches such as Principal Component Analysis (PCA) were proposed. In this paper, we first argue that PCA performs poorly for analyzing traffic matrix that is polluted by large volume anomalies, and then propose a new decomposition model for the network traffic matrix. According to this model, we carry out the structural analysis by decomposing the network traffic matrix into three sub-matrices, namely, the deterministic traffic, the anomaly traffic and the noise traffic matrix, which is similar to the Robust Principal Component Analysis (RPCA) problem previously studied in [13]. Based on the Relaxed Principal Component Pursuit (Relaxed PCP) method and the Accelerated Proximal Gradient (APG) algorithm, we present an iterative approach for decomposing a traffic matrix, and demonstrate its efficiency and flexibility by experimental results. Finally, we further discuss several features of the deterministic and noise traffic. Our study develops a novel method for the problem of structural analysis of the traffic matrix, which is robust against pollution of large volume anomalies.
Author Wang, Zhe
Hu, Kai
Dong, Xiaowen
Xu, Ke
Yin, Baolin
Author_xml – sequence: 1
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  email: wangzhe@cse.buaa.edu.cn
  organization: School of Computer Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Kai
  surname: Hu
  fullname: Hu, Kai
  email: hukai@buaa.edu.cn
  organization: School of Computer Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Ke
  surname: Xu
  fullname: Xu, Ke
  email: kexu999@gmail.com
  organization: School of Computer Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 4
  givenname: Baolin
  surname: Yin
  fullname: Yin, Baolin
  email: yin@nlsde.buaa.edu.cn
  organization: School of Computer Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 5
  givenname: Xiaowen
  surname: Dong
  fullname: Dong, Xiaowen
  email: xiaowen.dong@epfl.ch
  organization: Signal Processing Laboratories (LTS4/LTS2), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
BookMark eNqFkE9LxDAQxYMouLv6DTwE761JmzaJB0EW_8GCB91zSNMEsnabmqTr7rc3Sz15UBiYOczvzZs3B6e96zUAVxjlGOH6ZpMrt-11zAuEixylwvQEzDCjRUZRzU_TXDKe4YLV52AewgYhREjBZmD9Fv2o4uhlB2Uvu0OwAToDk9qX8x8wemmMVXAro7d7uLMSet3JvW7h4G2v7JDAdH1IjvoIh9GH0cYLcGZkF_TlT1-A9ePD-_I5W70-vSzvV5kipIpZUxHKy6piBsmm4ghLg2vdGiqRZoqbtqlaUmhCW16VknHDJWW6aWrFypLVdbkA15Pu4N3nqEMUGzf69EYQnBecl5yTtESmJeVdCF4bkZxvpT8IjMQxP7ERU37imJ9AqTBN2O0vTNkoo3V9ysR2_8F3E6zT9zurvQjK6l7p1nqtomid_VvgG7h0kn8
CitedBy_id crossref_primary_10_1016_j_comnet_2018_01_025
crossref_primary_10_1002_dac_3822
crossref_primary_10_1109_ACCESS_2016_2573264
crossref_primary_10_1109_TNET_2021_3138536
crossref_primary_10_1016_j_engappai_2020_103741
crossref_primary_10_1371_journal_pone_0194302
crossref_primary_10_1016_j_jnca_2012_10_007
crossref_primary_10_1109_JSAC_2019_2904347
crossref_primary_10_1016_j_jhydrol_2024_131878
crossref_primary_10_1109_TNSM_2016_2598788
crossref_primary_10_1016_j_aeue_2014_02_016
crossref_primary_10_1016_j_neucom_2016_04_006
crossref_primary_10_1155_2014_323764
crossref_primary_10_26636_jtit_2016_2_714
crossref_primary_10_1109_TNNLS_2021_3090695
crossref_primary_10_1007_s11280_019_00702_z
crossref_primary_10_55525_tjst_1293057
crossref_primary_10_1016_j_jnca_2015_07_006
crossref_primary_10_1007_s12243_014_0431_x
crossref_primary_10_1109_ACCESS_2017_2671860
crossref_primary_10_3390_app112412017
crossref_primary_10_1587_transinf_E96_D_731
Cites_doi 10.1137/S003614450037906X
10.1109/CVPR.2010.5540138
10.1093/biomet/81.3.425
10.7551/mitpress/7503.003.0082
10.1137/080738970
10.1145/1111322.1111341
10.1109/MSP.2007.914731
10.1109/CAMSAP.2009.5413299
10.1109/JPROC.2009.2035722
10.1007/s10208-009-9045-5
10.1109/TIT.2006.871582
10.1145/1071690.1064259
10.1145/1871437.1871475
10.1145/1012888.1005697
10.1093/ietcom/e90-b.10.2854
10.1007/978-3-642-00975-4_19
10.1145/1030194.1015492
10.1145/1269899.1254895
10.1109/18.382009
10.1109/ISIT.2010.5513535
10.1137/1035134
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright Elsevier Sequoia S.A. May 3, 2012
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. May 3, 2012
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.comnet.2012.02.017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7069
EndPage 2067
ExternalDocumentID 2630009341
10_1016_j_comnet_2012_02_017
S1389128612000813
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
77K
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
ZMT
~G-
29F
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ACLOT
ACVFH
ADCNI
ADJOM
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
F0J
FGOYB
R2-
SEW
ZY4
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c445t-b54793558f0ab5901af16edf7a0e8c9fdb5d42e47d953a89f9a78ebb6c8338663
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303290000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-1286
IngestDate Sun Nov 16 03:52:39 EST 2025
Tue Nov 18 21:48:56 EST 2025
Sat Nov 29 05:30:20 EST 2025
Fri Feb 23 02:26:21 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Traffic matrix structural analysis
Robust principal component analysis
Network measurement
Accelerated proximal gradient algorithm
Relaxed principal component pursuit
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-b54793558f0ab5901af16edf7a0e8c9fdb5d42e47d953a89f9a78ebb6c8338663
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink http://infoscience.epfl.ch/record/174735
PQID 992993994
PQPubID 47119
PageCount 19
ParticipantIDs proquest_journals_992993994
crossref_primary_10_1016_j_comnet_2012_02_017
crossref_citationtrail_10_1016_j_comnet_2012_02_017
elsevier_sciencedirect_doi_10_1016_j_comnet_2012_02_017
PublicationCentury 2000
PublicationDate 2012-05-03
PublicationDateYYYYMMDD 2012-05-03
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-03
  day: 03
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer networks (Amsterdam, Netherlands : 1999)
PublicationYear 2012
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Geant data
Rubinstein, Nelson, Huang, Joseph, Lau, Rao, Taft, Tygar (b0060) 2009
Lakhina, Crovella, Diot (b0025) 2004; 34
K. Min, Z. Zhang, J. Wright, Y. Ma, Decomposing background topics from keywords using principal component pursuit, in: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM) 2010, October 2010.
L. Huang, X. Nguyen, M. Garofalakis, M. Jordon, A. Joseph, N. Taft, In-network PCA and anomaly detection, in: Proceedings of Neural Information Processing Systems (NIPS) 2006, December 2006.
Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, in: Proceedings of IEEE 3rd International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), December 2009.
Zhang, Ge, Greenberg, Roughan (b0035) 2005
I. Cunha, F. Silveira, R. Oliveira, R. Teixeira, C. Diot, Uncovering artifacts of flow measurement tools, in: Proceedings of Passive and Active Measurement Conference. Seoul, Korea, April 2009.
Candes, Wakin (b0100) 2008; 25
Donoho, Johnstone (b0135) 1994; 14
J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization, in: Proceedings of Neural Information Processing Systems (NIPS) 2009, December 2009.
Soule, Salamatian, Taft (b0045) 2005
Candes, Plan (b0110) 2010; 98
Ringberg, Soule, Rexford, Diot (b0050) 2007; 35
Candes, Recht (b0105) 2009; 9
Cai, Candes, Shen (b0115) 2010; 20
Chen, Donoho, Saunders (b0125) 2001; 43
Uhlig, Quoitin, Lepropre, Balon (b0005) 2006; 36
Abilene data
Lakhina, Papagiannaki, Crovella, Diot, Kolaczyk, Taft (b0020) 2004; 32
.
Donoho (b0130) 1995; 41
Stewart (b0095) 1993; 35
Ohsita, Ata, Murata (b0055) 2007; E90-B
Z. Zhou, X. Li, J. Wright, E. Candes, Y. Ma, Stable principal component pursuit, in: Proceedings of IEEE International Symposium on Information Theory (ISIT) 2010, June 2010.
Soule, Lakhina, Taft, Papagiannaki, Salamatian, Nucci, Crovella, Diot (b0040) 2005; 33
Y. Peng, A. Ganesh, J. Wright, W. Xu, Y. Ma, RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010, June 2010.
E. Candes, X. Li, Y. Ma, J. Wright, Robust principal component analysis?, Arxiv preprint, arXiv:0912.3599, 2009.
Donoho (b0120) 2006; 52
10.1016/j.comnet.2012.02.017_b0085
10.1016/j.comnet.2012.02.017_b0140
Ohsita (10.1016/j.comnet.2012.02.017_b0055) 2007; E90-B
10.1016/j.comnet.2012.02.017_b0080
Lakhina (10.1016/j.comnet.2012.02.017_b0020) 2004; 32
Candes (10.1016/j.comnet.2012.02.017_b0100) 2008; 25
Lakhina (10.1016/j.comnet.2012.02.017_b0025) 2004; 34
10.1016/j.comnet.2012.02.017_b0065
Ringberg (10.1016/j.comnet.2012.02.017_b0050) 2007; 35
Cai (10.1016/j.comnet.2012.02.017_b0115) 2010; 20
Zhang (10.1016/j.comnet.2012.02.017_b0035) 2005
Soule (10.1016/j.comnet.2012.02.017_b0045) 2005
10.1016/j.comnet.2012.02.017_b0030
Rubinstein (10.1016/j.comnet.2012.02.017_b0060) 2009
Stewart (10.1016/j.comnet.2012.02.017_b0095) 1993; 35
10.1016/j.comnet.2012.02.017_b0070
Candes (10.1016/j.comnet.2012.02.017_b0110) 2010; 98
10.1016/j.comnet.2012.02.017_b0090
Donoho (10.1016/j.comnet.2012.02.017_b0130) 1995; 41
10.1016/j.comnet.2012.02.017_b0015
Uhlig (10.1016/j.comnet.2012.02.017_b0005) 2006; 36
10.1016/j.comnet.2012.02.017_b0075
10.1016/j.comnet.2012.02.017_b0010
Donoho (10.1016/j.comnet.2012.02.017_b0120) 2006; 52
Soule (10.1016/j.comnet.2012.02.017_b0040) 2005; 33
Chen (10.1016/j.comnet.2012.02.017_b0125) 2001; 43
Candes (10.1016/j.comnet.2012.02.017_b0105) 2009; 9
Donoho (10.1016/j.comnet.2012.02.017_b0135) 1994; 14
References_xml – start-page: 331
  year: 2005
  end-page: 344
  ident: b0045
  article-title: Combining filtering and statistical methods for anomaly detection
  publication-title: Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement (IMC ’05)
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b0120
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory.
– reference: J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization, in: Proceedings of Neural Information Processing Systems (NIPS) 2009, December 2009.
– volume: 9
  start-page: 717
  year: 2009
  end-page: 772
  ident: b0105
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
– reference: Geant data, <
– reference: Y. Peng, A. Ganesh, J. Wright, W. Xu, Y. Ma, RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010, June 2010.
– volume: 34
  start-page: 219
  year: 2004
  end-page: 230
  ident: b0025
  article-title: Diagnosing network-wide traffic anomalies
  publication-title: SIGCOMM Comput. Commun. Rev.
– reference: Abilene data, <
– volume: 14
  start-page: 425
  year: 1994
  end-page: 455
  ident: b0135
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– volume: 25
  start-page: 21
  year: 2008
  end-page: 30
  ident: b0100
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process. Mag.
– reference: K. Min, Z. Zhang, J. Wright, Y. Ma, Decomposing background topics from keywords using principal component pursuit, in: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM) 2010, October 2010.
– volume: 36
  start-page: 83
  year: 2006
  end-page: 86
  ident: b0005
  article-title: Providing public intradomain traffic matrices to the research community
  publication-title: SIGCOMM Comput. Commun. Rev.
– volume: 33
  start-page: 362
  year: 2005
  end-page: 373
  ident: b0040
  article-title: Traffic matrices: balancing measurements, inference and modeling
  publication-title: SIGMETRICS Perform. Eval. Rev.
– volume: 35
  start-page: 109
  year: 2007
  end-page: 120
  ident: b0050
  article-title: Sensitivity of PCA for traffic anomaly detection
  publication-title: SIGMETRICS Perform. Eval. Rev.
– volume: 32
  start-page: 61
  year: 2004
  end-page: 72
  ident: b0020
  article-title: Structural analysis of network traffic flows
  publication-title: SIGMETRICS Perform. Eval. Rev.
– volume: 41
  start-page: 613
  year: 1995
  end-page: 627
  ident: b0130
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans. Inform. Theory
– reference: E. Candes, X. Li, Y. Ma, J. Wright, Robust principal component analysis?, Arxiv preprint, arXiv:0912.3599, 2009.
– reference: >.
– volume: 35
  start-page: 551
  year: 1993
  end-page: 566
  ident: b0095
  article-title: On the early history of the singular value decomposition
  publication-title: SIAM Rev.
– volume: 43
  start-page: 129
  year: 2001
  end-page: 159
  ident: b0125
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Rev.
– reference: I. Cunha, F. Silveira, R. Oliveira, R. Teixeira, C. Diot, Uncovering artifacts of flow measurement tools, in: Proceedings of Passive and Active Measurement Conference. Seoul, Korea, April 2009.
– start-page: 317
  year: 2005
  end-page: 330
  ident: b0035
  article-title: Network anomography
  publication-title: Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement (IMC ’05)
– volume: E90-B
  start-page: 2854
  year: 2007
  end-page: 2864
  ident: b0055
  article-title: Identification of attack nodes from traffic matrix estimation
  publication-title: IEICE Trans. Commun.
– volume: 20
  start-page: 1956
  year: 2010
  end-page: 1982
  ident: b0115
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optimiz.
– start-page: 1
  year: 2009
  end-page: 14
  ident: b0060
  article-title: ANTIDOTE: understanding and defending against poisoning of anomaly detectors
  publication-title: Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference (IMC ’09)
– reference: Z. Zhou, X. Li, J. Wright, E. Candes, Y. Ma, Stable principal component pursuit, in: Proceedings of IEEE International Symposium on Information Theory (ISIT) 2010, June 2010.
– volume: 98
  start-page: 925
  year: 2010
  end-page: 936
  ident: b0110
  article-title: Matrix completion with noise
  publication-title: Proc. IEEE
– reference: L. Huang, X. Nguyen, M. Garofalakis, M. Jordon, A. Joseph, N. Taft, In-network PCA and anomaly detection, in: Proceedings of Neural Information Processing Systems (NIPS) 2006, December 2006.
– reference: Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, in: Proceedings of IEEE 3rd International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), December 2009.
– volume: 43
  start-page: 129
  issue: 1
  year: 2001
  ident: 10.1016/j.comnet.2012.02.017_b0125
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450037906X
– start-page: 1
  year: 2009
  ident: 10.1016/j.comnet.2012.02.017_b0060
  article-title: ANTIDOTE: understanding and defending against poisoning of anomaly detectors
– ident: 10.1016/j.comnet.2012.02.017_b0015
– ident: 10.1016/j.comnet.2012.02.017_b0075
  doi: 10.1109/CVPR.2010.5540138
– volume: 14
  start-page: 425
  issue: 6
  year: 1994
  ident: 10.1016/j.comnet.2012.02.017_b0135
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– ident: 10.1016/j.comnet.2012.02.017_b0030
  doi: 10.7551/mitpress/7503.003.0082
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 10.1016/j.comnet.2012.02.017_b0115
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/080738970
– volume: 36
  start-page: 83
  issue: 1
  year: 2006
  ident: 10.1016/j.comnet.2012.02.017_b0005
  article-title: Providing public intradomain traffic matrices to the research community
  publication-title: SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/1111322.1111341
– ident: 10.1016/j.comnet.2012.02.017_b0010
– volume: 25
  start-page: 21
  issue: 2
  year: 2008
  ident: 10.1016/j.comnet.2012.02.017_b0100
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914731
– ident: 10.1016/j.comnet.2012.02.017_b0090
  doi: 10.1109/CAMSAP.2009.5413299
– volume: 98
  start-page: 925
  issue: 6
  year: 2010
  ident: 10.1016/j.comnet.2012.02.017_b0110
  article-title: Matrix completion with noise
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2035722
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 10.1016/j.comnet.2012.02.017_b0105
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.comnet.2012.02.017_b0120
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory.
  doi: 10.1109/TIT.2006.871582
– ident: 10.1016/j.comnet.2012.02.017_b0085
– volume: 33
  start-page: 362
  issue: 1
  year: 2005
  ident: 10.1016/j.comnet.2012.02.017_b0040
  article-title: Traffic matrices: balancing measurements, inference and modeling
  publication-title: SIGMETRICS Perform. Eval. Rev.
  doi: 10.1145/1071690.1064259
– ident: 10.1016/j.comnet.2012.02.017_b0080
  doi: 10.1145/1871437.1871475
– start-page: 331
  year: 2005
  ident: 10.1016/j.comnet.2012.02.017_b0045
  article-title: Combining filtering and statistical methods for anomaly detection
– volume: 32
  start-page: 61
  issue: 1
  year: 2004
  ident: 10.1016/j.comnet.2012.02.017_b0020
  article-title: Structural analysis of network traffic flows
  publication-title: SIGMETRICS Perform. Eval. Rev.
  doi: 10.1145/1012888.1005697
– volume: E90-B
  start-page: 2854
  issue: 10
  year: 2007
  ident: 10.1016/j.comnet.2012.02.017_b0055
  article-title: Identification of attack nodes from traffic matrix estimation
  publication-title: IEICE Trans. Commun.
  doi: 10.1093/ietcom/e90-b.10.2854
– ident: 10.1016/j.comnet.2012.02.017_b0140
  doi: 10.1007/978-3-642-00975-4_19
– volume: 34
  start-page: 219
  issue: 4
  year: 2004
  ident: 10.1016/j.comnet.2012.02.017_b0025
  article-title: Diagnosing network-wide traffic anomalies
  publication-title: SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/1030194.1015492
– volume: 35
  start-page: 109
  issue: 1
  year: 2007
  ident: 10.1016/j.comnet.2012.02.017_b0050
  article-title: Sensitivity of PCA for traffic anomaly detection
  publication-title: SIGMETRICS Perform. Eval. Rev.
  doi: 10.1145/1269899.1254895
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  ident: 10.1016/j.comnet.2012.02.017_b0130
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.382009
– ident: 10.1016/j.comnet.2012.02.017_b0070
  doi: 10.1109/ISIT.2010.5513535
– start-page: 317
  year: 2005
  ident: 10.1016/j.comnet.2012.02.017_b0035
  article-title: Network anomography
– ident: 10.1016/j.comnet.2012.02.017_b0065
– volume: 35
  start-page: 551
  issue: 4
  year: 1993
  ident: 10.1016/j.comnet.2012.02.017_b0095
  article-title: On the early history of the singular value decomposition
  publication-title: SIAM Rev.
  doi: 10.1137/1035134
SSID ssj0004428
Score 2.1862934
Snippet The network traffic matrix is widely used in network operation and management. It is therefore of crucial importance to analyze the components and the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2049
SubjectTerms Accelerated proximal gradient algorithm
Algorithms
Analysis
Grammatical aspect
Iterative methods
Matrices
Matrix
Network measurement
Networks
Noise
Pollution
Principal components analysis
Relaxed principal component pursuit
Robust principal component analysis
Structural analysis
Studies
Traffic
Traffic flow
Traffic matrix structural analysis
Title Structural analysis of network traffic matrix via relaxed principal component pursuit
URI https://dx.doi.org/10.1016/j.comnet.2012.02.017
https://www.proquest.com/docview/992993994
Volume 56
WOSCitedRecordID wos000303290000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: AIEXJ
  dateStart: 19990114
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgM8ID7FGCA_8DZZSuI4th8rNAQITUjboPBiOY4jOq1ZtW5Vfw-_lOuvJGygARJSFVVW4qS-J_b16b3nIvQqF7Zq88oSqquGwP7LEnDqC2LzwuamzUzjCbdPH_jBgZjN5MfJ5HvKhVmf8q4Tm41c_ldTQxsY26XO_oW5-06hAb6D0eEIZofjHxn-0CvCejUNPVIc6UK8t6sJ4VQj9hZOm3-zt55rn8-ysU4vwBPvXjFksTzrXJjA8vJ8dTn_icBPhSBSl563nS6c4kIT4TVkEUfKQcoR5fA5ctRfv41QFUI75qlhFhr6E77EuvLaFRkaUxUu5oORjA782bUcGj_lgstEYJWMgtihTXDw-7NQxCXN00GAPOKRjyfdLKiexgXcCdL_cnEIPMWJsy0MkAvrK7xea0gevSK7fej_wYXHygvvN9FbaLvgTMLkvz19tz97P2Tflr6Cb_87UoKmjyK8fq_fOUBXXAHv3xzdR_fixgRPA6AeoIntHqK7I7nKR-h4gBZO0MJnLY44wBFaOEALA7RwhBbuoYV7aOEIrcfo-M3-0eu3JJblIKYs2QWpmWNjGRNtpmuXuqzdy960XGdWGNk2NWvKwpa8kYxqIVupubB1XRlBqQAP9wna6uBGTxE21LZVxmtaC16KvNK5Lpmhjdu1wFizHUTTWCkTNetd6ZRTlYITT1QYYeVGWGXwyfkOIv1Vy6DZcsP5PJlBRb8z-JMKkHPDlbvJaipOASslYcchwe8vn_1zv7vozvD-PEdbYF37At0264v56vxlBOAPry6z6w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+analysis+of+network+traffic+matrix+via+relaxed+principal+component+pursuit&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Wang%2C+Zhe&rft.au=Hu%2C+Kai&rft.au=Xu%2C+Ke&rft.au=Yin%2C+Baolin&rft.date=2012-05-03&rft.pub=Elsevier+B.V&rft.issn=1389-1286&rft.eissn=1872-7069&rft.volume=56&rft.issue=7&rft.spage=2049&rft.epage=2067&rft_id=info:doi/10.1016%2Fj.comnet.2012.02.017&rft.externalDocID=S1389128612000813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon