MRI Breast Tumor Segmentation Using Different Encoder and Decoder CNN Architectures

Breast tumor segmentation in medical images is a decisive step for diagnosis and treatment follow-up. Automating this challenging task helps radiologists to reduce the high manual workload of breast cancer analysis. In this paper, we propose two deep learning approaches to automate the breast tumor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers (Basel) Jg. 8; H. 3; S. 52
Hauptverfasser: El Adoui, Mohammed, Mahmoudi, Sidi Ahmed, Larhmam, Mohamed Amine, Benjelloun, Mohammed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2019
Schlagworte:
ISSN:2073-431X, 2073-431X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Breast tumor segmentation in medical images is a decisive step for diagnosis and treatment follow-up. Automating this challenging task helps radiologists to reduce the high manual workload of breast cancer analysis. In this paper, we propose two deep learning approaches to automate the breast tumor segmentation in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by building two fully convolutional neural networks (CNN) based on SegNet and U-Net. The obtained models can handle both detection and segmentation on each single DCE-MRI slice. In this study, we used a dataset of 86 DCE-MRIs, acquired before and after two cycles of chemotherapy, of 43 patients with local advanced breast cancer, a total of 5452 slices were used to train and validate the proposed models. The data were annotated manually by an experienced radiologist. To reduce the training time, a high-performance architecture composed of graphic processing units was used. The model was trained and validated, respectively, on 85% and 15% of the data. A mean intersection over union (IoU) of 68.88 was achieved using SegNet and 76.14% using U-Net architecture.
AbstractList Breast tumor segmentation in medical images is a decisive step for diagnosis and treatment follow-up. Automating this challenging task helps radiologists to reduce the high manual workload of breast cancer analysis. In this paper, we propose two deep learning approaches to automate the breast tumor segmentation in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by building two fully convolutional neural networks (CNN) based on SegNet and U-Net. The obtained models can handle both detection and segmentation on each single DCE-MRI slice. In this study, we used a dataset of 86 DCE-MRIs, acquired before and after two cycles of chemotherapy, of 43 patients with local advanced breast cancer, a total of 5452 slices were used to train and validate the proposed models. The data were annotated manually by an experienced radiologist. To reduce the training time, a high-performance architecture composed of graphic processing units was used. The model was trained and validated, respectively, on 85% and 15% of the data. A mean intersection over union (IoU) of 68.88 was achieved using SegNet and 76.14% using U-Net architecture.
Author Benjelloun, Mohammed
Larhmam, Mohamed Amine
Mahmoudi, Sidi Ahmed
El Adoui, Mohammed
Author_xml – sequence: 1
  givenname: Mohammed
  orcidid: 0000-0003-1891-2318
  surname: El Adoui
  fullname: El Adoui, Mohammed
– sequence: 2
  givenname: Sidi Ahmed
  orcidid: 0000-0002-1530-9524
  surname: Mahmoudi
  fullname: Mahmoudi, Sidi Ahmed
– sequence: 3
  givenname: Mohamed Amine
  orcidid: 0000-0002-0832-6852
  surname: Larhmam
  fullname: Larhmam, Mohamed Amine
– sequence: 4
  givenname: Mohammed
  surname: Benjelloun
  fullname: Benjelloun, Mohammed
BookMark eNp1UU1LAzEQDaJg_bh7DHiuJpvdZPdYWz8KtYK24C0k2dma0m5qkj34742ughScy8y8mfd4zJygw9a1gNAFJVeMVeTauO2ui-BDSRghRXaABhkRbJgz-nr4pz5G5yGsSYqKsjKjA_Ty-DzFNx5UiHjRbZ3HL7DaQhtVtK7Fy2DbFZ7YpgGfQHzbGleDx6qt8QT6ejyf45E3bzaCiZ2HcIaOGrUJcP6TT9Hy7nYxfhjOnu6n49FsaPK8iENNtc4EIXUJqtCsFrkBQk0pFCuKWgNTdUK14Zk2qa14XRrOy6rJCy6aImOnaNrr1k6t5c7brfIf0ikrvwHnV1L5aM0GJAXNDaEVKQXLKzBVEuDAdA5GpIFIWpe91s679w5ClGvX-TbZl1mRl4wL_r3F-y3jXQgeGmlsf6nold1ISuTXP-T-PxKR7BF_7f5L-QTPRZKu
CitedBy_id crossref_primary_10_1186_s40537_024_01050_0
crossref_primary_10_1515_comp_2022_0242
crossref_primary_10_1088_2057_1976_ac53bd
crossref_primary_10_3389_fimmu_2023_1072118
crossref_primary_10_3390_computers13090230
crossref_primary_10_3390_app10176109
crossref_primary_10_1007_s13721_025_00556_8
crossref_primary_10_3390_diagnostics11010011
crossref_primary_10_1002_jmri_28960
crossref_primary_10_3390_rs12020221
crossref_primary_10_1109_ACCESS_2025_3565370
crossref_primary_10_1016_j_neunet_2023_05_014
crossref_primary_10_1016_j_ibmed_2025_100224
crossref_primary_10_1016_j_jwpe_2024_105772
crossref_primary_10_1007_s00521_025_11215_4
crossref_primary_10_1080_21681163_2024_2302387
crossref_primary_10_3389_feart_2024_1345104
crossref_primary_10_32604_cmc_2024_052009
crossref_primary_10_3390_cancers13215546
crossref_primary_10_1109_ACCESS_2023_3321272
crossref_primary_10_3390_cancers15194829
crossref_primary_10_1007_s41666_023_00144_3
crossref_primary_10_3390_diagnostics11122208
crossref_primary_10_3233_JIFS_211386
crossref_primary_10_1016_j_acra_2024_09_048
crossref_primary_10_1155_2023_7201479
crossref_primary_10_1007_s10278_023_00846_5
crossref_primary_10_32604_cmes_2023_025484
crossref_primary_10_1007_s11548_020_02209_9
crossref_primary_10_1016_j_bspc_2024_106199
crossref_primary_10_3390_bioengineering11090945
crossref_primary_10_1016_j_bspc_2024_107482
crossref_primary_10_3390_computers8040072
crossref_primary_10_1007_s12652_023_04600_1
crossref_primary_10_3390_diagnostics12081916
crossref_primary_10_1016_j_semcancer_2023_09_001
crossref_primary_10_1080_21681163_2022_2072769
crossref_primary_10_1155_2022_2541358
crossref_primary_10_3390_drones6010005
crossref_primary_10_1016_j_compbiomed_2022_105685
crossref_primary_10_1088_1742_6596_2701_1_012005
crossref_primary_10_1016_j_bspc_2024_106947
crossref_primary_10_1007_s11277_022_09989_0
crossref_primary_10_1148_ryai_200231
crossref_primary_10_3390_bioengineering10091072
crossref_primary_10_1007_s00521_025_11631_6
crossref_primary_10_1117_1_JMI_10_6_064502
crossref_primary_10_1038_s41598_025_05665_y
crossref_primary_10_3390_jimaging7120276
crossref_primary_10_1016_j_artmed_2019_101756
crossref_primary_10_1007_s11227_021_04125_4
crossref_primary_10_1109_TMI_2023_3275592
crossref_primary_10_1016_j_compmedimag_2021_102021
crossref_primary_10_3390_rs12182985
crossref_primary_10_1371_journal_pone_0321640
crossref_primary_10_1016_j_bspc_2022_104536
crossref_primary_10_1016_j_compbiomed_2022_105995
crossref_primary_10_1007_s11227_021_03901_6
crossref_primary_10_1016_j_patcog_2022_108723
crossref_primary_10_1016_j_compbiomed_2022_106443
crossref_primary_10_1155_2022_1887613
crossref_primary_10_1155_2020_2413706
crossref_primary_10_1007_s00330_022_09113_7
Cites_doi 10.1145/3128128.3128158
10.1016/j.neuroimage.2018.03.065
10.1016/j.acra.2005.08.035
10.1117/12.2505887
10.1016/j.acra.2008.06.005
10.1007/978-3-319-46723-8_48
10.1109/3DV.2016.79
10.1007/978-3-319-24574-4_28
10.1109/42.476112
10.1002/9780470479216.corpsy0524
10.1002/cpe.4372
10.1007/978-3-319-66179-7_69
10.20982/tqmp.04.1.p013
10.1109/CVPR.2015.7298965
10.1109/TMI.2016.2528129
10.1002/mrm.24782
10.1117/12.535112
10.1145/3007669.3007712
10.1145/3007669.3007714
10.1002/mp.12079
10.1109/TMI.2010.2046908
10.1109/IPTA.2012.6469569
10.1145/3128128.3128137
10.1109/TPAMI.2016.2644615
10.1109/CloudTech.2018.8713352
10.1007/978-3-319-46723-8_28
10.1007/978-3-030-17935-9_4
10.1200/JCO.2019.37.15_suppl.593
10.1007/978-3-319-46723-8_55
10.1016/j.media.2016.10.004
10.1016/j.media.2018.03.006
10.1016/j.neucom.2016.02.060
10.1245/s10434-011-2108-2
10.1007/s11548-018-1790-y
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/computers8030052
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2073-431X
ExternalDocumentID oai_doaj_org_article_1eb6c019087349ec97f56e3b4ec76c07
10_3390_computers8030052
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c445t-b1bb2700d8ea5b3d74ce01c87a355dbe3adb3dbc62bcdbe96d8c6689f4567f523
IEDL.DBID DOA
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487950600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-431X
IngestDate Mon Nov 10 04:35:23 EST 2025
Sun Nov 09 08:31:05 EST 2025
Sat Nov 29 07:17:39 EST 2025
Tue Nov 18 21:57:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-b1bb2700d8ea5b3d74ce01c87a355dbe3adb3dbc62bcdbe96d8c6689f4567f523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0832-6852
0000-0003-1891-2318
0000-0002-1530-9524
OpenAccessLink https://doaj.org/article/1eb6c019087349ec97f56e3b4ec76c07
PQID 2548367607
PQPubID 2032413
ParticipantIDs doaj_primary_oai_doaj_org_article_1eb6c019087349ec97f56e3b4ec76c07
proquest_journals_2548367607
crossref_citationtrail_10_3390_computers8030052
crossref_primary_10_3390_computers8030052
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Computers (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Drisis (ref_9) 2018; 13
ref_36
ref_13
Nachar (ref_33) 2008; 4
ref_35
ref_34
ref_10
ref_31
ref_30
Badrinarayanan (ref_14) 2017; 39
Lo (ref_16) 1995; 14
ref_18
Zhao (ref_24) 2018; 175
Mahmoudi (ref_39) 2018; 30
ref_15
ref_37
Jiao (ref_4) 2016; 197
Drisis (ref_8) 2017; 9
Kamnitsas (ref_23) 2017; 36
Dou (ref_17) 2016; 35
Mahmoudi (ref_29) 2014; 95
Hamidinekoo (ref_2) 2018; 47
Tustison (ref_25) 2010; 29
Li (ref_7) 2014; 71
ref_22
ref_21
ref_20
ref_40
ref_3
ref_28
ref_27
ref_26
Kaufmann (ref_1) 2012; 19
Vulchi (ref_38) 2019; 37
ref_5
Chen (ref_11) 2006; 13
Litjens (ref_19) 2017; 44
ref_6
Nie (ref_12) 2008; 15
Merkel (ref_32) 2014; 239
References_xml – ident: ref_28
– volume: 239
  start-page: 2
  year: 2014
  ident: ref_32
  article-title: Docker: Lightweight Linux containers for consistent development and deployment
  publication-title: Linux J.
– ident: ref_40
  doi: 10.1145/3128128.3128158
– volume: 175
  start-page: 32
  year: 2018
  ident: ref_24
  article-title: Bayesian convolutional neural network based MRI brain extraction on nonhuman primates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.065
– volume: 13
  start-page: 63
  year: 2006
  ident: ref_11
  article-title: A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images1
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2005.08.035
– ident: ref_36
  doi: 10.1117/12.2505887
– volume: 15
  start-page: 1513
  year: 2008
  ident: ref_12
  article-title: Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2008.06.005
– ident: ref_22
  doi: 10.1007/978-3-319-46723-8_48
– ident: ref_21
  doi: 10.1109/3DV.2016.79
– ident: ref_13
  doi: 10.1007/978-3-319-24574-4_28
– volume: 14
  start-page: 711
  year: 1995
  ident: ref_16
  article-title: Artificial convolution neural network techniques and applications for lung nodule detection
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.476112
– ident: ref_34
  doi: 10.1002/9780470479216.corpsy0524
– volume: 30
  start-page: e4372
  year: 2018
  ident: ref_39
  article-title: Towards a smart selection of resources in the cloud for low-energy multimedia processing
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.4372
– ident: ref_3
  doi: 10.1007/978-3-319-66179-7_69
– volume: 4
  start-page: 13
  year: 2008
  ident: ref_33
  article-title: The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution
  publication-title: Tutor. Quant. Methods Psychol.
  doi: 10.20982/tqmp.04.1.p013
– ident: ref_15
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_35
– volume: 35
  start-page: 1182
  year: 2016
  ident: ref_17
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528129
– volume: 71
  start-page: 1592
  year: 2014
  ident: ref_7
  article-title: Dce-mri analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: Pilot study findings
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24782
– ident: ref_27
  doi: 10.1117/12.535112
– ident: ref_31
– ident: ref_6
  doi: 10.1145/3007669.3007712
– ident: ref_5
  doi: 10.1145/3007669.3007714
– volume: 44
  start-page: 533
  year: 2017
  ident: ref_19
  article-title: Using deep learning to segment breast and fibroglandular tissue in MRI volumes
  publication-title: Med. Phys.
  doi: 10.1002/mp.12079
– volume: 29
  start-page: 1310
  year: 2010
  ident: ref_25
  article-title: N4ITK: Improved N3 bias correction
  publication-title: IEEE Trans. Med Imaging
  doi: 10.1109/TMI.2010.2046908
– ident: ref_30
  doi: 10.1109/IPTA.2012.6469569
– volume: 95
  start-page: 429
  year: 2014
  ident: ref_29
  article-title: Taking advantage of heterogeneous platforms in image and video processing
  publication-title: High-Perform. Comput. Complex Environ.
– ident: ref_26
  doi: 10.1145/3128128.3128137
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_14
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref_10
  doi: 10.1109/CloudTech.2018.8713352
– ident: ref_18
  doi: 10.1007/978-3-319-46723-8_28
– ident: ref_37
  doi: 10.1007/978-3-030-17935-9_4
– volume: 37
  start-page: 593
  year: 2019
  ident: ref_38
  article-title: Development and external validation of a deep learning model for predicting response to HER2-targeted neoadjuvant therapy from pretreatment breast MRI
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2019.37.15_suppl.593
– ident: ref_20
  doi: 10.1007/978-3-319-46723-8_55
– volume: 36
  start-page: 61
  year: 2017
  ident: ref_23
  article-title: Efficient multi-scale 3D CNN with fully connected crf for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 47
  start-page: 45
  year: 2018
  ident: ref_2
  article-title: Deep learning in mammography and breast histology, an overview and future trends
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.03.006
– volume: 197
  start-page: 221
  year: 2016
  ident: ref_4
  article-title: A deep feature-based framework for breast masses classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.060
– volume: 19
  start-page: 1508
  year: 2012
  ident: ref_1
  article-title: Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-011-2108-2
– volume: 13
  start-page: 1233
  year: 2018
  ident: ref_9
  article-title: A PRM approach for early prediction of breast cancer response to chemotherapy based on registered MR images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-018-1790-y
– volume: 9
  start-page: 109
  year: 2017
  ident: ref_8
  article-title: Breast cancer heterogeneity analysis as index of response to treatment using MRI images: A review
  publication-title: Imaging Med.
SSID ssj0000913821
Score 2.4321527
Snippet Breast tumor segmentation in medical images is a decisive step for diagnosis and treatment follow-up. Automating this challenging task helps radiologists to...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 52
SubjectTerms Artificial neural networks
Breast cancer
breast tumor segmentation
Chemotherapy
Classification
Coders
Datasets
Deep learning
encoder–decoder
HPC
Image segmentation
Localization
Magnetic resonance imaging
Mammography
Medical imaging
MRI
Neural networks
SegNet
Software
Tumors
U-Net
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYDlzYEWWTD1w4RG0ax3ZOiEIrkCCqyqLeIm9BSJBCE_h-ZlK3bBIXbonHkZLM2J7xjN8j5MjFlkGw0wpUHicB08gGKNpxkOdGWQk-gq2Lx--vRJrK4TDp-w230pdVTufEeqK2I4N75E0IZCSii7XEyctrgKxRmF31FBrzZBGRysDOFzvdtD-Y7bIg6qVsh5P8ZATxfdN4soRSthCpvf1tPaph-3_NyvVS01v970uukRXvZNLTiVWskzlXbJDVKYED9eN5k9xcDy5pB8vSK3r79jwCkXt49qeRClqXE9BzT6FS0W6BB-DHVBWWnrvJ9Vma0tMvyYhyi9z1urdnF4FnWQgMY3EV6FBrzD5b6VSsIyuYca3QSKHAFbHaRcpCqza8rQ3cJtxKw7lMcnC9RA5x7DZZKEaF2yE0MgoFEkIazsA0FA9DrhOWSCVjFfIGaU7_dWY8BDkyYTxlEIqgdrKf2mmQ49kTLxP4jT_6dlB9s34InF03jMYPmR-HWeg0N3h-XoqIJc4k8AncRZo5I0AgGmR_qtnMj-Yy-1Tr7t_iPbIMDpWvQdsnC9X4zR2QJfNePZbjQ2-cH44X8SU
  priority: 102
  providerName: ProQuest
Title MRI Breast Tumor Segmentation Using Different Encoder and Decoder CNN Architectures
URI https://www.proquest.com/docview/2548367607
https://doaj.org/article/1eb6c019087349ec97f56e3b4ec76c07
Volume 8
WOSCitedRecordID wos000487950600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: K7-
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2073-431X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913821
  issn: 2073-431X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYWDhjSgveWBhiJo0jh8jhSIqaBTxErBEfgUhQUBt4PdzTtyqgAQLS5T4HCU6n-07-e77EDqwiSEQ7ISBLBIREOXYAFk3CYpCS8PBRzB18vjtBUtTfncnshmqL5cT1sADN4rrRFZR7QqeOYuJsFqwIqE2VsRqBoK6jjxkYiaYqtdg4bD1ouZcMoa4vqM9ScKYhw6hvftlH6rh-n-sxvUWc7qClrxviI-af1pFc7ZcQ8sT3gXsp-E6uhpeDnDPZZNX-Pr95RVE9vHFFxGVuM4CwCee-aTC_dLVrY-wLA0-sc39cZrio5kzhPEGujntXx-fBZ4cIdCEJFWgIqXcobHhViYqNoxoG0aaMwkehFE2lgZalaZdpeFRUMM1pVwU4DGBCrvxJmqVr6XdQjjW0gk4RCKUwIhKGkVUCSK45ImMaBt1JqrKtUcOdwQWzzlEEE65-XflttHh9I23BjXjl749p_1pP4d3XTeAFeTeCvK_rKCNdidjl_tJOM4h9uUOkC5k2__xjR20CN6STzDbRa1q9G730IL-qJ7Go3003-un2eV-bYdwPWcBXLPkASTZYJjdfwL4peak
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyS4UJ7qQgs-wIFDtHk4jn1AqO226qq70QoWVE7Br1RINFs2KYg_xW_sOHGWl9RbD9wSj3NI_GUenvF8AC9saigGO2Egy1QEVDk2wCxOg7LU0nD0EUxbPP5hmuU5Pz0V8w342Z-FcWWVvU5sFbVZardHPsJAhrvuYmH25uJr4FijXHa1p9DoYHFif3zHkK1-PRnj-r6M46PDxcFx4FkFAk1p2gQqUsplWw23MlWJyai2YaR5JtH0GmUTaXBUaRYrjbeCGa4Z46JEVyMrU9foAFX-JkWwhwPYnE9m84_rXR3XZZPHUZcPTRIRjrQnZ6h56DrDx3_Yv5Ym4B8r0Jq2o63_7aPcg7veiSZ7Hervw4atHsBWT1BBvL56CO9mbydk35XdN2Rxeb5EkT0796etKtKWS5Cxp4hpyGHlDviviKwMGdvu-iDPyd5vyZb6Eby_kVd7DINqWdltIImWTsAxZGMUoS9ZFDElqOCSpzJiQxj1a1to32LdMX18KTDUcmgo_kbDEF6tn7jo2otcM3ffwWU9zzUGbweWq7PC65kisopp1x-AZwkVVgt8BWYTRa3OUJANYadHUuG1VV38gtGT68XP4fbxYjYtppP85CncQefR19vtwKBZXdpduKW_NZ_r1TP_YxD4dNOwuwJTT1FT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4S4UJ7qQgs-wIFDtHn6cUCo290Vq5ZoVQrqLfiVqlKbLZsUxF_j13WcOMtL6q0HbonHOTgez3g84-8DeGUzk2KwEwayzESQKscGyOIsKEstDcc9gmmLxz8fsjznJydisQE_-7swrqyyt4mtoTZL7c7IRxjIcIcuFrJR6csiFpPZu8uvgWOQcpnWnk6jU5ED--M7hm_12_kE5_p1HM-mx_vvA88wEOg0zZpARUq5zKvhVmYqMSzVNow0ZxLdsFE2kQZblaax0vgqqOGaUi5K3HawMnOgB2j-N1mCQc8ANsfTfHG0PuFxiJs8jrrcaJKIcKQ9UUPNQ4cSH__hC1vKgH88QuvmZlv_8w96APf95prsdavhIWzY6hFs9cQVxNuxx_Dxw9GcjF05fkOOry6WKLKnF_4WVkXaMgoy8dQxDZlW7uL_isjKkIntnvfznOz9loSpn8CnWxnaUxhUy8puA0m0dAKOoRxNcUlIGkVUiVRwyTMZ0SGM-nkutIdedwwg5wWGYE4zir81Ywhv1l9cdrAjN_QdO9VZ93OA4W3DcnVaePtTRFZR7XADOEtSYbXAIVCbqNRqhgI2hJ1eqwpvxeril0o9u1n8Eu6irhWH8_zgOdzDPaUvw9uBQbO6srtwR39rzurVC79GCHy5ba27BnfvWe0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+Breast+Tumor+Segmentation+Using+Different+Encoder+and+Decoder+CNN+Architectures&rft.jtitle=Computers+%28Basel%29&rft.au=El+Adoui%2C+Mohammed&rft.au=Mahmoudi%2C+Sidi+Ahmed&rft.au=Larhmam%2C+Mohamed+Amine&rft.au=Benjelloun%2C+Mohammed&rft.date=2019-09-01&rft.issn=2073-431X&rft.eissn=2073-431X&rft.volume=8&rft.issue=3&rft.spage=52&rft_id=info:doi/10.3390%2Fcomputers8030052&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_computers8030052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-431X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-431X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-431X&client=summon