Localizing Sources of Variability in Crowded TESS Photometry

The Transiting Exoplanet Survey Satellite (TESS) has an exceptionally large plate scale of 21″ px −1 , causing most TESS light curves to record the blended light of multiple stars. This creates a danger of misattributing variability observed by TESS to the wrong source, which would invalidate any an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Astronomical journal Ročník 165; číslo 4; s. 141 - 153
Hlavní autoři: Higgins, Michael E., Bell, Keaton J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Madison The American Astronomical Society 01.04.2023
IOP Publishing
Témata:
ISSN:0004-6256, 1538-3881
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Transiting Exoplanet Survey Satellite (TESS) has an exceptionally large plate scale of 21″ px −1 , causing most TESS light curves to record the blended light of multiple stars. This creates a danger of misattributing variability observed by TESS to the wrong source, which would invalidate any analysis. We developed a method that can localize the origin of variability on the sky to better than one fifth of a pixel. Given measured frequencies of variability (e.g., from periodogram analysis), we show that the best-fit sinusoid amplitudes to raw light curves extracted from each pixel are distributed in the same way as light from the variable source. The primary assumption of this method is that other nearby stars are not variable at the same frequencies. Essentially, we are using the high frequency resolution of TESS to overcome limitations from its low spatial resolution. We have implemented our method in an open-source Python package, TESS _ localize ( github.com/Higgins00/TESS-Localize ), that determines the location of a variable source on the sky and the most likely Gaia source given TESS pixel data and a set of observed frequencies of variability. Our method utilizes models of the TESS pixel response function, and we characterize systematics in the residuals of fitting these models to data. We find that even stars more than three pixels outside a photometric aperture can produce significant contaminant signals in the extracted light curves. Given the ubiquity of source blending in TESS light curves, verifying the source of observed variability should be a standard step in TESS analyses.
AbstractList The Transiting Exoplanet Survey Satellite (TESS) has an exceptionally large plate scale of 21″ px−1, causing most TESS light curves to record the blended light of multiple stars. This creates a danger of misattributing variability observed by TESS to the wrong source, which would invalidate any analysis. We developed a method that can localize the origin of variability on the sky to better than one fifth of a pixel. Given measured frequencies of variability (e.g., from periodogram analysis), we show that the best-fit sinusoid amplitudes to raw light curves extracted from each pixel are distributed in the same way as light from the variable source. The primary assumption of this method is that other nearby stars are not variable at the same frequencies. Essentially, we are using the high frequency resolution of TESS to overcome limitations from its low spatial resolution. We have implemented our method in an open-source Python package, TESS_localize (github.com/Higgins00/TESS-Localize), that determines the location of a variable source on the sky and the most likely Gaia source given TESS pixel data and a set of observed frequencies of variability. Our method utilizes models of the TESS pixel response function, and we characterize systematics in the residuals of fitting these models to data. We find that even stars more than three pixels outside a photometric aperture can produce significant contaminant signals in the extracted light curves. Given the ubiquity of source blending in TESS light curves, verifying the source of observed variability should be a standard step in TESS analyses.
The Transiting Exoplanet Survey Satellite (TESS) has an exceptionally large plate scale of 21″ px ^−1 , causing most TESS light curves to record the blended light of multiple stars. This creates a danger of misattributing variability observed by TESS to the wrong source, which would invalidate any analysis. We developed a method that can localize the origin of variability on the sky to better than one fifth of a pixel. Given measured frequencies of variability (e.g., from periodogram analysis), we show that the best-fit sinusoid amplitudes to raw light curves extracted from each pixel are distributed in the same way as light from the variable source. The primary assumption of this method is that other nearby stars are not variable at the same frequencies. Essentially, we are using the high frequency resolution of TESS to overcome limitations from its low spatial resolution. We have implemented our method in an open-source Python package, TESS _ localize ( http://github.com/Higgins00/TESS-Localize ), that determines the location of a variable source on the sky and the most likely Gaia source given TESS pixel data and a set of observed frequencies of variability. Our method utilizes models of the TESS pixel response function, and we characterize systematics in the residuals of fitting these models to data. We find that even stars more than three pixels outside a photometric aperture can produce significant contaminant signals in the extracted light curves. Given the ubiquity of source blending in TESS light curves, verifying the source of observed variability should be a standard step in TESS analyses.
The Transiting Exoplanet Survey Satellite (TESS) has an exceptionally large plate scale of 21″ px −1 , causing most TESS light curves to record the blended light of multiple stars. This creates a danger of misattributing variability observed by TESS to the wrong source, which would invalidate any analysis. We developed a method that can localize the origin of variability on the sky to better than one fifth of a pixel. Given measured frequencies of variability (e.g., from periodogram analysis), we show that the best-fit sinusoid amplitudes to raw light curves extracted from each pixel are distributed in the same way as light from the variable source. The primary assumption of this method is that other nearby stars are not variable at the same frequencies. Essentially, we are using the high frequency resolution of TESS to overcome limitations from its low spatial resolution. We have implemented our method in an open-source Python package, TESS _ localize ( github.com/Higgins00/TESS-Localize ), that determines the location of a variable source on the sky and the most likely Gaia source given TESS pixel data and a set of observed frequencies of variability. Our method utilizes models of the TESS pixel response function, and we characterize systematics in the residuals of fitting these models to data. We find that even stars more than three pixels outside a photometric aperture can produce significant contaminant signals in the extracted light curves. Given the ubiquity of source blending in TESS light curves, verifying the source of observed variability should be a standard step in TESS analyses.
Author Higgins, Michael E.
Bell, Keaton J.
Author_xml – sequence: 1
  givenname: Michael E.
  surname: Higgins
  fullname: Higgins, Michael E.
  organization: Duke University Department of Physics, Durham, NC 27708, USA
– sequence: 2
  givenname: Keaton J.
  orcidid: 0000-0002-0656-032X
  surname: Bell
  fullname: Bell, Keaton J.
  organization: University of Washington DIRAC Institute, Department of Astronomy, Seattle, WA 98195, USA
BookMark eNp9UE1r3DAUFCWFbtLcczSkxzp5z376MPRSljQNLKSwaa9CkuVEi2NtZYWw_fXx1iGB0vb0YJiZNzOH7GCIg2fsBOGsViTPkdeqrJXCc-NsBe4NW7xAB2wBAFSKiot37HAcNwCICmjBPq2iM334FYbbYh0fkvNjEbvih0nB2NCHvCvCUCxTfGx9W9xcrNfFt7uY473Pafeeve1MP_rj53vEvn-5uFl-LVfXl1fLz6vSEfFcWhTNFFF13thGeWocCbJSGZDQUtPULQnLwUguao8CVausJy7Q-ho6gPqIXc2-bTQbvU3h3qSdjibo30BMt9qkHFzvtVRcARrqTMsJq8qikrXyjeSVI2jc5HU6e21T_Pngx6w3U-1hiq8rqVBWREpMLJhZLsVxTL57-Yqg93vr_bh6P66e954k4g-JC9nkEIecTOj_J_wwC0PcvoaZeqHgmjQS6m3bTbSPf6H90_UJpEWebw
CitedBy_id crossref_primary_10_1007_s10509_025_04460_5
crossref_primary_10_3847_1538_4365_ad39c5
crossref_primary_10_1051_0004_6361_202244697
crossref_primary_10_3847_1538_3881_ad4964
crossref_primary_10_3847_1538_4357_ada5fd
crossref_primary_10_3847_1538_4357_acf21b
crossref_primary_10_3847_1538_4357_ad0b0a
crossref_primary_10_1051_0004_6361_202346865
crossref_primary_10_1051_0004_6361_202450942
crossref_primary_10_3847_1538_3881_accc31
crossref_primary_10_1051_0004_6361_202452606
crossref_primary_10_3847_1538_3881_adf195
crossref_primary_10_3847_1538_4365_ad71d3
crossref_primary_10_1016_j_newast_2024_102297
crossref_primary_10_3847_1538_4357_adc113
crossref_primary_10_3847_1538_3881_ace960
crossref_primary_10_1051_0004_6361_202348116
crossref_primary_10_3847_1538_4357_ad6987
crossref_primary_10_3847_1538_4357_ad5be7
crossref_primary_10_1051_0004_6361_202452387
crossref_primary_10_1051_0004_6361_202346657
crossref_primary_10_3847_1538_4357_ad86bb
crossref_primary_10_1051_0004_6361_202449751
crossref_primary_10_1051_0004_6361_202450711
crossref_primary_10_1093_mnras_staf495
crossref_primary_10_3847_1538_4357_ad64d6
Cites_doi 10.32023/0001-5237/71.2.3
10.1093/mnras/stx1050
10.1086/671767
10.5281/zenodo.1699739
10.3847/1538-3881/aae582
10.1117/1.JATIS.5.4.041507
10.1088/2041-8205/713/2/L97
10.1088/1538-3873/ac1d3f
10.3847/1538-3881/ac4bce
10.1051/0004-6361/202039202
10.21105/joss.02101
10.3847/1538-3881/aafc33
10.1109/MCSE.2007.55
10.3847/1538-3881/aabc4f
10.3847/2515-5172/ac376a
10.1051/0004-6361/201833051
10.3847/1538-4365/ac324a
10.3847/1538-3881/ac0825
10.3847/1538-3881/aad68e
10.1051/0004-6361:20053818
10.1051/0004-6361/201322068
10.3847/1538-3881/abc6af
10.1117/12.2233418
10.3847/2515-5172/ab459c
10.1117/1.JATIS.1.1.014003
10.1126/science.1185402
10.1093/mnras/stx1056
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-3881/acb20c
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1538-3881
ExternalDocumentID oai_doaj_org_article_785801a4fad54122b18738e9752c409c
10_3847_1538_3881_acb20c
ajacb20c
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: AST-1903828
  funderid: https://doi.org/10.13039/100000001
GroupedDBID -DZ
-~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ABXSS
ACBEA
ACGFS
ACHIP
ACNCT
ACYRX
AEFHF
AENEX
AFPKN
AGNAY
AHPAA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
HF~
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNP
RNS
ROL
SY9
T37
TR2
TSCCA
UPT
WH7
~02
AAYXX
AEINN
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c445t-b1698478feab98e49c464b78a070d4993d46b50a7563e1618d8be4561be30f003
IEDL.DBID DOA
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942571400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-6256
IngestDate Fri Oct 03 12:38:57 EDT 2025
Wed Aug 13 07:34:40 EDT 2025
Tue Nov 18 21:45:37 EST 2025
Sat Nov 29 05:29:55 EST 2025
Tue Mar 07 23:15:25 EST 2023
Wed Aug 21 03:33:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-b1698478feab98e49c464b78a070d4993d46b50a7563e1618d8be4561be30f003
Notes AAS38358
Laboratory Astrophysics, Instrumentation, Software, and Data
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0656-032X
OpenAccessLink https://doaj.org/article/785801a4fad54122b18738e9752c409c
PQID 2781724486
PQPubID 4562438
PageCount 13
ParticipantIDs crossref_citationtrail_10_3847_1538_3881_acb20c
proquest_journals_2781724486
crossref_primary_10_3847_1538_3881_acb20c
iop_journals_10_3847_1538_3881_acb20c
doaj_primary_oai_doaj_org_article_785801a4fad54122b18738e9752c409c
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle The Astronomical journal
PublicationTitleAbbrev AJ
PublicationTitleAlternate Astron. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References White (ajacb20cbib32) 2017; 471
Bryson (ajacb20cbib7) 2010; 713
Ricker (ajacb20cbib28) 2015; 1
Brasseur (ajacb20cbib5) 2019
Melchior (ajacb20cbib22) 2016
Vanderspek (ajacb20cbib30) 2018
Colman (ajacb20cbib10) 2017; 469
Bryson (ajacb20cbib8) 2013; 125
Ginsburg (ajacb20cbib15) 2019; 157
Newville (ajacb20cbib25) 2018
van Roestel (ajacb20cbib29) 2019; 3
Astropy Collaboration (ajacb20cbib2) 2018; 156
Jenkins (ajacb20cbib20) 2016; 9913
Lightkurve Collaboration (ajacb20cbib21) 2018
Montgomery (ajacb20cbib23) 1999; 13
Fausnaugh (ajacb20cbib13) 2021; 133
Collins (ajacb20cbib9) 2018; 156
Mullally (ajacb20cbib24) 2022; 163
Borucki (ajacb20cbib4) 2010; 327
Eisner (ajacb20cbib12) 2020; 5
Astropy Collaboration (ajacb20cbib1) 2013; 558
Hunter (ajacb20cbib19) 2007; 9
Hedges (ajacb20cbib17) 2021; 5
Oelkers (ajacb20cbib26) 2018; 156
Baran (ajacb20cbib3) 2021; 71
Giacalone (ajacb20cbib14) 2020; 161
Greisen (ajacb20cbib16) 2006; 446
Prša (ajacb20cbib27) 2022; 258
Córsico (ajacb20cbib11) 2021; 645
Vorobiev (ajacb20cbib31) 2019; 5
Brown (ajacb20cbib6) 2018; 616
Hedges (ajacb20cbib18) 2021; 162
References_xml – volume: 71
  start-page: 113
  year: 2021
  ident: ajacb20cbib3
  publication-title: AcA
  doi: 10.32023/0001-5237/71.2.3
– volume: 471
  start-page: 2882
  year: 2017
  ident: ajacb20cbib32
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1050
– volume: 125
  start-page: 889
  year: 2013
  ident: ajacb20cbib8
  publication-title: PASP
  doi: 10.1086/671767
– year: 2016
  ident: ajacb20cbib22
– year: 2019
  ident: ajacb20cbib5
– year: 2018
  ident: ajacb20cbib25
  doi: 10.5281/zenodo.1699739
– volume: 156
  start-page: 234
  year: 2018
  ident: ajacb20cbib9
  publication-title: AJ
  doi: 10.3847/1538-3881/aae582
– volume: 5
  year: 2019
  ident: ajacb20cbib31
  publication-title: JATIS
  doi: 10.1117/1.JATIS.5.4.041507
– volume: 713
  start-page: L97
  year: 2010
  ident: ajacb20cbib7
  publication-title: ApJL
  doi: 10.1088/2041-8205/713/2/L97
– volume: 133
  year: 2021
  ident: ajacb20cbib13
  publication-title: PASP
  doi: 10.1088/1538-3873/ac1d3f
– volume: 163
  start-page: 136
  year: 2022
  ident: ajacb20cbib24
  publication-title: AJ
  doi: 10.3847/1538-3881/ac4bce
– volume: 645
  start-page: A117
  year: 2021
  ident: ajacb20cbib11
  publication-title: A&A
  doi: 10.1051/0004-6361/202039202
– volume: 5
  start-page: 2101
  year: 2020
  ident: ajacb20cbib12
  publication-title: JOSS
  doi: 10.21105/joss.02101
– volume: 157
  start-page: 98
  year: 2019
  ident: ajacb20cbib15
  publication-title: AJ
  doi: 10.3847/1538-3881/aafc33
– volume: 9
  start-page: 90
  year: 2007
  ident: ajacb20cbib19
  publication-title: CSE
  doi: 10.1109/MCSE.2007.55
– volume: 13
  start-page: 28
  year: 1999
  ident: ajacb20cbib23
  publication-title: DSSN
– volume: 156
  start-page: 123
  year: 2018
  ident: ajacb20cbib2
  publication-title: AJ
  doi: 10.3847/1538-3881/aabc4f
– year: 2018
  ident: ajacb20cbib21
– volume: 5
  start-page: 262
  year: 2021
  ident: ajacb20cbib17
  publication-title: RNAAS
  doi: 10.3847/2515-5172/ac376a
– volume: 616
  start-page: A1
  year: 2018
  ident: ajacb20cbib6
  publication-title: A&A
  doi: 10.1051/0004-6361/201833051
– volume: 258
  start-page: 16
  year: 2022
  ident: ajacb20cbib27
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac324a
– year: 2018
  ident: ajacb20cbib30
– volume: 162
  start-page: 107
  year: 2021
  ident: ajacb20cbib18
  publication-title: AJ
  doi: 10.3847/1538-3881/ac0825
– volume: 156
  start-page: 132
  year: 2018
  ident: ajacb20cbib26
  publication-title: AJ
  doi: 10.3847/1538-3881/aad68e
– volume: 446
  start-page: 747
  year: 2006
  ident: ajacb20cbib16
  publication-title: A&A
  doi: 10.1051/0004-6361:20053818
– volume: 558
  start-page: A33
  year: 2013
  ident: ajacb20cbib1
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– volume: 161
  start-page: 24
  year: 2020
  ident: ajacb20cbib14
  publication-title: AJ
  doi: 10.3847/1538-3881/abc6af
– volume: 9913
  year: 2016
  ident: ajacb20cbib20
  publication-title: Proc. SPIE
  doi: 10.1117/12.2233418
– volume: 3
  start-page: 136
  year: 2019
  ident: ajacb20cbib29
  publication-title: RNAAS
  doi: 10.3847/2515-5172/ab459c
– volume: 1
  year: 2015
  ident: ajacb20cbib28
  publication-title: JATIS
  doi: 10.1117/1.JATIS.1.1.014003
– volume: 327
  start-page: 977
  year: 2010
  ident: ajacb20cbib4
  publication-title: Sci
  doi: 10.1126/science.1185402
– volume: 469
  start-page: 3802
  year: 2017
  ident: ajacb20cbib10
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1056
SSID ssj0011804
Score 2.6087973
Snippet The Transiting Exoplanet Survey Satellite (TESS) has an exceptionally large plate scale of 21″ px −1 , causing most TESS light curves to record the blended...
The Transiting Exoplanet Survey Satellite (TESS) has an exceptionally large plate scale of 21″ px−1, causing most TESS light curves to record the blended light...
The Transiting Exoplanet Survey Satellite (TESS) has an exceptionally large plate scale of 21″ px ^−1 , causing most TESS light curves to record the blended...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 141
SubjectTerms Astronomical object identification
Astronomy
CCD photometry
Contaminants
Extrasolar planets
Light
Light curve
Photometry
Pixels
Planet detection
Response functions
Spatial resolution
Stars
Systematics
Time series analysis
Transit
Variability
Variable stars
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZK4cClvNXtA_kASBzCxvEzgkupqDigUokCvVl-TMRKdLPapJW2v55xnC6qQBUSNyua2NaMPTOfnXxDyAsISlfgdIGpalkIAb7wIHXBQNQqlF4YZ4ZiE_r42Jyd1Scb5O36X5h2Mbr-N9jMRMFZhWl_c_Sl02GPcmPY1AVfleEOucsNhnFczJ_59_UVAjNlpmAuRYFJ_nhH-dcebsSkgbofIw0O_4d_HoLO0YP_mu5DsjXmmvQgiz4iGzB_TLYPunT63Z6v6Cs6tPPhRveEvPuUAtvsCqMZ_TIc6ne0beg3hNOZzXtFZ3N6iMA9QqSnaDp68qPt23Pol6un5OvRh9PDj8VYXaEIQsi-8EzVOD_TgPO1QdMEoYTXxqETiIiDeBTKy9JpqTgkWv1oPKR0ywMvG3QGz8jmvJ3DNqEBIrrJWiG84UJ7bxwDabyMVY3mBjMh02v92jBSj6cKGD8tQpCkJJuUZJOSbFbShLxev7HItBu3yL5PJlvLJcLs4QFaw47WsNpIjMVONC5KwarKM6O5gVrLKiDExU5eogHtuIG7WwbbvyGHwzAlrUAIxewiNhOyd71kfgtV2mCeiEBY7fzjMLvkfqprnz8R2iOb_fIC9sm9cNnPuuXzYaH_An_g-ms
  priority: 102
  providerName: IOP Publishing
Title Localizing Sources of Variability in Crowded TESS Photometry
URI https://iopscience.iop.org/article/10.3847/1538-3881/acb20c
https://www.proquest.com/docview/2781724486
https://doaj.org/article/785801a4fad54122b18738e9752c409c
Volume 165
WOSCitedRecordID wos000942571400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1538-3881
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011804
  issn: 0004-6256
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1538-3881
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011804
  issn: 0004-6256
  databaseCode: O3W
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFB-kePAiWpWutmUOKngIm0nm4wW81GLxILVg1d6G-XjBBbtZNlHY_vV9k8lWi1AvXkIIL8zk9_I-fjPDe4y9xKBNhc4UlKqWhZToC4_KFAJlo0PpJTgYm02Y01O4uGjO_mj1lc6E5fLAGbi5AUVO1MnWRSVFVXkBpgZsjKoCcZOQvG9pmi2ZmvYPBJQyb0rW5H7no1nXAGLugq_KcCsIjbX6KbQsutVfDnmMMieP2MMpPeRHeVqP2T1c7rK9oz4tWHeXG_6aj_d5PaJ_wt5-TLFocUUBiH8e1-F73rX8KzHgXIB7wxdLfkxcO2Lk54Q2P_veDd0lDuvNU_bl5P358YdiaohQBCnVUHihG_ocaNH5BgjNILX0BhzZbSTqUkepvSqdUbrGVAk_gseUIXmsy5bs9xnbWXZL3GM8YCTP1mhiJLU03oMTqMCrWDWkIYQZm28RsmGqFp6aVvywxBoSpjZhahOmNmM6Y29u3ljlShl3yL5LoN_IpRrX4wPSvJ00b_-l-Rl7RSqzk831dwx2cEuOhhFaWUmsR9hVbGdsf6v030KVAUrtiLvq5_9jri_Yg9SnPh_52Wc7w_onHrD74dew6NeH479L10_1t2sy-u9C
linkProvider Directory of Open Access Journals
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9aRXyxftLTVvOggg_rbXbzteBLWz0Uy3lg1b6FJDuLB_b2uN0Wzr_eSbI9KUoRfAvLbBJmkpn5Jbu_IeQ5eKkKsCrDVDXPOAeXORAqY8Ar6XPHtdWx2ISaTvXJSTUb6pzGf2Ha5eD6X2MzEQUnFYb9XaIvHcc9WmrNxta7IvfjZd1cJzcCT0lY1p_Kb5trBKbzRMOc8wwT_eGe8q-9XIpLkb4fow1O4Q8fHQPPZPu_p3yX3BlyTrqfxO-Ra7C4T3b2u3AK3p6u6Usa2-mQo3tA3hyFADf_iVGNfo6H-x1tG_oVYXVi9V7T-YIeIoCvoabHaEI6-9727Sn0q_VD8mXy7vjwfTZUWcg856LPHJMVzlE3YF2l0USeS-6UtugMasRDZc2lE7lVQpYQ6PVr7SCkXQ7KvEGn8IhsLdoF7BDqoUZ3WUmEOSVXzmnLQGgn6qJCs4MekfGFjo0fKMhDJYwfBqFIUJQJijJBUSYpakRebd5YJvqNK2QPgtk2coE4Oz5Ai5jBIkZpgTHZ8sbWgrOicEyrUkOlROER6mInL9CIZtjI3RWD7V2Sw2GYFIYjlGIGrTsiuxfL5rdQoTTmiwiI5eN_HOYZuTV7OzFHH6Yfn5DbodR9-mpol2z1qzPYIzf9eT_vVk_juv8FoN7_0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localizing+Sources+of+Variability+in+Crowded+TESS+Photometry&rft.jtitle=The+Astronomical+journal&rft.au=Higgins%2C+Michael+E.&rft.au=Bell%2C+Keaton+J.&rft.date=2023-04-01&rft.issn=0004-6256&rft.eissn=1538-3881&rft.volume=165&rft.issue=4&rft.spage=141&rft_id=info:doi/10.3847%2F1538-3881%2Facb20c&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_3881_acb20c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon