Enhancing anti-tumor immunity through liposomal oxaliplatin and localized immunotherapy via STING activation
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruit...
Gespeichert in:
| Veröffentlicht in: | Journal of controlled release Jg. 357; S. 531 - 544 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.05.2023
|
| Schlagworte: | |
| ISSN: | 0168-3659, 1873-4995, 1873-4995 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the “eat me” signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor.
[Display omitted]
•First combination of oxaliplatin and ADU-S100 for cancer treatment•Enhanced anti-tumor efficiency by regulate tumor microenvironment•Orchestrated immune response on both innate and adaptive immunity |
|---|---|
| AbstractList | The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the "eat me" signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the “eat me” signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor. [Display omitted] •First combination of oxaliplatin and ADU-S100 for cancer treatment•Enhanced anti-tumor efficiency by regulate tumor microenvironment•Orchestrated immune response on both innate and adaptive immunity The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the "eat me" signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor.The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the "eat me" signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor. |
| Author | Cruz, Luis J. Gu, Zili Ossendorp, Ferry Hao, Yang Schomann, Timo ten Dijke, Peter |
| Author_xml | – sequence: 1 givenname: Zili surname: Gu fullname: Gu, Zili organization: Department of Radiology, Leiden University Medical Center, the Netherlands – sequence: 2 givenname: Yang surname: Hao fullname: Hao, Yang organization: Department of Radiology, Leiden University Medical Center, the Netherlands – sequence: 3 givenname: Timo surname: Schomann fullname: Schomann, Timo organization: Department of Radiology, Leiden University Medical Center, the Netherlands – sequence: 4 givenname: Ferry surname: Ossendorp fullname: Ossendorp, Ferry organization: Department of Immunology, Leiden University Medical Center, the Netherlands – sequence: 5 givenname: Peter surname: ten Dijke fullname: ten Dijke, Peter email: P.ten_Dijke@lumc.nl organization: Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands – sequence: 6 givenname: Luis J. surname: Cruz fullname: Cruz, Luis J. email: l.j.cruz_ricondo@lumc.nl organization: Department of Radiology, Leiden University Medical Center, the Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37030544$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAURi1URKeFRwBlySbBjn8jFghVpVSqYEFZWzeO0_HIsQfbGXV4etLOdMNmVpatcz7r3u8CnYUYLELvCW4IJuLTptmYGJL1TYtb2mDWYEJeoRVRktas6_gZWi2cqqng3Tm6yHmDMeaUyTfonEpMMWdshfx1WEMwLjxUEIqryzzFVLlpmoMr-6qsU5wf1pV325jjBL6Kj7BcPBQXFmOofDTLw187HKRY1jbBdl_tHFS_7m9_3FRgitstfAxv0esRfLbvjucl-v3t-v7qe3338-b26utdbRjjpQbgolfQCcOk6jnjILBsRwESZA8tE71QfJSkUwNRoqMEiKCG2K6XoxrHgV6ij4fcbYp_ZpuLnlw21nsINs5Zt4qylraKyNOo7JQkjBKyoB-O6NxPdtDb5CZIe_2yzAX4fABMijknO2rjyvPgJYHzmmD9VJ3e6GN1-qk6jZnGz_H8P_vlg1Pel4Nnl43unE06G2eDsYNL1hQ9RHci4R9pIrd7 |
| CitedBy_id | crossref_primary_10_1016_j_imlet_2025_106977 crossref_primary_10_1039_D4NR04944F crossref_primary_10_1016_j_biomaterials_2025_123587 crossref_primary_10_3390_ph18030317 crossref_primary_10_3390_cancers15153948 crossref_primary_10_1016_j_jconrel_2025_02_061 crossref_primary_10_1038_s41467_025_60221_6 crossref_primary_10_1186_s12943_025_02380_0 crossref_primary_10_1186_s13046_024_03253_y crossref_primary_10_2147_IJN_S477320 crossref_primary_10_1016_j_apsb_2024_09_015 crossref_primary_10_1021_acs_jmedchem_5c00883 crossref_primary_10_1016_j_fct_2023_114427 crossref_primary_10_1016_j_cclet_2025_111403 crossref_primary_10_1186_s13045_025_01692_4 crossref_primary_10_1002_adma_202309655 crossref_primary_10_1016_j_cej_2025_167867 crossref_primary_10_1016_j_mattod_2024_11_006 crossref_primary_10_1016_j_intimp_2024_113447 crossref_primary_10_1002_adtp_202500113 crossref_primary_10_3389_fimmu_2025_1571212 crossref_primary_10_1016_j_ijbiomac_2024_135542 crossref_primary_10_1080_17435889_2025_2497747 crossref_primary_10_1016_j_canlet_2024_217410 crossref_primary_10_1002_mco2_339 crossref_primary_10_1007_s10238_025_01838_1 crossref_primary_10_1016_j_critrevonc_2025_104658 crossref_primary_10_1016_j_cej_2024_149234 crossref_primary_10_1039_D5QI00433K crossref_primary_10_3389_fmed_2025_1587684 crossref_primary_10_1016_j_colsurfb_2024_113996 crossref_primary_10_1016_j_cej_2025_164487 crossref_primary_10_1016_j_biomaterials_2024_122472 crossref_primary_10_3389_fchem_2024_1492215 crossref_primary_10_1016_j_bbcan_2025_189281 crossref_primary_10_1016_j_actbio_2024_01_008 crossref_primary_10_3390_molecules30081805 crossref_primary_10_1007_s13205_025_04362_x crossref_primary_10_1039_D4NR01483A crossref_primary_10_1007_s13346_025_01949_y crossref_primary_10_1016_j_biopha_2024_117192 crossref_primary_10_1002_iid3_1099 crossref_primary_10_1016_j_jconrel_2024_07_015 crossref_primary_10_1039_D4FO04045G crossref_primary_10_1016_j_biomaterials_2024_122869 crossref_primary_10_2147_IJN_S491573 crossref_primary_10_1007_s00210_025_03835_3 crossref_primary_10_1016_j_intimp_2025_114013 crossref_primary_10_31083_j_fbl2904158 crossref_primary_10_1002_advs_202409442 crossref_primary_10_1002_cbic_202400099 crossref_primary_10_1002_ijc_35496 crossref_primary_10_3390_pharmaceutics17070886 |
| Cites_doi | 10.1038/nrclinonc.2016.217 10.1002/adma.202007576 10.1073/pnas.1810580115 10.1158/2159-8290.CD-19-0761 10.1016/j.jconrel.2022.11.049 10.1016/j.it.2017.04.002 10.4049/jimmunol.167.10.5574 10.1038/s41575-019-0126-x 10.1186/s12943-020-01250-1 10.1021/acs.nanolett.9b04094 10.3892/ijo.2018.4661 10.1186/s13045-020-00916-z 10.1080/2162402X.2022.2117321 10.1016/j.cell.2018.09.030 10.1016/S0006-2952(03)00260-0 10.1038/s41590-017-0022-x 10.3389/fimmu.2021.627932 10.1021/acs.langmuir.0c00475 10.3389/fimmu.2021.697964 10.1146/annurev-immunol-042617-053352 10.1038/nrclinonc.2016.25 10.1136/jitc-2020-001714 10.1136/jitc-2019-000282 10.1016/j.tranon.2021.101202 10.3390/pharmaceutics12111054 10.1038/cddis.2017.67 10.1016/j.ccell.2015.10.012 10.1016/j.celrep.2015.04.031 10.1038/s41423-020-0488-6 10.1084/jem.20050915 10.1016/j.dnarep.2022.103409 10.1136/jitc-2022-005627 10.1038/nrclinonc.2017.43 10.1016/j.biomaterials.2016.01.006 10.1200/JCO.21.01497 10.1080/2162402X.2015.1118599 10.1158/1078-0432.CCR-17-2807 10.1038/nri2343 10.1038/s41565-022-01134-z 10.3389/fimmu.2011.00031 10.1096/fj.09-145755 |
| ContentType | Journal Article |
| Copyright | 2023 Leiden University Medical Center Copyright © 2023 Leiden University Medical Center. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2023 Leiden University Medical Center – notice: Copyright © 2023 Leiden University Medical Center. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jconrel.2023.04.011 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1873-4995 |
| EndPage | 544 |
| ExternalDocumentID | 37030544 10_1016_j_jconrel_2023_04_011 S0168365923002614 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABJNI ABMAC ABOCM ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SPT SSM SSP SSZ T5K TEORI WUQ ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c445t-aa56b8a96c478b545a6072f6a7a7ba246b685f7198d186931a163c1e9b7f8ffd3 |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983883800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-3659 1873-4995 |
| IngestDate | Fri Oct 03 00:09:12 EDT 2025 Sun Nov 09 14:21:03 EST 2025 Wed Feb 19 02:24:06 EST 2025 Sat Nov 29 07:24:10 EST 2025 Tue Nov 18 22:42:21 EST 2025 Sat Mar 02 16:01:12 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Immunochemotherapy CRT DL MHC HMGB1 DAMPs BSA OLP Oxaliplatin TAMs CFMDA IC50 cGAS Nanomedicine EE DSPC IL H&E Tregs eLP DAPI ICD TME IR780-LP TAA UPLC STING OXA CTL mPEG2000-DSPE Liposomes ATP dsDNA Cancer DC |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2023 Leiden University Medical Center. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c445t-aa56b8a96c478b545a6072f6a7a7ba246b685f7198d186931a163c1e9b7f8ffd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jconrel.2023.04.011 |
| PMID | 37030544 |
| PQID | 2798714311 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2834232817 proquest_miscellaneous_2798714311 pubmed_primary_37030544 crossref_citationtrail_10_1016_j_jconrel_2023_04_011 crossref_primary_10_1016_j_jconrel_2023_04_011 elsevier_sciencedirect_doi_10_1016_j_jconrel_2023_04_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of controlled release |
| PublicationTitleAlternate | J Control Release |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Kang, Tang (bb0060) 2021; 6 Chattopadhyay, Liu, Fang, Lin, Lin, Yao, Hu (bb0080) 2020; 20 Barros, McIntosh, Savage (bb0095) 2022; 120 Wang-Bishop, Wehbe, Shae, James, Hacker, Garland, Chistov, Rafat, Balko, Wilson (bb0075) 2020; 8 Casares, Pequignot, Tesniere, Ghiringhelli, Roux, Chaput, Schmitt, Hamai, Hervas-Stubbs, Obeid, Coutant, Métivier, Pichard, Aucouturier, Pierron, Garrido, Zitvogel, Kroemer (bb0100) 2005; 202 Thaiss, Semmling, Franken, Wagner, Kurts (bb0195) 2011; 2 Zheng, Mo, Zhu, Zhuo, Yi, Hu, Yin, Zhang, Zhou, Liu (bb0045) 2020; 19 Jiang, Jiang, Chen, Chen, Wang, Li, Chen, Liu, Liu, Wang, Wang, Zhao, Ye, He, Zhou (bb0055) 2020; 13 Gu, da Silva, Hao, Schomann, Camps, van der Maaden, Liu, Ossendorp, Cruz (bb0150) 2023; 353 Jin, Wang (bb0200) 2021; 12 Steinman, Mellman (bb0010) 1979; 305 Duzgunes, Duzgunes, Nir (bb0165) 1999 Won, Bakhoum (bb0050) 2020; 10 Woynarowski, Faivre, Herzig, Arnett, Chapman, Trevino, Raymond, Chaney, Vaisman, Varchenko, Juniewicz (bb0115) 2000 Paston, Brentville, Symonds, Durrant (bb0085) 2021; 12 Ganesh, Stadler, Cercek, Mendelsohn, Shia, Segal, Diaz (bb0025) 2019; 16 Magnuson, Kiner, Ergun, Park, Asinovski, Ortiz-Lopez, Kilcoyne, Paoluzzi-Tomada, Weissleder, Mathis, Benoist (bb0250) 2018; 115 Li, Zheng, Wang, Xu, Zhang (bb0125) 2021; 14 Zhang, Zhang (bb0005) 2020; 17 Li, Khorsandi, Wang, Santelli, Huntoon, Nguyen, Yang, Lee, Lu, Gao, Kim, de Gracia Lux, Mattrey, Jiang, Lux (bb0035) 2022; 17 da Silva, Rueda, Löwik, Ossendorp, Cruz (bb0110) 2016; 83 Corrales, Glickman, McWhirter, Kanne, Sivick, Katibah, Woo, Lemmens, Banda, Leong, Metchette, Dubensky, Gajewski (bb0135) 2015; 11 Bhat, Leggatt, Waterhouse, Frazer (bb0205) 2017; 8 Gu, da Silva, van der Maaden, Ossendorp, Cruz (bb0140) 2020; 12 Pollock, Antrobus, Newton, Kampa, Rossa, Latham, Nichita, Dwek, Zitzmann (bb0170) 2010; 24 Ross, Cantrell (bb0220) 2018; 36 Gubin, Esaulova, Ward, Malkova, Runci, Wong, Noguchi, Arthur, Meng, Alspach, Medrano, Fronick, Fehlings, Newell, Fulton, Sheehan, Oh, Schreiber, Artyomov (bb0225) 2018; 175 Khalil, Smith, Brentjens, Wolchok (bb0015) 2016; 13 Tau, Cowan, Weisburg, Braunstein, Rothman (bb0215) 2001; 167 Broz, Krummel (bb0230) 2015; 3 Schirrmacher (bb0185) 2019; 54 Tan, Sansanaphongpricha, Xie, Donnelly, Luo, Heath, Zhao, Bellile, Hu, Chen, Polverini, Chen, Young, Carey, Nor, Ferris, Wolf, Sun, Lei (bb0065) 2018; 24 Gu, da Silva, Hao, Schomann, Camps, van der Maaden, Liu, Ossendorp, Cruz (bb0145) 2023; 353 Emens, Middleton (bb0175) 2015; 3 Henry, Ornelles, Mitchell, Brzoza-Lewis, Hiltbold (bb0190) 2022 Lopez-Pelaez, Young, Vazquez-Chantada, Nelson, Durant, Wilkinson, Poon, Gaspar, Valge-Archer, Smith, Dovedi (bb0090) 2022; 11 Reck, Remon, Hellmann (bb0030) 2022; 40 Mantovani, Marchesi, Malesci, Laghi, Allavena (bb0235) 2017; 14 Vignali, Collison, Workman (bb0245) 2008; 8 Veglia, Perego, Gabrilovich (bb0240) 2018; 19 Ding, Wang, Martincuks, Kearns, Jiang, Lin, Cheng, Qian, Xie, Kim, Launonen, Färkkilä, Roberts, Freeman, Liu, Konstantinopoulos, Matulonis, Yu, Zhao (bb0070) 2023; 11 Halle, Halle, Förster (bb0210) 2017; 38 Ma, Ji, Chen, Dong, Zhang, Yin, Ma, Liang, Zhang, Shen, Qin, Huang (bb0130) 2016; 5 Majzoub, Chan, Ewert, Silva, Liang, Safinya (bb0160) 1848; 2015 Arai, Xiao, Loupakis, Kawanishi, Wang, Battaglin, Soni, Zhang, Mancao, Salhia, Mumenthaler, Weisenberger, Liang, Cremolini, Falcone, Millstein, Lenz (bb0105) 2020; 8 Lee, Huntoon, Wang, Jiang, Kim (bb0040) 2021; 33 Galluzzi, Buqué, Kepp, Zitvogel, Kroemer (bb0180) 2015; 28 Luke, Flaherty, Ribas, Long (bb0020) 2017; 14 Drabik, Chodaczek, Kraszewski, Langner (bb0155) 2020; 36 Faivre, Chan, Salinas, Woynarowska, Woynarowski (bb0120) 2003; 66 Faivre (10.1016/j.jconrel.2023.04.011_bb0120) 2003; 66 Li (10.1016/j.jconrel.2023.04.011_bb0125) 2021; 14 Paston (10.1016/j.jconrel.2023.04.011_bb0085) 2021; 12 Duzgunes (10.1016/j.jconrel.2023.04.011_bb0165) Pollock (10.1016/j.jconrel.2023.04.011_bb0170) 2010; 24 Corrales (10.1016/j.jconrel.2023.04.011_bb0135) 2015; 11 Jin (10.1016/j.jconrel.2023.04.011_bb0200) 2021; 12 Gubin (10.1016/j.jconrel.2023.04.011_bb0225) 2018; 175 Magnuson (10.1016/j.jconrel.2023.04.011_bb0250) 2018; 115 Won (10.1016/j.jconrel.2023.04.011_bb0050) 2020; 10 Reck (10.1016/j.jconrel.2023.04.011_bb0030) 2022; 40 Gu (10.1016/j.jconrel.2023.04.011_bb0140) 2020; 12 Casares (10.1016/j.jconrel.2023.04.011_bb0100) 2005; 202 Lee (10.1016/j.jconrel.2023.04.011_bb0040) 2021; 33 Ma (10.1016/j.jconrel.2023.04.011_bb0130) 2016; 5 Henry (10.1016/j.jconrel.2023.04.011_bb0190) 2022 Barros (10.1016/j.jconrel.2023.04.011_bb0095) 2022; 120 da Silva (10.1016/j.jconrel.2023.04.011_bb0110) 2016; 83 Tau (10.1016/j.jconrel.2023.04.011_bb0215) 2001; 167 Li (10.1016/j.jconrel.2023.04.011_bb0035) 2022; 17 Zhang (10.1016/j.jconrel.2023.04.011_bb0060) 2021; 6 Jiang (10.1016/j.jconrel.2023.04.011_bb0055) 2020; 13 Veglia (10.1016/j.jconrel.2023.04.011_bb0240) 2018; 19 Gu (10.1016/j.jconrel.2023.04.011_bb0150) 2023; 353 Lopez-Pelaez (10.1016/j.jconrel.2023.04.011_bb0090) 2022; 11 Drabik (10.1016/j.jconrel.2023.04.011_bb0155) 2020; 36 Thaiss (10.1016/j.jconrel.2023.04.011_bb0195) 2011; 2 Majzoub (10.1016/j.jconrel.2023.04.011_bb0160) 1848; 2015 Schirrmacher (10.1016/j.jconrel.2023.04.011_bb0185) 2019; 54 Vignali (10.1016/j.jconrel.2023.04.011_bb0245) 2008; 8 Tan (10.1016/j.jconrel.2023.04.011_bb0065) 2018; 24 Steinman (10.1016/j.jconrel.2023.04.011_bb0010) 1979; 305 Chattopadhyay (10.1016/j.jconrel.2023.04.011_bb0080) 2020; 20 Halle (10.1016/j.jconrel.2023.04.011_bb0210) 2017; 38 Gu (10.1016/j.jconrel.2023.04.011_bb0145) 2023; 353 Ganesh (10.1016/j.jconrel.2023.04.011_bb0025) 2019; 16 Wang-Bishop (10.1016/j.jconrel.2023.04.011_bb0075) 2020; 8 Arai (10.1016/j.jconrel.2023.04.011_bb0105) 2020; 8 Ross (10.1016/j.jconrel.2023.04.011_bb0220) 2018; 36 Luke (10.1016/j.jconrel.2023.04.011_bb0020) 2017; 14 Mantovani (10.1016/j.jconrel.2023.04.011_bb0235) 2017; 14 Ding (10.1016/j.jconrel.2023.04.011_bb0070) 2023; 11 Emens (10.1016/j.jconrel.2023.04.011_bb0175) 2015; 3 Galluzzi (10.1016/j.jconrel.2023.04.011_bb0180) 2015; 28 Zheng (10.1016/j.jconrel.2023.04.011_bb0045) 2020; 19 Khalil (10.1016/j.jconrel.2023.04.011_bb0015) 2016; 13 Bhat (10.1016/j.jconrel.2023.04.011_bb0205) 2017; 8 Broz (10.1016/j.jconrel.2023.04.011_bb0230) 2015; 3 Zhang (10.1016/j.jconrel.2023.04.011_bb0005) 2020; 17 Woynarowski (10.1016/j.jconrel.2023.04.011_bb0115) |
| References_xml | – volume: 305 start-page: 197 year: 1979 end-page: 200 ident: bb0010 article-title: Immunotherapy: bewitched, bothered, and bewildered no more publication-title: Science – volume: 20 start-page: 2246 year: 2020 end-page: 2256 ident: bb0080 article-title: Synthetic immunogenic cell death mediated by intracellular delivery of STING agonist Nanoshells enhances anticancer chemo-immunotherapy publication-title: Nano Lett. – volume: 3 start-page: 313 year: 2015 end-page: 319 ident: bb0230 article-title: The emerging understanding of myeloid cells as partners and targets in tumor rejection, Cancer publication-title: Immunol. Res. – volume: 353 start-page: 490 year: 2023 end-page: 506 ident: bb0145 article-title: Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer publication-title: J. Control. Release – volume: 202 start-page: 1691 year: 2005 end-page: 1701 ident: bb0100 article-title: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death publication-title: J. Exp. Med. – volume: 2015 start-page: 1308 year: 1848 end-page: 1318 ident: bb0160 article-title: Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: a platform for investigating early endosomal events publication-title: Biochim. Biophys. Acta Biomembr. – volume: 14 start-page: 399 year: 2017 end-page: 416 ident: bb0235 article-title: Tumour-associated macrophages as treatment targets in oncology publication-title: Nat. Rev. Clin. Oncol. – volume: 33 year: 2021 ident: bb0040 article-title: Harnessing innate immunity using biomaterials for Cancer immunotherapy publication-title: Adv. Mater. – volume: 66 start-page: 225 year: 2003 end-page: 237 ident: bb0120 article-title: DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells publication-title: Biochem. Pharmacol. – volume: 12 year: 2021 ident: bb0085 article-title: Cancer vaccines, adjuvants, and delivery systems publication-title: Front. Immunol. – volume: 17 start-page: 891 year: 2022 end-page: 899 ident: bb0035 article-title: Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles publication-title: Nat. Nanotechnol. – volume: 14 year: 2021 ident: bb0125 article-title: Macrophage polarization synergizes with oxaliplatin in lung cancer immunotherapy via enhanced tumor cell phagocytosis publication-title: Transl. Oncol. – year: 2000 ident: bb0115 article-title: Oxaliplatin-Induced Damage of Cellular DNA – volume: 8 year: 2017 ident: bb0205 article-title: Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity publication-title: Cell Death Dis. – volume: 12 start-page: 1 year: 2020 end-page: 25 ident: bb0140 article-title: Liposome-based drug delivery systems in cancer immunotherapy publication-title: Pharmaceutics. – volume: 11 start-page: 1018 year: 2015 end-page: 1030 ident: bb0135 article-title: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity publication-title: Cell Rep. – volume: 16 start-page: 361 year: 2019 end-page: 375 ident: bb0025 article-title: Immunotherapy in colorectal cancer: rationale, challenges and potential publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 24 start-page: 4242 year: 2018 end-page: 4255 ident: bb0065 article-title: Mitigating SOX2-potentiated immune escape of head and neck squamous cell carcinoma with a STING-inducing nanosatellite vaccine publication-title: Clin. Cancer Res. – volume: 2 year: 2011 ident: bb0195 article-title: Chemokines: a new dendritic cell signal fort cell activation publication-title: Front. Immunol. – volume: 8 start-page: 523 year: 2008 end-page: 532 ident: bb0245 article-title: How regulatory T cells work publication-title: Nat. Rev. Immunol. – volume: 40 start-page: 586 year: 2022 end-page: 597 ident: bb0030 article-title: First-line immunotherapy for non–small-cell lung Cancer publication-title: J. Clin. Oncol. – volume: 19 year: 2020 ident: bb0045 article-title: Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy publication-title: Mol. Cancer – volume: 175 start-page: 1014 year: 2018 end-page: 1030.e19 ident: bb0225 article-title: High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy publication-title: Cell. – volume: 10 start-page: 26 year: 2020 end-page: 39 ident: bb0050 article-title: The cytosolic DNA-sensing cGAS–sting pathway in cancer publication-title: Cancer Discov. – volume: 120 year: 2022 ident: bb0095 article-title: The DNA damage induced immune response: implications for cancer therapy publication-title: DNA Repair (Amst) – volume: 353 start-page: 490 year: 2023 end-page: 506 ident: bb0150 article-title: Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer publication-title: J. Control. Release – volume: 38 start-page: 432 year: 2017 end-page: 443 ident: bb0210 article-title: Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo publication-title: Trends Immunol. – volume: 6 year: 2021 ident: bb0060 article-title: The STING1 network regulates autophagy and cell death publication-title: Signal Transduct Target Ther. – year: 1999 ident: bb0165 article-title: Mechanisms and Kinetics of Liposome-Cell Interactions – volume: 11 year: 2023 ident: bb0070 article-title: STING agonism overcomes STAT3-mediated immunosuppression and adaptive resistance to PARP inhibition in ovarian cancer publication-title: J Immunother Cancer. – volume: 11 year: 2022 ident: bb0090 article-title: Targeting DNA damage response components induces enhanced STING-dependent type-I IFN response in ATM deficient cancer cells and drives dendritic cell activation publication-title: Oncoimmunology. – volume: 13 start-page: 273 year: 2016 end-page: 290 ident: bb0015 article-title: The future of cancer treatment: immunomodulation, CARs and combination immunotherapy publication-title: Nat. Rev. Clin. Oncol. – volume: 13 year: 2020 ident: bb0055 article-title: cGAS-STING, an important pathway in cancer immunotherapy publication-title: J. Hematol. Oncol. – volume: 115 start-page: E10672 year: 2018 end-page: E10681 ident: bb0250 article-title: Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 36 start-page: 411 year: 2018 end-page: 433 ident: bb0220 article-title: Signaling and function of Interleukin-2 in T lymphocytes publication-title: Annu. Rev. Immunol. – volume: 5 year: 2016 ident: bb0130 article-title: Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression publication-title: Oncoimmunology. – volume: 54 start-page: 407 year: 2019 end-page: 419 ident: bb0185 article-title: From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review) publication-title: Int. J. Oncol. – year: 2022 ident: bb0190 article-title: IL-12 Produced by Dendritic Cells Augments CD8+ T Cell Activation through the Production of the Chemokines CCL1 and CCL17 1 – volume: 8 year: 2020 ident: bb0075 article-title: Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma publication-title: J Immunother Cancer. – volume: 167 start-page: 5574 year: 2001 end-page: 5582 ident: bb0215 article-title: Regulation of IFN-γ signaling is essential for the cytotoxic activity of CD8+ T cells publication-title: J. Immunol. – volume: 14 start-page: 463 year: 2017 end-page: 482 ident: bb0020 article-title: Targeted agents and immunotherapies: optimizing outcomes in melanoma publication-title: Nat. Rev. Clin. Oncol. – volume: 24 start-page: 1866 year: 2010 end-page: 1878 ident: bb0170 article-title: Uptake and trafficking of liposomes to the endoplasmic reticulum publication-title: FASEB J. – volume: 19 start-page: 108 year: 2018 end-page: 119 ident: bb0240 article-title: Myeloid-derived suppressor cells coming of age review-article publication-title: Nat. Immunol. – volume: 28 start-page: 690 year: 2015 end-page: 714 ident: bb0180 article-title: Immunological effects of conventional chemotherapy and targeted anticancer agents publication-title: Cancer Cell – volume: 8 year: 2020 ident: bb0105 article-title: Immunogenic cell death pathway polymorphisms for predicting oxaliplatin efficacy in metastatic colorectal cancer publication-title: J Immunother Cancer. – volume: 17 start-page: 807 year: 2020 end-page: 821 ident: bb0005 article-title: The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications publication-title: Cell. Mol. Immunol. – volume: 3 start-page: 436 year: 2015 end-page: 443 ident: bb0175 article-title: The interplay of immunotherapy and chemotherapy: harnessing potential synergies, Cancer publication-title: Immunol. Res. – volume: 12 year: 2021 ident: bb0200 article-title: Immunogenic cell death-based Cancer vaccines publication-title: Front. Immunol. – volume: 83 start-page: 308 year: 2016 end-page: 320 ident: bb0110 article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy publication-title: Biomaterials. – volume: 36 start-page: 3826 year: 2020 end-page: 3835 ident: bb0155 article-title: Mechanical properties determination of DMPC, DPPC, DSPC, and HSPC solid-ordered bilayers publication-title: Langmuir. – volume: 14 start-page: 399 year: 2017 ident: 10.1016/j.jconrel.2023.04.011_bb0235 article-title: Tumour-associated macrophages as treatment targets in oncology publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.217 – volume: 33 year: 2021 ident: 10.1016/j.jconrel.2023.04.011_bb0040 article-title: Harnessing innate immunity using biomaterials for Cancer immunotherapy publication-title: Adv. Mater. doi: 10.1002/adma.202007576 – volume: 115 start-page: E10672 year: 2018 ident: 10.1016/j.jconrel.2023.04.011_bb0250 article-title: Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1810580115 – volume: 10 start-page: 26 year: 2020 ident: 10.1016/j.jconrel.2023.04.011_bb0050 article-title: The cytosolic DNA-sensing cGAS–sting pathway in cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-19-0761 – volume: 353 start-page: 490 year: 2023 ident: 10.1016/j.jconrel.2023.04.011_bb0145 article-title: Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer publication-title: J. Control. Release doi: 10.1016/j.jconrel.2022.11.049 – volume: 38 start-page: 432 year: 2017 ident: 10.1016/j.jconrel.2023.04.011_bb0210 article-title: Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo publication-title: Trends Immunol. doi: 10.1016/j.it.2017.04.002 – volume: 2015 start-page: 1308 year: 1848 ident: 10.1016/j.jconrel.2023.04.011_bb0160 article-title: Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: a platform for investigating early endosomal events publication-title: Biochim. Biophys. Acta Biomembr. – volume: 167 start-page: 5574 year: 2001 ident: 10.1016/j.jconrel.2023.04.011_bb0215 article-title: Regulation of IFN-γ signaling is essential for the cytotoxic activity of CD8+ T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.167.10.5574 – volume: 16 start-page: 361 year: 2019 ident: 10.1016/j.jconrel.2023.04.011_bb0025 article-title: Immunotherapy in colorectal cancer: rationale, challenges and potential publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0126-x – volume: 19 year: 2020 ident: 10.1016/j.jconrel.2023.04.011_bb0045 article-title: Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy publication-title: Mol. Cancer doi: 10.1186/s12943-020-01250-1 – volume: 20 start-page: 2246 year: 2020 ident: 10.1016/j.jconrel.2023.04.011_bb0080 article-title: Synthetic immunogenic cell death mediated by intracellular delivery of STING agonist Nanoshells enhances anticancer chemo-immunotherapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04094 – volume: 54 start-page: 407 year: 2019 ident: 10.1016/j.jconrel.2023.04.011_bb0185 article-title: From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review) publication-title: Int. J. Oncol. doi: 10.3892/ijo.2018.4661 – volume: 13 year: 2020 ident: 10.1016/j.jconrel.2023.04.011_bb0055 article-title: cGAS-STING, an important pathway in cancer immunotherapy publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-020-00916-z – volume: 11 year: 2022 ident: 10.1016/j.jconrel.2023.04.011_bb0090 article-title: Targeting DNA damage response components induces enhanced STING-dependent type-I IFN response in ATM deficient cancer cells and drives dendritic cell activation publication-title: Oncoimmunology. doi: 10.1080/2162402X.2022.2117321 – volume: 175 start-page: 1014 year: 2018 ident: 10.1016/j.jconrel.2023.04.011_bb0225 article-title: High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy publication-title: Cell. doi: 10.1016/j.cell.2018.09.030 – volume: 66 start-page: 225 year: 2003 ident: 10.1016/j.jconrel.2023.04.011_bb0120 article-title: DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(03)00260-0 – volume: 19 start-page: 108 year: 2018 ident: 10.1016/j.jconrel.2023.04.011_bb0240 article-title: Myeloid-derived suppressor cells coming of age review-article publication-title: Nat. Immunol. doi: 10.1038/s41590-017-0022-x – ident: 10.1016/j.jconrel.2023.04.011_bb0115 – volume: 353 start-page: 490 year: 2023 ident: 10.1016/j.jconrel.2023.04.011_bb0150 article-title: Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer publication-title: J. Control. Release doi: 10.1016/j.jconrel.2022.11.049 – volume: 12 year: 2021 ident: 10.1016/j.jconrel.2023.04.011_bb0085 article-title: Cancer vaccines, adjuvants, and delivery systems publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.627932 – year: 2022 ident: 10.1016/j.jconrel.2023.04.011_bb0190 – volume: 36 start-page: 3826 year: 2020 ident: 10.1016/j.jconrel.2023.04.011_bb0155 article-title: Mechanical properties determination of DMPC, DPPC, DSPC, and HSPC solid-ordered bilayers publication-title: Langmuir. doi: 10.1021/acs.langmuir.0c00475 – volume: 3 start-page: 313 year: 2015 ident: 10.1016/j.jconrel.2023.04.011_bb0230 article-title: The emerging understanding of myeloid cells as partners and targets in tumor rejection, Cancer publication-title: Immunol. Res. – volume: 12 year: 2021 ident: 10.1016/j.jconrel.2023.04.011_bb0200 article-title: Immunogenic cell death-based Cancer vaccines publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.697964 – volume: 36 start-page: 411 year: 2018 ident: 10.1016/j.jconrel.2023.04.011_bb0220 article-title: Signaling and function of Interleukin-2 in T lymphocytes publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-042617-053352 – volume: 13 start-page: 273 year: 2016 ident: 10.1016/j.jconrel.2023.04.011_bb0015 article-title: The future of cancer treatment: immunomodulation, CARs and combination immunotherapy publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.25 – volume: 8 year: 2020 ident: 10.1016/j.jconrel.2023.04.011_bb0105 article-title: Immunogenic cell death pathway polymorphisms for predicting oxaliplatin efficacy in metastatic colorectal cancer publication-title: J Immunother Cancer. doi: 10.1136/jitc-2020-001714 – volume: 8 year: 2020 ident: 10.1016/j.jconrel.2023.04.011_bb0075 article-title: Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma publication-title: J Immunother Cancer. doi: 10.1136/jitc-2019-000282 – volume: 14 year: 2021 ident: 10.1016/j.jconrel.2023.04.011_bb0125 article-title: Macrophage polarization synergizes with oxaliplatin in lung cancer immunotherapy via enhanced tumor cell phagocytosis publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2021.101202 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.jconrel.2023.04.011_bb0140 article-title: Liposome-based drug delivery systems in cancer immunotherapy publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics12111054 – volume: 8 year: 2017 ident: 10.1016/j.jconrel.2023.04.011_bb0205 article-title: Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.67 – volume: 28 start-page: 690 year: 2015 ident: 10.1016/j.jconrel.2023.04.011_bb0180 article-title: Immunological effects of conventional chemotherapy and targeted anticancer agents publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.10.012 – volume: 6 year: 2021 ident: 10.1016/j.jconrel.2023.04.011_bb0060 article-title: The STING1 network regulates autophagy and cell death publication-title: Signal Transduct Target Ther. – volume: 11 start-page: 1018 year: 2015 ident: 10.1016/j.jconrel.2023.04.011_bb0135 article-title: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.04.031 – volume: 17 start-page: 807 year: 2020 ident: 10.1016/j.jconrel.2023.04.011_bb0005 article-title: The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-020-0488-6 – volume: 202 start-page: 1691 year: 2005 ident: 10.1016/j.jconrel.2023.04.011_bb0100 article-title: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death publication-title: J. Exp. Med. doi: 10.1084/jem.20050915 – volume: 120 year: 2022 ident: 10.1016/j.jconrel.2023.04.011_bb0095 article-title: The DNA damage induced immune response: implications for cancer therapy publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2022.103409 – volume: 11 year: 2023 ident: 10.1016/j.jconrel.2023.04.011_bb0070 article-title: STING agonism overcomes STAT3-mediated immunosuppression and adaptive resistance to PARP inhibition in ovarian cancer publication-title: J Immunother Cancer. doi: 10.1136/jitc-2022-005627 – ident: 10.1016/j.jconrel.2023.04.011_bb0165 – volume: 14 start-page: 463 year: 2017 ident: 10.1016/j.jconrel.2023.04.011_bb0020 article-title: Targeted agents and immunotherapies: optimizing outcomes in melanoma publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.43 – volume: 83 start-page: 308 year: 2016 ident: 10.1016/j.jconrel.2023.04.011_bb0110 article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2016.01.006 – volume: 40 start-page: 586 year: 2022 ident: 10.1016/j.jconrel.2023.04.011_bb0030 article-title: First-line immunotherapy for non–small-cell lung Cancer publication-title: J. Clin. Oncol. doi: 10.1200/JCO.21.01497 – volume: 3 start-page: 436 year: 2015 ident: 10.1016/j.jconrel.2023.04.011_bb0175 article-title: The interplay of immunotherapy and chemotherapy: harnessing potential synergies, Cancer publication-title: Immunol. Res. – volume: 5 year: 2016 ident: 10.1016/j.jconrel.2023.04.011_bb0130 article-title: Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression publication-title: Oncoimmunology. doi: 10.1080/2162402X.2015.1118599 – volume: 24 start-page: 4242 year: 2018 ident: 10.1016/j.jconrel.2023.04.011_bb0065 article-title: Mitigating SOX2-potentiated immune escape of head and neck squamous cell carcinoma with a STING-inducing nanosatellite vaccine publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-2807 – volume: 8 start-page: 523 year: 2008 ident: 10.1016/j.jconrel.2023.04.011_bb0245 article-title: How regulatory T cells work publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2343 – volume: 305 start-page: 197 issue: 2004 year: 1979 ident: 10.1016/j.jconrel.2023.04.011_bb0010 article-title: Immunotherapy: bewitched, bothered, and bewildered no more publication-title: Science – volume: 17 start-page: 891 year: 2022 ident: 10.1016/j.jconrel.2023.04.011_bb0035 article-title: Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01134-z – volume: 2 year: 2011 ident: 10.1016/j.jconrel.2023.04.011_bb0195 article-title: Chemokines: a new dendritic cell signal fort cell activation publication-title: Front. Immunol. doi: 10.3389/fimmu.2011.00031 – volume: 24 start-page: 1866 year: 2010 ident: 10.1016/j.jconrel.2023.04.011_bb0170 article-title: Uptake and trafficking of liposomes to the endoplasmic reticulum publication-title: FASEB J. doi: 10.1096/fj.09-145755 |
| SSID | ssj0005347 |
| Score | 2.611885 |
| Snippet | The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 531 |
| SubjectTerms | agonists antigens antineoplastic activity Antineoplastic Agents - therapeutic use Cancer cell death colorectal neoplasms Colorectal Neoplasms - drug therapy crosslinking dendritic cells DNA DNA damage Humans Immunochemotherapy immunogenicity immunosuppression immunotherapy Immunotherapy - methods interferons Liposomes macrophages Nanomedicine Oxaliplatin phagocytosis phenotype remission STING T-lymphocytes |
| Title | Enhancing anti-tumor immunity through liposomal oxaliplatin and localized immunotherapy via STING activation |
| URI | https://dx.doi.org/10.1016/j.jconrel.2023.04.011 https://www.ncbi.nlm.nih.gov/pubmed/37030544 https://www.proquest.com/docview/2798714311 https://www.proquest.com/docview/2834232817 |
| Volume | 357 |
| WOSCitedRecordID | wos000983883800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4995 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005347 issn: 0168-3659 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZbA-9lL6bPhYVyl663sa2bMnHpWT7oCyBppCejGzL1MHrhLxI-mf6VzsjyXaWdLttoRdjTMZW_H3WjEbzIOQVrKezDL02LpDBYZgDnLgY7ADqVgQqUnmgE4U_8YsLMR5Hw07nR50Lsy55VYnNJpr9V6jhGoCNqbN_AXdzU7gA5wA6HAF2OP4R8IPqG9bQ0LmHy8JZri4x5FyngYDBXfflKYvZdDG9RFN0A6b4DEPiTFyy1m7FdzBEtZDN0Nq-XhcS7Ed0bmEuxLpFdN-0tfHvpcp0T5adDaB3K70bUpRFO_VpZ-1XaVWo3hTCqCVjWCOXGkfwAv3g07luqXeu5jaC2fosvJ0IQeNI20umMb7NUDh-aAuEKzMfC-5rBu1O2L4paW2n3MBqEaO9A1NNck8xGB_F5HQCbwD--SmOSte4tVP91Zrbn3EsOBRYoOEilR2QQ48HUdAlh2cfBuOPbRSRz0xGvh17myT25pcPu878uW55o82c0V1yx4JIzwyv7pGOqu6T46EpcL49oaM2X29xQo_psC19vn1AyoZ8tCUfrclHLfloQz66Qz6QyGhDPnqFfBTIRzX5aEu-h-TL-WD09r1j-3k4KWPB0pEyCBMhozBlXCRgusuwz708lFzyRHosTEIR5NyNRIaN0nxXwmIhdVWU8FzkeeY_It1qWqknhOYcZMIkiTImGBMp3M5jmeJ9JcNcRf0eYfVrjlNb7B57rpRxHdU4iS06MaIT91kM6PTIaSM2M9VebhIQNYaxNVmNKRoD8W4SfVljHsOUjvt0slLT1SL2eCQ4rGN--xuBpTs94fIeeWwI04zY11qcsaf_Prhn5Hb73T4n3eV8pV6QW-l6WSzmR-SAj8WR_RR-An0r47U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+anti-tumor+immunity+through+liposomal+oxaliplatin+and+localized+immunotherapy+via+STING+activation&rft.jtitle=Journal+of+controlled+release&rft.au=Gu%2C+Zili&rft.au=Hao%2C+Yang&rft.au=Schomann%2C+Timo&rft.au=Ossendorp%2C+Ferry&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=357&rft.spage=531&rft.epage=544&rft_id=info:doi/10.1016%2Fj.jconrel.2023.04.011&rft.externalDocID=S0168365923002614 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |