Enhancing anti-tumor immunity through liposomal oxaliplatin and localized immunotherapy via STING activation

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release Jg. 357; S. 531 - 544
Hauptverfasser: Gu, Zili, Hao, Yang, Schomann, Timo, Ossendorp, Ferry, ten Dijke, Peter, Cruz, Luis J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.05.2023
Schlagworte:
ISSN:0168-3659, 1873-4995, 1873-4995
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the “eat me” signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor. [Display omitted] •First combination of oxaliplatin and ADU-S100 for cancer treatment•Enhanced anti-tumor efficiency by regulate tumor microenvironment•Orchestrated immune response on both innate and adaptive immunity
AbstractList The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the "eat me" signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor.
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the “eat me” signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor. [Display omitted] •First combination of oxaliplatin and ADU-S100 for cancer treatment•Enhanced anti-tumor efficiency by regulate tumor microenvironment•Orchestrated immune response on both innate and adaptive immunity
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the "eat me" signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor.The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the "eat me" signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor.
Author Cruz, Luis J.
Gu, Zili
Ossendorp, Ferry
Hao, Yang
Schomann, Timo
ten Dijke, Peter
Author_xml – sequence: 1
  givenname: Zili
  surname: Gu
  fullname: Gu, Zili
  organization: Department of Radiology, Leiden University Medical Center, the Netherlands
– sequence: 2
  givenname: Yang
  surname: Hao
  fullname: Hao, Yang
  organization: Department of Radiology, Leiden University Medical Center, the Netherlands
– sequence: 3
  givenname: Timo
  surname: Schomann
  fullname: Schomann, Timo
  organization: Department of Radiology, Leiden University Medical Center, the Netherlands
– sequence: 4
  givenname: Ferry
  surname: Ossendorp
  fullname: Ossendorp, Ferry
  organization: Department of Immunology, Leiden University Medical Center, the Netherlands
– sequence: 5
  givenname: Peter
  surname: ten Dijke
  fullname: ten Dijke, Peter
  email: P.ten_Dijke@lumc.nl
  organization: Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
– sequence: 6
  givenname: Luis J.
  surname: Cruz
  fullname: Cruz, Luis J.
  email: l.j.cruz_ricondo@lumc.nl
  organization: Department of Radiology, Leiden University Medical Center, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37030544$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFRwBlySbBjn8jFghVpVSqYEFZWzeO0_HIsQfbGXV4etLOdMNmVpatcz7r3u8CnYUYLELvCW4IJuLTptmYGJL1TYtb2mDWYEJeoRVRktas6_gZWi2cqqng3Tm6yHmDMeaUyTfonEpMMWdshfx1WEMwLjxUEIqryzzFVLlpmoMr-6qsU5wf1pV325jjBL6Kj7BcPBQXFmOofDTLw187HKRY1jbBdl_tHFS_7m9_3FRgitstfAxv0esRfLbvjucl-v3t-v7qe3338-b26utdbRjjpQbgolfQCcOk6jnjILBsRwESZA8tE71QfJSkUwNRoqMEiKCG2K6XoxrHgV6ij4fcbYp_ZpuLnlw21nsINs5Zt4qylraKyNOo7JQkjBKyoB-O6NxPdtDb5CZIe_2yzAX4fABMijknO2rjyvPgJYHzmmD9VJ3e6GN1-qk6jZnGz_H8P_vlg1Pel4Nnl43unE06G2eDsYNL1hQ9RHci4R9pIrd7
CitedBy_id crossref_primary_10_1016_j_imlet_2025_106977
crossref_primary_10_1039_D4NR04944F
crossref_primary_10_1016_j_biomaterials_2025_123587
crossref_primary_10_3390_ph18030317
crossref_primary_10_3390_cancers15153948
crossref_primary_10_1016_j_jconrel_2025_02_061
crossref_primary_10_1038_s41467_025_60221_6
crossref_primary_10_1186_s12943_025_02380_0
crossref_primary_10_1186_s13046_024_03253_y
crossref_primary_10_2147_IJN_S477320
crossref_primary_10_1016_j_apsb_2024_09_015
crossref_primary_10_1021_acs_jmedchem_5c00883
crossref_primary_10_1016_j_fct_2023_114427
crossref_primary_10_1016_j_cclet_2025_111403
crossref_primary_10_1186_s13045_025_01692_4
crossref_primary_10_1002_adma_202309655
crossref_primary_10_1016_j_cej_2025_167867
crossref_primary_10_1016_j_mattod_2024_11_006
crossref_primary_10_1016_j_intimp_2024_113447
crossref_primary_10_1002_adtp_202500113
crossref_primary_10_3389_fimmu_2025_1571212
crossref_primary_10_1016_j_ijbiomac_2024_135542
crossref_primary_10_1080_17435889_2025_2497747
crossref_primary_10_1016_j_canlet_2024_217410
crossref_primary_10_1002_mco2_339
crossref_primary_10_1007_s10238_025_01838_1
crossref_primary_10_1016_j_critrevonc_2025_104658
crossref_primary_10_1016_j_cej_2024_149234
crossref_primary_10_1039_D5QI00433K
crossref_primary_10_3389_fmed_2025_1587684
crossref_primary_10_1016_j_colsurfb_2024_113996
crossref_primary_10_1016_j_cej_2025_164487
crossref_primary_10_1016_j_biomaterials_2024_122472
crossref_primary_10_3389_fchem_2024_1492215
crossref_primary_10_1016_j_bbcan_2025_189281
crossref_primary_10_1016_j_actbio_2024_01_008
crossref_primary_10_3390_molecules30081805
crossref_primary_10_1007_s13205_025_04362_x
crossref_primary_10_1039_D4NR01483A
crossref_primary_10_1007_s13346_025_01949_y
crossref_primary_10_1016_j_biopha_2024_117192
crossref_primary_10_1002_iid3_1099
crossref_primary_10_1016_j_jconrel_2024_07_015
crossref_primary_10_1039_D4FO04045G
crossref_primary_10_1016_j_biomaterials_2024_122869
crossref_primary_10_2147_IJN_S491573
crossref_primary_10_1007_s00210_025_03835_3
crossref_primary_10_1016_j_intimp_2025_114013
crossref_primary_10_31083_j_fbl2904158
crossref_primary_10_1002_advs_202409442
crossref_primary_10_1002_cbic_202400099
crossref_primary_10_1002_ijc_35496
crossref_primary_10_3390_pharmaceutics17070886
Cites_doi 10.1038/nrclinonc.2016.217
10.1002/adma.202007576
10.1073/pnas.1810580115
10.1158/2159-8290.CD-19-0761
10.1016/j.jconrel.2022.11.049
10.1016/j.it.2017.04.002
10.4049/jimmunol.167.10.5574
10.1038/s41575-019-0126-x
10.1186/s12943-020-01250-1
10.1021/acs.nanolett.9b04094
10.3892/ijo.2018.4661
10.1186/s13045-020-00916-z
10.1080/2162402X.2022.2117321
10.1016/j.cell.2018.09.030
10.1016/S0006-2952(03)00260-0
10.1038/s41590-017-0022-x
10.3389/fimmu.2021.627932
10.1021/acs.langmuir.0c00475
10.3389/fimmu.2021.697964
10.1146/annurev-immunol-042617-053352
10.1038/nrclinonc.2016.25
10.1136/jitc-2020-001714
10.1136/jitc-2019-000282
10.1016/j.tranon.2021.101202
10.3390/pharmaceutics12111054
10.1038/cddis.2017.67
10.1016/j.ccell.2015.10.012
10.1016/j.celrep.2015.04.031
10.1038/s41423-020-0488-6
10.1084/jem.20050915
10.1016/j.dnarep.2022.103409
10.1136/jitc-2022-005627
10.1038/nrclinonc.2017.43
10.1016/j.biomaterials.2016.01.006
10.1200/JCO.21.01497
10.1080/2162402X.2015.1118599
10.1158/1078-0432.CCR-17-2807
10.1038/nri2343
10.1038/s41565-022-01134-z
10.3389/fimmu.2011.00031
10.1096/fj.09-145755
ContentType Journal Article
Copyright 2023 Leiden University Medical Center
Copyright © 2023 Leiden University Medical Center. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Leiden University Medical Center
– notice: Copyright © 2023 Leiden University Medical Center. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2023.04.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 544
ExternalDocumentID 37030544
10_1016_j_jconrel_2023_04_011
S0168365923002614
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPT
SSM
SSP
SSZ
T5K
TEORI
WUQ
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c445t-aa56b8a96c478b545a6072f6a7a7ba246b685f7198d186931a163c1e9b7f8ffd3
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983883800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-3659
1873-4995
IngestDate Fri Oct 03 00:09:12 EDT 2025
Sun Nov 09 14:21:03 EST 2025
Wed Feb 19 02:24:06 EST 2025
Sat Nov 29 07:24:10 EST 2025
Tue Nov 18 22:42:21 EST 2025
Sat Mar 02 16:01:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Immunochemotherapy
CRT
DL
MHC
HMGB1
DAMPs
BSA
OLP
Oxaliplatin
TAMs
CFMDA
IC50
cGAS
Nanomedicine
EE
DSPC
IL
H&E
Tregs
eLP
DAPI
ICD
TME
IR780-LP
TAA
UPLC
STING
OXA
CTL
mPEG2000-DSPE
Liposomes
ATP
dsDNA
Cancer
DC
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 Leiden University Medical Center. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-aa56b8a96c478b545a6072f6a7a7ba246b685f7198d186931a163c1e9b7f8ffd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.jconrel.2023.04.011
PMID 37030544
PQID 2798714311
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2834232817
proquest_miscellaneous_2798714311
pubmed_primary_37030544
crossref_citationtrail_10_1016_j_jconrel_2023_04_011
crossref_primary_10_1016_j_jconrel_2023_04_011
elsevier_sciencedirect_doi_10_1016_j_jconrel_2023_04_011
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Kang, Tang (bb0060) 2021; 6
Chattopadhyay, Liu, Fang, Lin, Lin, Yao, Hu (bb0080) 2020; 20
Barros, McIntosh, Savage (bb0095) 2022; 120
Wang-Bishop, Wehbe, Shae, James, Hacker, Garland, Chistov, Rafat, Balko, Wilson (bb0075) 2020; 8
Casares, Pequignot, Tesniere, Ghiringhelli, Roux, Chaput, Schmitt, Hamai, Hervas-Stubbs, Obeid, Coutant, Métivier, Pichard, Aucouturier, Pierron, Garrido, Zitvogel, Kroemer (bb0100) 2005; 202
Thaiss, Semmling, Franken, Wagner, Kurts (bb0195) 2011; 2
Zheng, Mo, Zhu, Zhuo, Yi, Hu, Yin, Zhang, Zhou, Liu (bb0045) 2020; 19
Jiang, Jiang, Chen, Chen, Wang, Li, Chen, Liu, Liu, Wang, Wang, Zhao, Ye, He, Zhou (bb0055) 2020; 13
Gu, da Silva, Hao, Schomann, Camps, van der Maaden, Liu, Ossendorp, Cruz (bb0150) 2023; 353
Jin, Wang (bb0200) 2021; 12
Steinman, Mellman (bb0010) 1979; 305
Duzgunes, Duzgunes, Nir (bb0165) 1999
Won, Bakhoum (bb0050) 2020; 10
Woynarowski, Faivre, Herzig, Arnett, Chapman, Trevino, Raymond, Chaney, Vaisman, Varchenko, Juniewicz (bb0115) 2000
Paston, Brentville, Symonds, Durrant (bb0085) 2021; 12
Ganesh, Stadler, Cercek, Mendelsohn, Shia, Segal, Diaz (bb0025) 2019; 16
Magnuson, Kiner, Ergun, Park, Asinovski, Ortiz-Lopez, Kilcoyne, Paoluzzi-Tomada, Weissleder, Mathis, Benoist (bb0250) 2018; 115
Li, Zheng, Wang, Xu, Zhang (bb0125) 2021; 14
Zhang, Zhang (bb0005) 2020; 17
Li, Khorsandi, Wang, Santelli, Huntoon, Nguyen, Yang, Lee, Lu, Gao, Kim, de Gracia Lux, Mattrey, Jiang, Lux (bb0035) 2022; 17
da Silva, Rueda, Löwik, Ossendorp, Cruz (bb0110) 2016; 83
Corrales, Glickman, McWhirter, Kanne, Sivick, Katibah, Woo, Lemmens, Banda, Leong, Metchette, Dubensky, Gajewski (bb0135) 2015; 11
Bhat, Leggatt, Waterhouse, Frazer (bb0205) 2017; 8
Gu, da Silva, van der Maaden, Ossendorp, Cruz (bb0140) 2020; 12
Pollock, Antrobus, Newton, Kampa, Rossa, Latham, Nichita, Dwek, Zitzmann (bb0170) 2010; 24
Ross, Cantrell (bb0220) 2018; 36
Gubin, Esaulova, Ward, Malkova, Runci, Wong, Noguchi, Arthur, Meng, Alspach, Medrano, Fronick, Fehlings, Newell, Fulton, Sheehan, Oh, Schreiber, Artyomov (bb0225) 2018; 175
Khalil, Smith, Brentjens, Wolchok (bb0015) 2016; 13
Tau, Cowan, Weisburg, Braunstein, Rothman (bb0215) 2001; 167
Broz, Krummel (bb0230) 2015; 3
Schirrmacher (bb0185) 2019; 54
Tan, Sansanaphongpricha, Xie, Donnelly, Luo, Heath, Zhao, Bellile, Hu, Chen, Polverini, Chen, Young, Carey, Nor, Ferris, Wolf, Sun, Lei (bb0065) 2018; 24
Gu, da Silva, Hao, Schomann, Camps, van der Maaden, Liu, Ossendorp, Cruz (bb0145) 2023; 353
Emens, Middleton (bb0175) 2015; 3
Henry, Ornelles, Mitchell, Brzoza-Lewis, Hiltbold (bb0190) 2022
Lopez-Pelaez, Young, Vazquez-Chantada, Nelson, Durant, Wilkinson, Poon, Gaspar, Valge-Archer, Smith, Dovedi (bb0090) 2022; 11
Reck, Remon, Hellmann (bb0030) 2022; 40
Mantovani, Marchesi, Malesci, Laghi, Allavena (bb0235) 2017; 14
Vignali, Collison, Workman (bb0245) 2008; 8
Veglia, Perego, Gabrilovich (bb0240) 2018; 19
Ding, Wang, Martincuks, Kearns, Jiang, Lin, Cheng, Qian, Xie, Kim, Launonen, Färkkilä, Roberts, Freeman, Liu, Konstantinopoulos, Matulonis, Yu, Zhao (bb0070) 2023; 11
Halle, Halle, Förster (bb0210) 2017; 38
Ma, Ji, Chen, Dong, Zhang, Yin, Ma, Liang, Zhang, Shen, Qin, Huang (bb0130) 2016; 5
Majzoub, Chan, Ewert, Silva, Liang, Safinya (bb0160) 1848; 2015
Arai, Xiao, Loupakis, Kawanishi, Wang, Battaglin, Soni, Zhang, Mancao, Salhia, Mumenthaler, Weisenberger, Liang, Cremolini, Falcone, Millstein, Lenz (bb0105) 2020; 8
Lee, Huntoon, Wang, Jiang, Kim (bb0040) 2021; 33
Galluzzi, Buqué, Kepp, Zitvogel, Kroemer (bb0180) 2015; 28
Luke, Flaherty, Ribas, Long (bb0020) 2017; 14
Drabik, Chodaczek, Kraszewski, Langner (bb0155) 2020; 36
Faivre, Chan, Salinas, Woynarowska, Woynarowski (bb0120) 2003; 66
Faivre (10.1016/j.jconrel.2023.04.011_bb0120) 2003; 66
Li (10.1016/j.jconrel.2023.04.011_bb0125) 2021; 14
Paston (10.1016/j.jconrel.2023.04.011_bb0085) 2021; 12
Duzgunes (10.1016/j.jconrel.2023.04.011_bb0165)
Pollock (10.1016/j.jconrel.2023.04.011_bb0170) 2010; 24
Corrales (10.1016/j.jconrel.2023.04.011_bb0135) 2015; 11
Jin (10.1016/j.jconrel.2023.04.011_bb0200) 2021; 12
Gubin (10.1016/j.jconrel.2023.04.011_bb0225) 2018; 175
Magnuson (10.1016/j.jconrel.2023.04.011_bb0250) 2018; 115
Won (10.1016/j.jconrel.2023.04.011_bb0050) 2020; 10
Reck (10.1016/j.jconrel.2023.04.011_bb0030) 2022; 40
Gu (10.1016/j.jconrel.2023.04.011_bb0140) 2020; 12
Casares (10.1016/j.jconrel.2023.04.011_bb0100) 2005; 202
Lee (10.1016/j.jconrel.2023.04.011_bb0040) 2021; 33
Ma (10.1016/j.jconrel.2023.04.011_bb0130) 2016; 5
Henry (10.1016/j.jconrel.2023.04.011_bb0190) 2022
Barros (10.1016/j.jconrel.2023.04.011_bb0095) 2022; 120
da Silva (10.1016/j.jconrel.2023.04.011_bb0110) 2016; 83
Tau (10.1016/j.jconrel.2023.04.011_bb0215) 2001; 167
Li (10.1016/j.jconrel.2023.04.011_bb0035) 2022; 17
Zhang (10.1016/j.jconrel.2023.04.011_bb0060) 2021; 6
Jiang (10.1016/j.jconrel.2023.04.011_bb0055) 2020; 13
Veglia (10.1016/j.jconrel.2023.04.011_bb0240) 2018; 19
Gu (10.1016/j.jconrel.2023.04.011_bb0150) 2023; 353
Lopez-Pelaez (10.1016/j.jconrel.2023.04.011_bb0090) 2022; 11
Drabik (10.1016/j.jconrel.2023.04.011_bb0155) 2020; 36
Thaiss (10.1016/j.jconrel.2023.04.011_bb0195) 2011; 2
Majzoub (10.1016/j.jconrel.2023.04.011_bb0160) 1848; 2015
Schirrmacher (10.1016/j.jconrel.2023.04.011_bb0185) 2019; 54
Vignali (10.1016/j.jconrel.2023.04.011_bb0245) 2008; 8
Tan (10.1016/j.jconrel.2023.04.011_bb0065) 2018; 24
Steinman (10.1016/j.jconrel.2023.04.011_bb0010) 1979; 305
Chattopadhyay (10.1016/j.jconrel.2023.04.011_bb0080) 2020; 20
Halle (10.1016/j.jconrel.2023.04.011_bb0210) 2017; 38
Gu (10.1016/j.jconrel.2023.04.011_bb0145) 2023; 353
Ganesh (10.1016/j.jconrel.2023.04.011_bb0025) 2019; 16
Wang-Bishop (10.1016/j.jconrel.2023.04.011_bb0075) 2020; 8
Arai (10.1016/j.jconrel.2023.04.011_bb0105) 2020; 8
Ross (10.1016/j.jconrel.2023.04.011_bb0220) 2018; 36
Luke (10.1016/j.jconrel.2023.04.011_bb0020) 2017; 14
Mantovani (10.1016/j.jconrel.2023.04.011_bb0235) 2017; 14
Ding (10.1016/j.jconrel.2023.04.011_bb0070) 2023; 11
Emens (10.1016/j.jconrel.2023.04.011_bb0175) 2015; 3
Galluzzi (10.1016/j.jconrel.2023.04.011_bb0180) 2015; 28
Zheng (10.1016/j.jconrel.2023.04.011_bb0045) 2020; 19
Khalil (10.1016/j.jconrel.2023.04.011_bb0015) 2016; 13
Bhat (10.1016/j.jconrel.2023.04.011_bb0205) 2017; 8
Broz (10.1016/j.jconrel.2023.04.011_bb0230) 2015; 3
Zhang (10.1016/j.jconrel.2023.04.011_bb0005) 2020; 17
Woynarowski (10.1016/j.jconrel.2023.04.011_bb0115)
References_xml – volume: 305
  start-page: 197
  year: 1979
  end-page: 200
  ident: bb0010
  article-title: Immunotherapy: bewitched, bothered, and bewildered no more
  publication-title: Science
– volume: 20
  start-page: 2246
  year: 2020
  end-page: 2256
  ident: bb0080
  article-title: Synthetic immunogenic cell death mediated by intracellular delivery of STING agonist Nanoshells enhances anticancer chemo-immunotherapy
  publication-title: Nano Lett.
– volume: 3
  start-page: 313
  year: 2015
  end-page: 319
  ident: bb0230
  article-title: The emerging understanding of myeloid cells as partners and targets in tumor rejection, Cancer
  publication-title: Immunol. Res.
– volume: 353
  start-page: 490
  year: 2023
  end-page: 506
  ident: bb0145
  article-title: Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer
  publication-title: J. Control. Release
– volume: 202
  start-page: 1691
  year: 2005
  end-page: 1701
  ident: bb0100
  article-title: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death
  publication-title: J. Exp. Med.
– volume: 2015
  start-page: 1308
  year: 1848
  end-page: 1318
  ident: bb0160
  article-title: Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: a platform for investigating early endosomal events
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 14
  start-page: 399
  year: 2017
  end-page: 416
  ident: bb0235
  article-title: Tumour-associated macrophages as treatment targets in oncology
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 33
  year: 2021
  ident: bb0040
  article-title: Harnessing innate immunity using biomaterials for Cancer immunotherapy
  publication-title: Adv. Mater.
– volume: 66
  start-page: 225
  year: 2003
  end-page: 237
  ident: bb0120
  article-title: DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells
  publication-title: Biochem. Pharmacol.
– volume: 12
  year: 2021
  ident: bb0085
  article-title: Cancer vaccines, adjuvants, and delivery systems
  publication-title: Front. Immunol.
– volume: 17
  start-page: 891
  year: 2022
  end-page: 899
  ident: bb0035
  article-title: Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles
  publication-title: Nat. Nanotechnol.
– volume: 14
  year: 2021
  ident: bb0125
  article-title: Macrophage polarization synergizes with oxaliplatin in lung cancer immunotherapy via enhanced tumor cell phagocytosis
  publication-title: Transl. Oncol.
– year: 2000
  ident: bb0115
  article-title: Oxaliplatin-Induced Damage of Cellular DNA
– volume: 8
  year: 2017
  ident: bb0205
  article-title: Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity
  publication-title: Cell Death Dis.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 25
  ident: bb0140
  article-title: Liposome-based drug delivery systems in cancer immunotherapy
  publication-title: Pharmaceutics.
– volume: 11
  start-page: 1018
  year: 2015
  end-page: 1030
  ident: bb0135
  article-title: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity
  publication-title: Cell Rep.
– volume: 16
  start-page: 361
  year: 2019
  end-page: 375
  ident: bb0025
  article-title: Immunotherapy in colorectal cancer: rationale, challenges and potential
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 24
  start-page: 4242
  year: 2018
  end-page: 4255
  ident: bb0065
  article-title: Mitigating SOX2-potentiated immune escape of head and neck squamous cell carcinoma with a STING-inducing nanosatellite vaccine
  publication-title: Clin. Cancer Res.
– volume: 2
  year: 2011
  ident: bb0195
  article-title: Chemokines: a new dendritic cell signal fort cell activation
  publication-title: Front. Immunol.
– volume: 8
  start-page: 523
  year: 2008
  end-page: 532
  ident: bb0245
  article-title: How regulatory T cells work
  publication-title: Nat. Rev. Immunol.
– volume: 40
  start-page: 586
  year: 2022
  end-page: 597
  ident: bb0030
  article-title: First-line immunotherapy for non–small-cell lung Cancer
  publication-title: J. Clin. Oncol.
– volume: 19
  year: 2020
  ident: bb0045
  article-title: Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy
  publication-title: Mol. Cancer
– volume: 175
  start-page: 1014
  year: 2018
  end-page: 1030.e19
  ident: bb0225
  article-title: High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy
  publication-title: Cell.
– volume: 10
  start-page: 26
  year: 2020
  end-page: 39
  ident: bb0050
  article-title: The cytosolic DNA-sensing cGAS–sting pathway in cancer
  publication-title: Cancer Discov.
– volume: 120
  year: 2022
  ident: bb0095
  article-title: The DNA damage induced immune response: implications for cancer therapy
  publication-title: DNA Repair (Amst)
– volume: 353
  start-page: 490
  year: 2023
  end-page: 506
  ident: bb0150
  article-title: Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer
  publication-title: J. Control. Release
– volume: 38
  start-page: 432
  year: 2017
  end-page: 443
  ident: bb0210
  article-title: Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo
  publication-title: Trends Immunol.
– volume: 6
  year: 2021
  ident: bb0060
  article-title: The STING1 network regulates autophagy and cell death
  publication-title: Signal Transduct Target Ther.
– year: 1999
  ident: bb0165
  article-title: Mechanisms and Kinetics of Liposome-Cell Interactions
– volume: 11
  year: 2023
  ident: bb0070
  article-title: STING agonism overcomes STAT3-mediated immunosuppression and adaptive resistance to PARP inhibition in ovarian cancer
  publication-title: J Immunother Cancer.
– volume: 11
  year: 2022
  ident: bb0090
  article-title: Targeting DNA damage response components induces enhanced STING-dependent type-I IFN response in ATM deficient cancer cells and drives dendritic cell activation
  publication-title: Oncoimmunology.
– volume: 13
  start-page: 273
  year: 2016
  end-page: 290
  ident: bb0015
  article-title: The future of cancer treatment: immunomodulation, CARs and combination immunotherapy
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 13
  year: 2020
  ident: bb0055
  article-title: cGAS-STING, an important pathway in cancer immunotherapy
  publication-title: J. Hematol. Oncol.
– volume: 115
  start-page: E10672
  year: 2018
  end-page: E10681
  ident: bb0250
  article-title: Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 36
  start-page: 411
  year: 2018
  end-page: 433
  ident: bb0220
  article-title: Signaling and function of Interleukin-2 in T lymphocytes
  publication-title: Annu. Rev. Immunol.
– volume: 5
  year: 2016
  ident: bb0130
  article-title: Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression
  publication-title: Oncoimmunology.
– volume: 54
  start-page: 407
  year: 2019
  end-page: 419
  ident: bb0185
  article-title: From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review)
  publication-title: Int. J. Oncol.
– year: 2022
  ident: bb0190
  article-title: IL-12 Produced by Dendritic Cells Augments CD8+ T Cell Activation through the Production of the Chemokines CCL1 and CCL17 1
– volume: 8
  year: 2020
  ident: bb0075
  article-title: Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma
  publication-title: J Immunother Cancer.
– volume: 167
  start-page: 5574
  year: 2001
  end-page: 5582
  ident: bb0215
  article-title: Regulation of IFN-γ signaling is essential for the cytotoxic activity of CD8+ T cells
  publication-title: J. Immunol.
– volume: 14
  start-page: 463
  year: 2017
  end-page: 482
  ident: bb0020
  article-title: Targeted agents and immunotherapies: optimizing outcomes in melanoma
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 24
  start-page: 1866
  year: 2010
  end-page: 1878
  ident: bb0170
  article-title: Uptake and trafficking of liposomes to the endoplasmic reticulum
  publication-title: FASEB J.
– volume: 19
  start-page: 108
  year: 2018
  end-page: 119
  ident: bb0240
  article-title: Myeloid-derived suppressor cells coming of age review-article
  publication-title: Nat. Immunol.
– volume: 28
  start-page: 690
  year: 2015
  end-page: 714
  ident: bb0180
  article-title: Immunological effects of conventional chemotherapy and targeted anticancer agents
  publication-title: Cancer Cell
– volume: 8
  year: 2020
  ident: bb0105
  article-title: Immunogenic cell death pathway polymorphisms for predicting oxaliplatin efficacy in metastatic colorectal cancer
  publication-title: J Immunother Cancer.
– volume: 17
  start-page: 807
  year: 2020
  end-page: 821
  ident: bb0005
  article-title: The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications
  publication-title: Cell. Mol. Immunol.
– volume: 3
  start-page: 436
  year: 2015
  end-page: 443
  ident: bb0175
  article-title: The interplay of immunotherapy and chemotherapy: harnessing potential synergies, Cancer
  publication-title: Immunol. Res.
– volume: 12
  year: 2021
  ident: bb0200
  article-title: Immunogenic cell death-based Cancer vaccines
  publication-title: Front. Immunol.
– volume: 83
  start-page: 308
  year: 2016
  end-page: 320
  ident: bb0110
  article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy
  publication-title: Biomaterials.
– volume: 36
  start-page: 3826
  year: 2020
  end-page: 3835
  ident: bb0155
  article-title: Mechanical properties determination of DMPC, DPPC, DSPC, and HSPC solid-ordered bilayers
  publication-title: Langmuir.
– volume: 14
  start-page: 399
  year: 2017
  ident: 10.1016/j.jconrel.2023.04.011_bb0235
  article-title: Tumour-associated macrophages as treatment targets in oncology
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.217
– volume: 33
  year: 2021
  ident: 10.1016/j.jconrel.2023.04.011_bb0040
  article-title: Harnessing innate immunity using biomaterials for Cancer immunotherapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007576
– volume: 115
  start-page: E10672
  year: 2018
  ident: 10.1016/j.jconrel.2023.04.011_bb0250
  article-title: Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1810580115
– volume: 10
  start-page: 26
  year: 2020
  ident: 10.1016/j.jconrel.2023.04.011_bb0050
  article-title: The cytosolic DNA-sensing cGAS–sting pathway in cancer
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-19-0761
– volume: 353
  start-page: 490
  year: 2023
  ident: 10.1016/j.jconrel.2023.04.011_bb0145
  article-title: Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2022.11.049
– volume: 38
  start-page: 432
  year: 2017
  ident: 10.1016/j.jconrel.2023.04.011_bb0210
  article-title: Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.04.002
– volume: 2015
  start-page: 1308
  year: 1848
  ident: 10.1016/j.jconrel.2023.04.011_bb0160
  article-title: Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: a platform for investigating early endosomal events
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 167
  start-page: 5574
  year: 2001
  ident: 10.1016/j.jconrel.2023.04.011_bb0215
  article-title: Regulation of IFN-γ signaling is essential for the cytotoxic activity of CD8+ T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.167.10.5574
– volume: 16
  start-page: 361
  year: 2019
  ident: 10.1016/j.jconrel.2023.04.011_bb0025
  article-title: Immunotherapy in colorectal cancer: rationale, challenges and potential
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0126-x
– volume: 19
  year: 2020
  ident: 10.1016/j.jconrel.2023.04.011_bb0045
  article-title: Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-020-01250-1
– volume: 20
  start-page: 2246
  year: 2020
  ident: 10.1016/j.jconrel.2023.04.011_bb0080
  article-title: Synthetic immunogenic cell death mediated by intracellular delivery of STING agonist Nanoshells enhances anticancer chemo-immunotherapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04094
– volume: 54
  start-page: 407
  year: 2019
  ident: 10.1016/j.jconrel.2023.04.011_bb0185
  article-title: From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review)
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2018.4661
– volume: 13
  year: 2020
  ident: 10.1016/j.jconrel.2023.04.011_bb0055
  article-title: cGAS-STING, an important pathway in cancer immunotherapy
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-020-00916-z
– volume: 11
  year: 2022
  ident: 10.1016/j.jconrel.2023.04.011_bb0090
  article-title: Targeting DNA damage response components induces enhanced STING-dependent type-I IFN response in ATM deficient cancer cells and drives dendritic cell activation
  publication-title: Oncoimmunology.
  doi: 10.1080/2162402X.2022.2117321
– volume: 175
  start-page: 1014
  year: 2018
  ident: 10.1016/j.jconrel.2023.04.011_bb0225
  article-title: High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.09.030
– volume: 66
  start-page: 225
  year: 2003
  ident: 10.1016/j.jconrel.2023.04.011_bb0120
  article-title: DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(03)00260-0
– volume: 19
  start-page: 108
  year: 2018
  ident: 10.1016/j.jconrel.2023.04.011_bb0240
  article-title: Myeloid-derived suppressor cells coming of age review-article
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-017-0022-x
– ident: 10.1016/j.jconrel.2023.04.011_bb0115
– volume: 353
  start-page: 490
  year: 2023
  ident: 10.1016/j.jconrel.2023.04.011_bb0150
  article-title: Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2022.11.049
– volume: 12
  year: 2021
  ident: 10.1016/j.jconrel.2023.04.011_bb0085
  article-title: Cancer vaccines, adjuvants, and delivery systems
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.627932
– year: 2022
  ident: 10.1016/j.jconrel.2023.04.011_bb0190
– volume: 36
  start-page: 3826
  year: 2020
  ident: 10.1016/j.jconrel.2023.04.011_bb0155
  article-title: Mechanical properties determination of DMPC, DPPC, DSPC, and HSPC solid-ordered bilayers
  publication-title: Langmuir.
  doi: 10.1021/acs.langmuir.0c00475
– volume: 3
  start-page: 313
  year: 2015
  ident: 10.1016/j.jconrel.2023.04.011_bb0230
  article-title: The emerging understanding of myeloid cells as partners and targets in tumor rejection, Cancer
  publication-title: Immunol. Res.
– volume: 12
  year: 2021
  ident: 10.1016/j.jconrel.2023.04.011_bb0200
  article-title: Immunogenic cell death-based Cancer vaccines
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.697964
– volume: 36
  start-page: 411
  year: 2018
  ident: 10.1016/j.jconrel.2023.04.011_bb0220
  article-title: Signaling and function of Interleukin-2 in T lymphocytes
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-042617-053352
– volume: 13
  start-page: 273
  year: 2016
  ident: 10.1016/j.jconrel.2023.04.011_bb0015
  article-title: The future of cancer treatment: immunomodulation, CARs and combination immunotherapy
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.25
– volume: 8
  year: 2020
  ident: 10.1016/j.jconrel.2023.04.011_bb0105
  article-title: Immunogenic cell death pathway polymorphisms for predicting oxaliplatin efficacy in metastatic colorectal cancer
  publication-title: J Immunother Cancer.
  doi: 10.1136/jitc-2020-001714
– volume: 8
  year: 2020
  ident: 10.1016/j.jconrel.2023.04.011_bb0075
  article-title: Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma
  publication-title: J Immunother Cancer.
  doi: 10.1136/jitc-2019-000282
– volume: 14
  year: 2021
  ident: 10.1016/j.jconrel.2023.04.011_bb0125
  article-title: Macrophage polarization synergizes with oxaliplatin in lung cancer immunotherapy via enhanced tumor cell phagocytosis
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2021.101202
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.jconrel.2023.04.011_bb0140
  article-title: Liposome-based drug delivery systems in cancer immunotherapy
  publication-title: Pharmaceutics.
  doi: 10.3390/pharmaceutics12111054
– volume: 8
  year: 2017
  ident: 10.1016/j.jconrel.2023.04.011_bb0205
  article-title: Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.67
– volume: 28
  start-page: 690
  year: 2015
  ident: 10.1016/j.jconrel.2023.04.011_bb0180
  article-title: Immunological effects of conventional chemotherapy and targeted anticancer agents
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.10.012
– volume: 6
  year: 2021
  ident: 10.1016/j.jconrel.2023.04.011_bb0060
  article-title: The STING1 network regulates autophagy and cell death
  publication-title: Signal Transduct Target Ther.
– volume: 11
  start-page: 1018
  year: 2015
  ident: 10.1016/j.jconrel.2023.04.011_bb0135
  article-title: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.04.031
– volume: 17
  start-page: 807
  year: 2020
  ident: 10.1016/j.jconrel.2023.04.011_bb0005
  article-title: The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-020-0488-6
– volume: 202
  start-page: 1691
  year: 2005
  ident: 10.1016/j.jconrel.2023.04.011_bb0100
  article-title: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050915
– volume: 120
  year: 2022
  ident: 10.1016/j.jconrel.2023.04.011_bb0095
  article-title: The DNA damage induced immune response: implications for cancer therapy
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2022.103409
– volume: 11
  year: 2023
  ident: 10.1016/j.jconrel.2023.04.011_bb0070
  article-title: STING agonism overcomes STAT3-mediated immunosuppression and adaptive resistance to PARP inhibition in ovarian cancer
  publication-title: J Immunother Cancer.
  doi: 10.1136/jitc-2022-005627
– ident: 10.1016/j.jconrel.2023.04.011_bb0165
– volume: 14
  start-page: 463
  year: 2017
  ident: 10.1016/j.jconrel.2023.04.011_bb0020
  article-title: Targeted agents and immunotherapies: optimizing outcomes in melanoma
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.43
– volume: 83
  start-page: 308
  year: 2016
  ident: 10.1016/j.jconrel.2023.04.011_bb0110
  article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2016.01.006
– volume: 40
  start-page: 586
  year: 2022
  ident: 10.1016/j.jconrel.2023.04.011_bb0030
  article-title: First-line immunotherapy for non–small-cell lung Cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.21.01497
– volume: 3
  start-page: 436
  year: 2015
  ident: 10.1016/j.jconrel.2023.04.011_bb0175
  article-title: The interplay of immunotherapy and chemotherapy: harnessing potential synergies, Cancer
  publication-title: Immunol. Res.
– volume: 5
  year: 2016
  ident: 10.1016/j.jconrel.2023.04.011_bb0130
  article-title: Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression
  publication-title: Oncoimmunology.
  doi: 10.1080/2162402X.2015.1118599
– volume: 24
  start-page: 4242
  year: 2018
  ident: 10.1016/j.jconrel.2023.04.011_bb0065
  article-title: Mitigating SOX2-potentiated immune escape of head and neck squamous cell carcinoma with a STING-inducing nanosatellite vaccine
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-2807
– volume: 8
  start-page: 523
  year: 2008
  ident: 10.1016/j.jconrel.2023.04.011_bb0245
  article-title: How regulatory T cells work
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2343
– volume: 305
  start-page: 197
  issue: 2004
  year: 1979
  ident: 10.1016/j.jconrel.2023.04.011_bb0010
  article-title: Immunotherapy: bewitched, bothered, and bewildered no more
  publication-title: Science
– volume: 17
  start-page: 891
  year: 2022
  ident: 10.1016/j.jconrel.2023.04.011_bb0035
  article-title: Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01134-z
– volume: 2
  year: 2011
  ident: 10.1016/j.jconrel.2023.04.011_bb0195
  article-title: Chemokines: a new dendritic cell signal fort cell activation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2011.00031
– volume: 24
  start-page: 1866
  year: 2010
  ident: 10.1016/j.jconrel.2023.04.011_bb0170
  article-title: Uptake and trafficking of liposomes to the endoplasmic reticulum
  publication-title: FASEB J.
  doi: 10.1096/fj.09-145755
SSID ssj0005347
Score 2.611885
Snippet The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 531
SubjectTerms agonists
antigens
antineoplastic activity
Antineoplastic Agents - therapeutic use
Cancer
cell death
colorectal neoplasms
Colorectal Neoplasms - drug therapy
crosslinking
dendritic cells
DNA
DNA damage
Humans
Immunochemotherapy
immunogenicity
immunosuppression
immunotherapy
Immunotherapy - methods
interferons
Liposomes
macrophages
Nanomedicine
Oxaliplatin
phagocytosis
phenotype
remission
STING
T-lymphocytes
Title Enhancing anti-tumor immunity through liposomal oxaliplatin and localized immunotherapy via STING activation
URI https://dx.doi.org/10.1016/j.jconrel.2023.04.011
https://www.ncbi.nlm.nih.gov/pubmed/37030544
https://www.proquest.com/docview/2798714311
https://www.proquest.com/docview/2834232817
Volume 357
WOSCitedRecordID wos000983883800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4995
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005347
  issn: 0168-3659
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZbA-9lL6bPhYVyl663sa2bMnHpWT7oCyBppCejGzL1MHrhLxI-mf6VzsjyXaWdLttoRdjTMZW_H3WjEbzIOQVrKezDL02LpDBYZgDnLgY7ADqVgQqUnmgE4U_8YsLMR5Hw07nR50Lsy55VYnNJpr9V6jhGoCNqbN_AXdzU7gA5wA6HAF2OP4R8IPqG9bQ0LmHy8JZri4x5FyngYDBXfflKYvZdDG9RFN0A6b4DEPiTFyy1m7FdzBEtZDN0Nq-XhcS7Ed0bmEuxLpFdN-0tfHvpcp0T5adDaB3K70bUpRFO_VpZ-1XaVWo3hTCqCVjWCOXGkfwAv3g07luqXeu5jaC2fosvJ0IQeNI20umMb7NUDh-aAuEKzMfC-5rBu1O2L4paW2n3MBqEaO9A1NNck8xGB_F5HQCbwD--SmOSte4tVP91Zrbn3EsOBRYoOEilR2QQ48HUdAlh2cfBuOPbRSRz0xGvh17myT25pcPu878uW55o82c0V1yx4JIzwyv7pGOqu6T46EpcL49oaM2X29xQo_psC19vn1AyoZ8tCUfrclHLfloQz66Qz6QyGhDPnqFfBTIRzX5aEu-h-TL-WD09r1j-3k4KWPB0pEyCBMhozBlXCRgusuwz708lFzyRHosTEIR5NyNRIaN0nxXwmIhdVWU8FzkeeY_It1qWqknhOYcZMIkiTImGBMp3M5jmeJ9JcNcRf0eYfVrjlNb7B57rpRxHdU4iS06MaIT91kM6PTIaSM2M9VebhIQNYaxNVmNKRoD8W4SfVljHsOUjvt0slLT1SL2eCQ4rGN--xuBpTs94fIeeWwI04zY11qcsaf_Prhn5Hb73T4n3eV8pV6QW-l6WSzmR-SAj8WR_RR-An0r47U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+anti-tumor+immunity+through+liposomal+oxaliplatin+and+localized+immunotherapy+via+STING+activation&rft.jtitle=Journal+of+controlled+release&rft.au=Gu%2C+Zili&rft.au=Hao%2C+Yang&rft.au=Schomann%2C+Timo&rft.au=Ossendorp%2C+Ferry&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=357&rft.spage=531&rft.epage=544&rft_id=info:doi/10.1016%2Fj.jconrel.2023.04.011&rft.externalDocID=S0168365923002614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon