OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs
High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 order...
Uloženo v:
| Vydáno v: | Bioinformatics (Oxford, England) Ročník 35; číslo 17; s. 2974 - 2981 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Oxford University Press (OUP)
01.09.2019
Oxford University Press |
| Témata: | |
| ISSN: | 1367-4803, 1367-4811, 1367-4811 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem.
We use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design.
Source code is available at https://github.com/zsethna/OLGA.
Supplementary data are available at Bioinformatics online. |
|---|---|
| AbstractList | High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem.MOTIVATIONHigh-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem.We use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design.RESULTSWe use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design.Source code is available at https://github.com/zsethna/OLGA.AVAILABILITY AND IMPLEMENTATIONSource code is available at https://github.com/zsethna/OLGA.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem. We use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design. Source code is available at https://github.com/zsethna/OLGA. Supplementary data are available at Bioinformatics online. |
| Author | Walczak, Aleksandra M Callan, Curtis G Mora, Thierry Sethna, Zachary Elhanati, Yuval |
| AuthorAffiliation | 1 Joseph Henry Laboratories, Princeton University , Princeton, NJ, USA 2 Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot , Paris, France |
| AuthorAffiliation_xml | – name: 1 Joseph Henry Laboratories, Princeton University , Princeton, NJ, USA – name: 2 Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot , Paris, France |
| Author_xml | – sequence: 1 givenname: Zachary surname: Sethna fullname: Sethna, Zachary – sequence: 2 givenname: Yuval surname: Elhanati fullname: Elhanati, Yuval – sequence: 3 givenname: Curtis G surname: Callan fullname: Callan, Curtis G – sequence: 4 givenname: Aleksandra M surname: Walczak fullname: Walczak, Aleksandra M – sequence: 5 givenname: Thierry surname: Mora fullname: Mora, Thierry |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30657870$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-02344638$$DView record in HAL |
| BookMark | eNp9kU9P3DAQxa0KVGDbj9DKx_aQYu_ETtJKSAuigLQSF3q2bGcCrhI7tb1I7advogACDpz8Z37vzdjviOz54JGQT5x946yBY-OC812Ig87OpmOT_zEQ78ghB1kVZc353tOewQE5Suk3Y0wwId-TA2BSVHXFDkl_vb3YfKedTpnaMIy7PPkFT0NHb9FjXE5jDEYb17vsMM2104Jq39KbwmLf04gWxxwi1YPzgWrrWprwzw69nfAZHEJ2XfpA9jvdJ_z4sK7Ir5_nN2eXxfb64upssy1sWYpc1FK3wO2a2VJWFpC1XLJmbUqpBQgtLRhbojDaGgtl3QAaMMwIi9gZAxpW5GTxHXdmwNaiz1H3aoxu0PGvCtqplxXv7tRtuFeyAtFMv7siXxeDu1eyy81WzXdsDWUpob7nE_vloVkM05NTVoNL87doj2GX1JpXDVQ18HpCPz-f68n5MY4J-LEANoaUInbKuiWQaUzXK87UHL56Gb5awp_U4pX6scHbuv9DxL1Z |
| CitedBy_id | crossref_primary_10_1016_j_cell_2024_03_037 crossref_primary_10_7554_eLife_61639 crossref_primary_10_1111_bjh_18932 crossref_primary_10_1126_sciimmunol_adj7029 crossref_primary_10_3389_fimmu_2022_970285 crossref_primary_10_1093_bib_bbad038 crossref_primary_10_7554_eLife_79165 crossref_primary_10_1038_s42256_021_00413_z crossref_primary_10_1038_s42256_025_01096_6 crossref_primary_10_1126_sciimmunol_abm9644 crossref_primary_10_3389_fimmu_2022_1011935 crossref_primary_10_1016_j_celrep_2024_115010 crossref_primary_10_1016_j_cels_2024_12_006 crossref_primary_10_1038_s42256_025_01085_9 crossref_primary_10_1101_gr_275373_121 crossref_primary_10_1093_gpbjnl_qzae013 crossref_primary_10_3389_fimmu_2024_1412211 crossref_primary_10_1093_nar_gkaf025 crossref_primary_10_1073_pnas_2104367118 crossref_primary_10_1093_bib_bbab516 crossref_primary_10_3389_fimmu_2022_853403 crossref_primary_10_1038_s42003_022_04250_7 crossref_primary_10_1016_j_coisb_2019_10_007 crossref_primary_10_1073_pnas_2023141118 crossref_primary_10_1038_s41467_023_40966_8 crossref_primary_10_3390_ijms23031029 crossref_primary_10_3389_fimmu_2022_858057 crossref_primary_10_3389_fimmu_2023_1199064 crossref_primary_10_1080_02664763_2025_2533483 crossref_primary_10_1016_j_isci_2023_106937 crossref_primary_10_3389_fimmu_2021_599133 crossref_primary_10_1371_journal_pone_0249484 crossref_primary_10_1016_j_immuni_2020_06_024 crossref_primary_10_3389_fimmu_2020_587756 crossref_primary_10_1371_journal_pcbi_1009297 crossref_primary_10_3390_pathogens9080650 crossref_primary_10_1073_pnas_2311348121 crossref_primary_10_3389_fimmu_2021_735135 crossref_primary_10_1016_j_str_2022_06_004 crossref_primary_10_1038_s41408_022_00615_7 crossref_primary_10_3389_fimmu_2023_1181825 crossref_primary_10_1371_journal_pgen_1009301 crossref_primary_10_1073_pnas_2401058121 crossref_primary_10_1088_1478_3975_ab6754 crossref_primary_10_1371_journal_pgen_1010652 crossref_primary_10_1093_nar_gkaf250 crossref_primary_10_1038_s41408_022_00630_8 crossref_primary_10_1182_bloodadvances_2021005884 crossref_primary_10_1007_s00125_024_06298_y crossref_primary_10_7554_eLife_81274 crossref_primary_10_1093_nar_gkaf651 crossref_primary_10_1038_s41590_023_01692_x crossref_primary_10_1016_j_jmb_2025_169205 crossref_primary_10_1002_hep_31473 crossref_primary_10_1016_j_csbj_2020_07_008 crossref_primary_10_1007_s00251_019_01134_9 crossref_primary_10_1038_s42003_023_04447_4 crossref_primary_10_1016_j_jaut_2020_102574 crossref_primary_10_1158_1078_0432_CCR_22_2469 crossref_primary_10_1016_j_physrep_2020_01_001 crossref_primary_10_1039_C9ME00071B crossref_primary_10_1038_s41598_023_36144_x crossref_primary_10_1016_j_cels_2024_11_006 crossref_primary_10_1039_D4SC08141B crossref_primary_10_7554_eLife_79016 crossref_primary_10_1093_bib_bbae556 crossref_primary_10_1038_s43586_023_00284_1 crossref_primary_10_7554_eLife_79254 crossref_primary_10_1007_s10875_021_01045_z crossref_primary_10_1002_cti2_1340 crossref_primary_10_3389_fimmu_2019_01516 crossref_primary_10_1016_j_molimm_2020_09_003 crossref_primary_10_1038_s41590_024_01821_0 crossref_primary_10_1093_gigascience_giac046 crossref_primary_10_1111_tri_13475 crossref_primary_10_1038_s41586_022_05371_z crossref_primary_10_1007_s00251_019_01139_4 crossref_primary_10_1016_j_immuni_2021_03_004 crossref_primary_10_1038_s41467_024_48833_w crossref_primary_10_1182_bloodadvances_2022009468 crossref_primary_10_1016_j_coisb_2019_10_001 crossref_primary_10_7554_eLife_68605 crossref_primary_10_1007_s12185_025_04042_9 crossref_primary_10_1182_bloodadvances_2020004073 crossref_primary_10_7554_eLife_85145 crossref_primary_10_3389_fimmu_2021_639672 crossref_primary_10_1016_j_cels_2025_101401 crossref_primary_10_1016_j_cell_2025_03_050 crossref_primary_10_1134_S0006350923050202 crossref_primary_10_1002_eji_202249975 crossref_primary_10_1038_s41598_024_55593_6 crossref_primary_10_1038_s41541_025_01232_8 crossref_primary_10_3389_fimmu_2020_604464 crossref_primary_10_3390_vaccines8010013 crossref_primary_10_3389_fimmu_2025_1605170 crossref_primary_10_1093_gigascience_giad074 crossref_primary_10_1002_eji_202149243 crossref_primary_10_1371_journal_pcbi_1012489 crossref_primary_10_1016_j_jaci_2025_01_032 crossref_primary_10_1038_s41586_023_06063_y crossref_primary_10_1172_jci_insight_187245 crossref_primary_10_1073_pnas_2408696121 crossref_primary_10_1371_journal_pcbi_1008394 crossref_primary_10_1038_s41586_024_08508_4 crossref_primary_10_3389_fimmu_2022_1031011 crossref_primary_10_1093_bioadv_vbac062 |
| Cites_doi | 10.1038/ng.3822 10.1093/rheumatology/kex517 10.1073/pnas.1700241114 10.1073/pnas.1409155111 10.1101/gr.170753.113 10.1172/jci.insight.88242 10.1016/j.coi.2013.07.001 10.3389/fimmu.2013.00413 10.1093/bioinformatics/btw112 10.1126/scitranslmed.aac5624 10.1371/journal.pcbi.1005572 10.7554/eLife.33050 10.1073/pnas.1312146110 10.1371/journal.pone.0160853 10.1073/pnas.0913939107 10.1038/srep44661 10.1038/s41467-018-02832-w 10.4049/jimmunol.181.4.2597 10.1111/imr.12665 10.1073/pnas.1601012113 10.1002/art.40028 10.4049/jimmunol.1501029 10.1073/pnas.1212755109 10.1186/gm502 10.7554/eLife.22057 10.3389/fimmu.2018.01307 10.1038/s41385-018-0046-z 10.1093/nar/gkx760 10.1101/gr.092924.109 10.1016/j.coisb.2016.12.009 10.1016/j.jtbi.2015.10.016 10.1098/rstb.2014.0243 10.1038/nature22383 10.1016/j.immuni.2015.12.005 10.1182/blood-2009-04-217604 10.1126/scitranslmed.3001442 10.1038/nature22976 10.1126/scitranslmed.3004794 10.1126/science.1260668 10.1126/science.1170020 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019. Published by Oxford University Press. Distributed under a Creative Commons Attribution 4.0 International License The Author(s) 2019. Published by Oxford University Press. 2019 |
| Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author(s) 2019. Published by Oxford University Press. 2019 |
| DBID | AAYXX CITATION NPM 7X8 1XC VOOES 5PM |
| DOI | 10.1093/bioinformatics/btz035 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Physics |
| EISSN | 1367-4811 |
| EndPage | 2981 |
| ExternalDocumentID | PMC6735909 oai:HAL:hal-02344638v1 30657870 10_1093_bioinformatics_btz035 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ; – fundername: ; ; – fundername: ; grantid: 724208 |
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL ROX RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM NPM 7X8 1XC VOOES 5PM EJD |
| ID | FETCH-LOGICAL-c445t-86ad31c20c467c3e0d16092b46a535a6c3bc4e5bacbc34893eb3b0b5ceefbb3a3 |
| ISICitedReferencesCount | 129 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487323400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Thu Aug 21 18:14:55 EDT 2025 Tue Oct 14 20:25:52 EDT 2025 Thu Jul 10 23:37:24 EDT 2025 Mon Jul 21 05:55:00 EDT 2025 Tue Nov 18 21:04:23 EST 2025 Sat Nov 29 03:49:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 The Author(s) 2019. Published by Oxford University Press. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c445t-86ad31c20c467c3e0d16092b46a535a6c3bc4e5bacbc34893eb3b0b5ceefbb3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, Zachary Sethna and Yuval Elhanati authors should be regarded as Joint Last Authors. |
| ORCID | 0000-0002-5456-9361 0000-0002-2686-5702 |
| OpenAccessLink | https://hal.sorbonne-universite.fr/hal-02344638 |
| PMID | 30657870 |
| PQID | 2179378318 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6735909 hal_primary_oai_HAL_hal_02344638v1 proquest_miscellaneous_2179378318 pubmed_primary_30657870 crossref_citationtrail_10_1093_bioinformatics_btz035 crossref_primary_10_1093_bioinformatics_btz035 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2019 |
| Publisher | Oxford University Press (OUP) Oxford University Press |
| Publisher_xml | – name: Oxford University Press (OUP) – name: Oxford University Press |
| References | Shugay (2023062711305563200_btz035-B36) 2018; 46 Lindau (2023062711305563200_btz035-B21) 2017; 1 Glanville (2023062711305563200_btz035-B14) 2017; 547 Six (2023062711305563200_btz035-B38) 2013; 4 Wang (2023062711305563200_btz035-B43) 2010; 107 Komech (2023062711305563200_btz035-B20) 2018; 57 Fuchs (2023062711305563200_btz035-B12) 2017; 7 Dupic (2023062711305563200_btz035-B5) 2018 Lythe (2023062711305563200_btz035-B22) 2016; 389 Becattini (2023062711305563200_btz035-B1) 2015; 347 Heather (2023062711305563200_btz035-B16) 2017; 19 Marcou (2023062711305563200_btz035-B25) 2018; 9 Weinstein (2023062711305563200_btz035-B44) 2009; 324 Elhanati (2023062711305563200_btz035-B8) 2018; 284 Gherardin (2023062711305563200_btz035-B13) 2016; 44 Emerson (2023062711305563200_btz035-B9) 2017; 49 Robins (2023062711305563200_btz035-B33) 2010; 2 Pogorelyy (2023062711305563200_btz035-B30) 2018 Toledano (2023062711305563200_btz035-B39) 2018; 9 Seay (2023062711305563200_btz035-B34) 2016; 1 Madi (2023062711305563200_btz035-B23) 2014; 24 Robins (2023062711305563200_btz035-B32) 2009; 114 DeWitt (2023062711305563200_btz035-B4) 2018 Grigaityte (2023062711305563200_btz035-B15) 2017 Pogorelyy (2023062711305563200_btz035-B28) 2017; 13 Freeman (2023062711305563200_btz035-B11) 2009; 19 Jiang (2023062711305563200_btz035-B19) 2013; 5 Dash (2023062711305563200_btz035-B2) 2017; 547 Venturi (2023062711305563200_btz035-B40) 2008; 181 Zhao (2023062711305563200_btz035-B47) 2016; 196 Elhanati (2023062711305563200_btz035-B6) 2015; 370 Vollmers (2023062711305563200_btz035-B42) 2013; 110 Howie (2023062711305563200_btz035-B18) 2015; 7 Madi (2023062711305563200_btz035-B24) 2017; 6 Sims (2023062711305563200_btz035-B37) 2016; 113 Woodsworth (2023062711305563200_btz035-B45) 2013; 5 Pogorelyy (2023062711305563200_btz035-B29) 2018; 7 Qi (2023062711305563200_btz035-B31) 2014; 111 Faham (2023062711305563200_btz035-B10) 2017; 69 Murugan (2023062711305563200_btz035-B27) 2012; 109 Wu (2023062711305563200_btz035-B46) 2018; 11 Elhanati (2023062711305563200_btz035-B7) 2016; 32 Mora (2023062711305563200_btz035-B26) 2018 DeWitt (2023062711305563200_btz035-B3) 2016; 11 Horns (2023062711305563200_btz035-B17) 2017 Venturi (2023062711305563200_btz035-B41) 2013; 25 Sethna (2023062711305563200_btz035-B35) 2017; 114 |
| References_xml | – volume: 49 start-page: 659 year: 2017 ident: 2023062711305563200_btz035-B9 article-title: Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire publication-title: Nat. Genet doi: 10.1038/ng.3822 – volume: 57 start-page: 1097 year: 2018 ident: 2023062711305563200_btz035-B20 article-title: CD8+ T cells with characteristic TCR beta motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients publication-title: Rheumatology (Oxford, England) doi: 10.1093/rheumatology/kex517 – volume: 114 start-page: 2253 year: 2017 ident: 2023062711305563200_btz035-B35 article-title: Insights into immune system development and function from mouse T-cell repertoires publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1700241114 – volume: 111 start-page: 13139 year: 2014 ident: 2023062711305563200_btz035-B31 article-title: Diversity and clonal selection in the human T-cell repertoire publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1409155111 – volume: 24 start-page: 1603 year: 2014 ident: 2023062711305563200_btz035-B23 article-title: T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity publication-title: Genome Res doi: 10.1101/gr.170753.113 – volume: 1 start-page: 1 year: 2016 ident: 2023062711305563200_btz035-B34 article-title: Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes publication-title: JCI Insight doi: 10.1172/jci.insight.88242 – volume: 25 start-page: 639 year: 2013 ident: 2023062711305563200_btz035-B41 article-title: Specificity, promiscuity, and precursor frequency in immunoreceptors publication-title: Curr. Opin. Immunol doi: 10.1016/j.coi.2013.07.001 – volume: 4 start-page: 413. year: 2013 ident: 2023062711305563200_btz035-B38 article-title: The past, present and future of immune repertoire biology – the rise of next-generation repertoire analysis publication-title: Front. Immunol doi: 10.3389/fimmu.2013.00413 – volume: 32 start-page: 1943 year: 2016 ident: 2023062711305563200_btz035-B7 article-title: repgenhmm: a dynamic programming tool to infer the rules of immune receptor generation from sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw112 – volume: 7 start-page: 301ra131. year: 2015 ident: 2023062711305563200_btz035-B18 article-title: High-throughput pairing of T cell receptor a and b sequences publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.aac5624 – year: 2017 ident: 2023062711305563200_btz035-B17 – volume: 13 start-page: e1005572 year: 2017 ident: 2023062711305563200_btz035-B28 article-title: Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1005572 – volume: 7 start-page: 1 year: 2018 ident: 2023062711305563200_btz035-B29 article-title: Method for identification of condition-associated public antigen receptor sequences publication-title: Elife doi: 10.7554/eLife.33050 – volume: 110 start-page: 13463 year: 2013 ident: 2023062711305563200_btz035-B42 article-title: Genetic measurement of memory B-cell recall using antibody repertoire sequencing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1312146110 – volume: 11 start-page: e0160853. year: 2016 ident: 2023062711305563200_btz035-B3 article-title: A public database of memory and naive B-cell receptor sequences publication-title: PLoS One doi: 10.1371/journal.pone.0160853 – volume: 107 start-page: 1518 year: 2010 ident: 2023062711305563200_btz035-B43 article-title: High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913939107 – volume: 7 start-page: 1 year: 2017 ident: 2023062711305563200_btz035-B12 article-title: CD8+T cells specific for the islet autoantigen IGRP are restricted in their T cell receptor chain usage publication-title: Sci. Rep doi: 10.1038/srep44661 – volume: 9 start-page: 561. year: 2018 ident: 2023062711305563200_btz035-B25 article-title: High-throughput immune repertoire analysis with IGoR publication-title: Nat. Commun doi: 10.1038/s41467-018-02832-w – volume: 181 start-page: 2597 year: 2008 ident: 2023062711305563200_btz035-B40 article-title: The role of production frequency in the sharing of simian immunodeficiency virus-specific CD8+ TCRs between macaques publication-title: J. Immunol doi: 10.4049/jimmunol.181.4.2597 – volume: 284 start-page: 167 year: 2018 ident: 2023062711305563200_btz035-B8 article-title: Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination publication-title: Immunol. Rev doi: 10.1111/imr.12665 – volume: 113 start-page: E3529 year: 2016 ident: 2023062711305563200_btz035-B37 article-title: Diversity and divergence of the glioma-infiltrating t-cell receptor repertoire publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1601012113 – start-page: 12704 volume-title: Proc. Natl Acad. Sci year: 2018 ident: 2023062711305563200_btz035-B30 article-title: Precise tracking of vaccine-responding T-cell clones reveals convergent and personalized response in identical twins – volume: 69 start-page: 774 year: 2017 ident: 2023062711305563200_btz035-B10 article-title: Discovery of T cell receptor β motifs specific to HLA-B27-positive ankylosing spondylitis by deep repertoire sequence analysis publication-title: Arthritis Rheumatol doi: 10.1002/art.40028 – volume: 196 start-page: 4905 year: 2016 ident: 2023062711305563200_btz035-B47 article-title: Preferential use of public TCR during autoimmune encephalomyelitis publication-title: J. Immunol doi: 10.4049/jimmunol.1501029 – volume: 109 start-page: 16161 year: 2012 ident: 2023062711305563200_btz035-B27 article-title: Statistical inference of the generation probability of T-cell receptors from sequence repertoires publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1212755109 – volume: 5 start-page: 98. year: 2013 ident: 2023062711305563200_btz035-B45 article-title: Sequence analysis of T-cell repertoires in health and disease publication-title: Genome Med doi: 10.1186/gm502 – volume: 6 year: 2017 ident: 2023062711305563200_btz035-B24 article-title: T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences publication-title: eLife doi: 10.7554/eLife.22057 – volume: 9 start-page: 1307. year: 2018 ident: 2023062711305563200_btz035-B39 article-title: Evidence for shaping of light chain repertoire by structural selection publication-title: Front. Immunol doi: 10.3389/fimmu.2018.01307 – volume: 11 start-page: 1487 year: 2018 ident: 2023062711305563200_btz035-B46 article-title: Expanded tcrßcdr3 clonotypes distinguish Crohn’s disease and ulcerative colitis patients publication-title: Mucosal Immunol doi: 10.1038/s41385-018-0046-z – year: 2018 ident: 2023062711305563200_btz035-B5 – volume: 46 start-page: D419 year: 2018 ident: 2023062711305563200_btz035-B36 article-title: VDJdb: a curated database of T-cell receptor sequences with known antigen specificity publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx760 – volume: 19 start-page: 1817 year: 2009 ident: 2023062711305563200_btz035-B11 article-title: Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing publication-title: Genome Res doi: 10.1101/gr.092924.109 – volume: 1 start-page: 62 year: 2017 ident: 2023062711305563200_btz035-B21 article-title: Advances and applications of immune receptor sequencing in systems immunology publication-title: Curr. Opin. Syst. Biol doi: 10.1016/j.coisb.2016.12.009 – volume: 389 start-page: 214 year: 2016 ident: 2023062711305563200_btz035-B22 article-title: How many TCR clonotypes does a body maintain? publication-title: J. Theor. Biol doi: 10.1016/j.jtbi.2015.10.016 – volume: 370 start-page: 20140243. year: 2015 ident: 2023062711305563200_btz035-B6 article-title: Inferring processes underlying B-cell repertoire diversity publication-title: Philos. Trans. R Soc. Lond. B Biol. Sci doi: 10.1098/rstb.2014.0243 – volume: 547 start-page: 89 year: 2017 ident: 2023062711305563200_btz035-B2 article-title: Quantifiable predictive features define epitope-specific T cell receptor repertoires publication-title: Nature doi: 10.1038/nature22383 – volume: 19 start-page: 554 year: 2017 ident: 2023062711305563200_btz035-B16 article-title: High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities publication-title: Brief. Bioinform – start-page: 185 volume-title: Systems Immunology: An Introduction to Modeling Methods for Scientists year: 2018 ident: 2023062711305563200_btz035-B26 – volume: 44 start-page: 32 year: 2016 ident: 2023062711305563200_btz035-B13 article-title: Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition publication-title: Immunity doi: 10.1016/j.immuni.2015.12.005 – volume: 114 start-page: 4099 year: 2009 ident: 2023062711305563200_btz035-B32 article-title: Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells publication-title: Blood doi: 10.1182/blood-2009-04-217604 – volume: 2 start-page: 47ra64. year: 2010 ident: 2023062711305563200_btz035-B33 article-title: Overlap and effective size of the human CD8+ T cell receptor repertoire publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.3001442 – volume: 547 start-page: 94 year: 2017 ident: 2023062711305563200_btz035-B14 article-title: Identifying specificity groups in the T cell receptor repertoire publication-title: Nature doi: 10.1038/nature22976 – year: 2018 ident: 2023062711305563200_btz035-B4 – volume: 5 start-page: 171ra19. year: 2013 ident: 2023062711305563200_btz035-B19 article-title: Lineage structure of the human antibody repertoire in response to influenza vaccination publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.3004794 – volume: 347 start-page: 400 year: 2015 ident: 2023062711305563200_btz035-B1 article-title: Functional heterogeneity of human memory cd4+ t cell clones primed by pathogens or vaccines publication-title: Science doi: 10.1126/science.1260668 – year: 2017 ident: 2023062711305563200_btz035-B15 – volume: 324 start-page: 807 year: 2009 ident: 2023062711305563200_btz035-B44 article-title: High-throughput sequencing of the zebrafish antibody repertoire publication-title: Science doi: 10.1126/science.1170020 |
| SSID | ssj0005056 |
| Score | 2.6370597 |
| Snippet | High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination... |
| SourceID | pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2974 |
| SubjectTerms | Biochemistry, Molecular Biology Genomics Life Sciences Original Papers Physics |
| Title | OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30657870 https://www.proquest.com/docview/2179378318 https://hal.sorbonne-universite.fr/hal-02344638 https://pubmed.ncbi.nlm.nih.gov/PMC6735909 |
| Volume | 35 |
| WOSCitedRecordID | wos000487323400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfaARIviM9RPiaDEC9VWFInTcLbNnXsoVqR6ETFS2Q7Dq1W0tKmVdk_xr_Hne2kDUNiPPAStY5jR7lf7s6X8-8IeYO0UjFPlROwQDk-GBVHQEcnYmns8lCmqdQ8s_3w_DwajeKPjcbPci_MehrmebTZxPP_KmpoA2Hj1tl_EHc1KDTAbxA6HEHscLyR4Af9DzponvFloTPGV0XlFn7VJNP6H1aSMRzdE8M7e-zoDwlDB2P5bVCEal5ghuW3ST5rczlJ21Xate6IWXzZsvZReDKzPKya-xmJTDdl7rwtFrITePikirHZkPaF496vKrbfm445xii1dViteZUDcoJBf5MksMIi0tu6YJ_5VF7xS7tj53IJMy24DfTakIa3zdkqtTBDMvbIamH1hzarug3TSQnRcFcRx6b4zzULYdizRO2BYENx5drRapzc54Pk9KLfT4a90fDt_LuD5crws76t3dIktzphEKM6HQ5G29wiV5cNru653DoWs8P6zIdm3ppT1BxjSu719c7vabs7ftDwPrlnFzD0yADvAWmo_CG5Y0qa_nhEpgi_9xTBR3fAR2cZ3YKP1sCH544dCjKjBny0BB_V4KMIPlqBT3c04HtMLk57w5Mzx1b0cKTvB4UTdXnKPNlxJdhnyZSbel037gi_y0FX8K5kQvoqEFwKyZAWSQkmXBGAJ5cJwTh7QvbyWa6eEpr5gmcqVIIrzwe7FWWxx7IQ3NUgS8EnbhG_fKSJtHT3WHVlmpi0C5bUJZEYSbTIu-qyueF7-dsFr0FeVV9kaz876ifYBu6w74N9W3st8qoUZwLqGx8lz9VstUw6aCDDCCxri-wb8VZjwWpe29MWCWuCr01WP5NPxpoivhuyIHbjZzeY9zm5u30HX5C9YrFSL8ltuYb3eHFAmuEoOtDo_gUktOQA |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OLGA%3A+fast+computation+of+generation+probabilities+of+B-+and+T-cell+receptor+amino+acid+sequences+and+motifs&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Sethna%2C+Zachary&rft.au=Elhanati%2C+Yuval&rft.au=Callan%2C+Curtis+G&rft.au=Walczak%2C+Aleksandra+M&rft.date=2019-09-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=35&rft.issue=17&rft.spage=2974&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz035&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |