OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs

High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 order...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) Vol. 35; no. 17; pp. 2974 - 2981
Main Authors: Sethna, Zachary, Elhanati, Yuval, Callan, Curtis G, Walczak, Aleksandra M, Mora, Thierry
Format: Journal Article
Language:English
Published: England Oxford University Press (OUP) 01.09.2019
Oxford University Press
Subjects:
ISSN:1367-4803, 1367-4811, 1367-4811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem. We use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design. Source code is available at https://github.com/zsethna/OLGA. Supplementary data are available at Bioinformatics online.
AbstractList High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem.MOTIVATIONHigh-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem.We use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design.RESULTSWe use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design.Source code is available at https://github.com/zsethna/OLGA.AVAILABILITY AND IMPLEMENTATIONSource code is available at https://github.com/zsethna/OLGA.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem. We use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design. Source code is available at https://github.com/zsethna/OLGA. Supplementary data are available at Bioinformatics online.
Author Walczak, Aleksandra M
Callan, Curtis G
Mora, Thierry
Sethna, Zachary
Elhanati, Yuval
AuthorAffiliation 1 Joseph Henry Laboratories, Princeton University , Princeton, NJ, USA
2 Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot , Paris, France
AuthorAffiliation_xml – name: 1 Joseph Henry Laboratories, Princeton University , Princeton, NJ, USA
– name: 2 Laboratoire de physique de l'Ecole normale supérieure (PSL University), Centre national de la recherche scientifique, Sorbonne University, University Paris-Diderot , Paris, France
Author_xml – sequence: 1
  givenname: Zachary
  surname: Sethna
  fullname: Sethna, Zachary
– sequence: 2
  givenname: Yuval
  surname: Elhanati
  fullname: Elhanati, Yuval
– sequence: 3
  givenname: Curtis G
  surname: Callan
  fullname: Callan, Curtis G
– sequence: 4
  givenname: Aleksandra M
  surname: Walczak
  fullname: Walczak, Aleksandra M
– sequence: 5
  givenname: Thierry
  surname: Mora
  fullname: Mora, Thierry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30657870$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-02344638$$DView record in HAL
BookMark eNp9kU9P3DAQxa0KVGDbj9DKx_aQYu_ETtJKSAuigLQSF3q2bGcCrhI7tb1I7advogACDpz8Z37vzdjviOz54JGQT5x946yBY-OC812Ig87OpmOT_zEQ78ghB1kVZc353tOewQE5Suk3Y0wwId-TA2BSVHXFDkl_vb3YfKedTpnaMIy7PPkFT0NHb9FjXE5jDEYb17vsMM2104Jq39KbwmLf04gWxxwi1YPzgWrrWprwzw69nfAZHEJ2XfpA9jvdJ_z4sK7Ir5_nN2eXxfb64upssy1sWYpc1FK3wO2a2VJWFpC1XLJmbUqpBQgtLRhbojDaGgtl3QAaMMwIi9gZAxpW5GTxHXdmwNaiz1H3aoxu0PGvCtqplxXv7tRtuFeyAtFMv7siXxeDu1eyy81WzXdsDWUpob7nE_vloVkM05NTVoNL87doj2GX1JpXDVQ18HpCPz-f68n5MY4J-LEANoaUInbKuiWQaUzXK87UHL56Gb5awp_U4pX6scHbuv9DxL1Z
CitedBy_id crossref_primary_10_1016_j_cell_2024_03_037
crossref_primary_10_7554_eLife_61639
crossref_primary_10_1111_bjh_18932
crossref_primary_10_1126_sciimmunol_adj7029
crossref_primary_10_3389_fimmu_2022_970285
crossref_primary_10_1093_bib_bbad038
crossref_primary_10_7554_eLife_79165
crossref_primary_10_1038_s42256_021_00413_z
crossref_primary_10_1038_s42256_025_01096_6
crossref_primary_10_1126_sciimmunol_abm9644
crossref_primary_10_3389_fimmu_2022_1011935
crossref_primary_10_1016_j_celrep_2024_115010
crossref_primary_10_1016_j_cels_2024_12_006
crossref_primary_10_1038_s42256_025_01085_9
crossref_primary_10_1101_gr_275373_121
crossref_primary_10_1093_gpbjnl_qzae013
crossref_primary_10_3389_fimmu_2024_1412211
crossref_primary_10_1093_nar_gkaf025
crossref_primary_10_1073_pnas_2104367118
crossref_primary_10_1093_bib_bbab516
crossref_primary_10_3389_fimmu_2022_853403
crossref_primary_10_1038_s42003_022_04250_7
crossref_primary_10_1016_j_coisb_2019_10_007
crossref_primary_10_1073_pnas_2023141118
crossref_primary_10_1038_s41467_023_40966_8
crossref_primary_10_3390_ijms23031029
crossref_primary_10_3389_fimmu_2022_858057
crossref_primary_10_3389_fimmu_2023_1199064
crossref_primary_10_1080_02664763_2025_2533483
crossref_primary_10_1016_j_isci_2023_106937
crossref_primary_10_3389_fimmu_2021_599133
crossref_primary_10_1371_journal_pone_0249484
crossref_primary_10_1016_j_immuni_2020_06_024
crossref_primary_10_3389_fimmu_2020_587756
crossref_primary_10_1371_journal_pcbi_1009297
crossref_primary_10_3390_pathogens9080650
crossref_primary_10_1073_pnas_2311348121
crossref_primary_10_3389_fimmu_2021_735135
crossref_primary_10_1016_j_str_2022_06_004
crossref_primary_10_1038_s41408_022_00615_7
crossref_primary_10_3389_fimmu_2023_1181825
crossref_primary_10_1371_journal_pgen_1009301
crossref_primary_10_1073_pnas_2401058121
crossref_primary_10_1088_1478_3975_ab6754
crossref_primary_10_1371_journal_pgen_1010652
crossref_primary_10_1093_nar_gkaf250
crossref_primary_10_1038_s41408_022_00630_8
crossref_primary_10_1182_bloodadvances_2021005884
crossref_primary_10_1007_s00125_024_06298_y
crossref_primary_10_7554_eLife_81274
crossref_primary_10_1093_nar_gkaf651
crossref_primary_10_1038_s41590_023_01692_x
crossref_primary_10_1016_j_jmb_2025_169205
crossref_primary_10_1002_hep_31473
crossref_primary_10_1016_j_csbj_2020_07_008
crossref_primary_10_1007_s00251_019_01134_9
crossref_primary_10_1038_s42003_023_04447_4
crossref_primary_10_1016_j_jaut_2020_102574
crossref_primary_10_1158_1078_0432_CCR_22_2469
crossref_primary_10_1016_j_physrep_2020_01_001
crossref_primary_10_1039_C9ME00071B
crossref_primary_10_1038_s41598_023_36144_x
crossref_primary_10_1016_j_cels_2024_11_006
crossref_primary_10_1039_D4SC08141B
crossref_primary_10_7554_eLife_79016
crossref_primary_10_1093_bib_bbae556
crossref_primary_10_1038_s43586_023_00284_1
crossref_primary_10_7554_eLife_79254
crossref_primary_10_1007_s10875_021_01045_z
crossref_primary_10_1002_cti2_1340
crossref_primary_10_3389_fimmu_2019_01516
crossref_primary_10_1016_j_molimm_2020_09_003
crossref_primary_10_1038_s41590_024_01821_0
crossref_primary_10_1093_gigascience_giac046
crossref_primary_10_1111_tri_13475
crossref_primary_10_1038_s41586_022_05371_z
crossref_primary_10_1007_s00251_019_01139_4
crossref_primary_10_1016_j_immuni_2021_03_004
crossref_primary_10_1038_s41467_024_48833_w
crossref_primary_10_1182_bloodadvances_2022009468
crossref_primary_10_1016_j_coisb_2019_10_001
crossref_primary_10_7554_eLife_68605
crossref_primary_10_1007_s12185_025_04042_9
crossref_primary_10_1182_bloodadvances_2020004073
crossref_primary_10_7554_eLife_85145
crossref_primary_10_3389_fimmu_2021_639672
crossref_primary_10_1016_j_cels_2025_101401
crossref_primary_10_1016_j_cell_2025_03_050
crossref_primary_10_1134_S0006350923050202
crossref_primary_10_1002_eji_202249975
crossref_primary_10_1038_s41598_024_55593_6
crossref_primary_10_1038_s41541_025_01232_8
crossref_primary_10_3389_fimmu_2020_604464
crossref_primary_10_3390_vaccines8010013
crossref_primary_10_3389_fimmu_2025_1605170
crossref_primary_10_1093_gigascience_giad074
crossref_primary_10_1002_eji_202149243
crossref_primary_10_1371_journal_pcbi_1012489
crossref_primary_10_1016_j_jaci_2025_01_032
crossref_primary_10_1038_s41586_023_06063_y
crossref_primary_10_1172_jci_insight_187245
crossref_primary_10_1073_pnas_2408696121
crossref_primary_10_1371_journal_pcbi_1008394
crossref_primary_10_1038_s41586_024_08508_4
crossref_primary_10_3389_fimmu_2022_1031011
crossref_primary_10_1093_bioadv_vbac062
Cites_doi 10.1038/ng.3822
10.1093/rheumatology/kex517
10.1073/pnas.1700241114
10.1073/pnas.1409155111
10.1101/gr.170753.113
10.1172/jci.insight.88242
10.1016/j.coi.2013.07.001
10.3389/fimmu.2013.00413
10.1093/bioinformatics/btw112
10.1126/scitranslmed.aac5624
10.1371/journal.pcbi.1005572
10.7554/eLife.33050
10.1073/pnas.1312146110
10.1371/journal.pone.0160853
10.1073/pnas.0913939107
10.1038/srep44661
10.1038/s41467-018-02832-w
10.4049/jimmunol.181.4.2597
10.1111/imr.12665
10.1073/pnas.1601012113
10.1002/art.40028
10.4049/jimmunol.1501029
10.1073/pnas.1212755109
10.1186/gm502
10.7554/eLife.22057
10.3389/fimmu.2018.01307
10.1038/s41385-018-0046-z
10.1093/nar/gkx760
10.1101/gr.092924.109
10.1016/j.coisb.2016.12.009
10.1016/j.jtbi.2015.10.016
10.1098/rstb.2014.0243
10.1038/nature22383
10.1016/j.immuni.2015.12.005
10.1182/blood-2009-04-217604
10.1126/scitranslmed.3001442
10.1038/nature22976
10.1126/scitranslmed.3004794
10.1126/science.1260668
10.1126/science.1170020
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press.
Distributed under a Creative Commons Attribution 4.0 International License
The Author(s) 2019. Published by Oxford University Press. 2019
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author(s) 2019. Published by Oxford University Press. 2019
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOI 10.1093/bioinformatics/btz035
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 1367-4811
EndPage 2981
ExternalDocumentID PMC6735909
oai:HAL:hal-02344638v1
30657870
10_1093_bioinformatics_btz035
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ; ;
– fundername: ;
  grantid: 724208
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
NPM
7X8
1XC
VOOES
5PM
EJD
ID FETCH-LOGICAL-c445t-86ad31c20c467c3e0d16092b46a535a6c3bc4e5bacbc34893eb3b0b5ceefbb3a3
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487323400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:14:55 EDT 2025
Tue Oct 14 20:25:52 EDT 2025
Thu Jul 10 23:37:24 EDT 2025
Mon Jul 21 05:55:00 EDT 2025
Tue Nov 18 21:04:23 EST 2025
Sat Nov 29 03:49:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-86ad31c20c467c3e0d16092b46a535a6c3bc4e5bacbc34893eb3b0b5ceefbb3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, Zachary Sethna and Yuval Elhanati authors should be regarded as Joint Last Authors.
ORCID 0000-0002-5456-9361
0000-0002-2686-5702
OpenAccessLink https://hal.sorbonne-universite.fr/hal-02344638
PMID 30657870
PQID 2179378318
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6735909
hal_primary_oai_HAL_hal_02344638v1
proquest_miscellaneous_2179378318
pubmed_primary_30657870
crossref_citationtrail_10_1093_bioinformatics_btz035
crossref_primary_10_1093_bioinformatics_btz035
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2019
Publisher Oxford University Press (OUP)
Oxford University Press
Publisher_xml – name: Oxford University Press (OUP)
– name: Oxford University Press
References Shugay (2023062711305563200_btz035-B36) 2018; 46
Lindau (2023062711305563200_btz035-B21) 2017; 1
Glanville (2023062711305563200_btz035-B14) 2017; 547
Six (2023062711305563200_btz035-B38) 2013; 4
Wang (2023062711305563200_btz035-B43) 2010; 107
Komech (2023062711305563200_btz035-B20) 2018; 57
Fuchs (2023062711305563200_btz035-B12) 2017; 7
Dupic (2023062711305563200_btz035-B5) 2018
Lythe (2023062711305563200_btz035-B22) 2016; 389
Becattini (2023062711305563200_btz035-B1) 2015; 347
Heather (2023062711305563200_btz035-B16) 2017; 19
Marcou (2023062711305563200_btz035-B25) 2018; 9
Weinstein (2023062711305563200_btz035-B44) 2009; 324
Elhanati (2023062711305563200_btz035-B8) 2018; 284
Gherardin (2023062711305563200_btz035-B13) 2016; 44
Emerson (2023062711305563200_btz035-B9) 2017; 49
Robins (2023062711305563200_btz035-B33) 2010; 2
Pogorelyy (2023062711305563200_btz035-B30) 2018
Toledano (2023062711305563200_btz035-B39) 2018; 9
Seay (2023062711305563200_btz035-B34) 2016; 1
Madi (2023062711305563200_btz035-B23) 2014; 24
Robins (2023062711305563200_btz035-B32) 2009; 114
DeWitt (2023062711305563200_btz035-B4) 2018
Grigaityte (2023062711305563200_btz035-B15) 2017
Pogorelyy (2023062711305563200_btz035-B28) 2017; 13
Freeman (2023062711305563200_btz035-B11) 2009; 19
Jiang (2023062711305563200_btz035-B19) 2013; 5
Dash (2023062711305563200_btz035-B2) 2017; 547
Venturi (2023062711305563200_btz035-B40) 2008; 181
Zhao (2023062711305563200_btz035-B47) 2016; 196
Elhanati (2023062711305563200_btz035-B6) 2015; 370
Vollmers (2023062711305563200_btz035-B42) 2013; 110
Howie (2023062711305563200_btz035-B18) 2015; 7
Madi (2023062711305563200_btz035-B24) 2017; 6
Sims (2023062711305563200_btz035-B37) 2016; 113
Woodsworth (2023062711305563200_btz035-B45) 2013; 5
Pogorelyy (2023062711305563200_btz035-B29) 2018; 7
Qi (2023062711305563200_btz035-B31) 2014; 111
Faham (2023062711305563200_btz035-B10) 2017; 69
Murugan (2023062711305563200_btz035-B27) 2012; 109
Wu (2023062711305563200_btz035-B46) 2018; 11
Elhanati (2023062711305563200_btz035-B7) 2016; 32
Mora (2023062711305563200_btz035-B26) 2018
DeWitt (2023062711305563200_btz035-B3) 2016; 11
Horns (2023062711305563200_btz035-B17) 2017
Venturi (2023062711305563200_btz035-B41) 2013; 25
Sethna (2023062711305563200_btz035-B35) 2017; 114
References_xml – volume: 49
  start-page: 659
  year: 2017
  ident: 2023062711305563200_btz035-B9
  article-title: Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire
  publication-title: Nat. Genet
  doi: 10.1038/ng.3822
– volume: 57
  start-page: 1097
  year: 2018
  ident: 2023062711305563200_btz035-B20
  article-title: CD8+ T cells with characteristic TCR beta motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients
  publication-title: Rheumatology (Oxford, England)
  doi: 10.1093/rheumatology/kex517
– volume: 114
  start-page: 2253
  year: 2017
  ident: 2023062711305563200_btz035-B35
  article-title: Insights into immune system development and function from mouse T-cell repertoires
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1700241114
– volume: 111
  start-page: 13139
  year: 2014
  ident: 2023062711305563200_btz035-B31
  article-title: Diversity and clonal selection in the human T-cell repertoire
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1409155111
– volume: 24
  start-page: 1603
  year: 2014
  ident: 2023062711305563200_btz035-B23
  article-title: T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity
  publication-title: Genome Res
  doi: 10.1101/gr.170753.113
– volume: 1
  start-page: 1
  year: 2016
  ident: 2023062711305563200_btz035-B34
  article-title: Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.88242
– volume: 25
  start-page: 639
  year: 2013
  ident: 2023062711305563200_btz035-B41
  article-title: Specificity, promiscuity, and precursor frequency in immunoreceptors
  publication-title: Curr. Opin. Immunol
  doi: 10.1016/j.coi.2013.07.001
– volume: 4
  start-page: 413.
  year: 2013
  ident: 2023062711305563200_btz035-B38
  article-title: The past, present and future of immune repertoire biology – the rise of next-generation repertoire analysis
  publication-title: Front. Immunol
  doi: 10.3389/fimmu.2013.00413
– volume: 32
  start-page: 1943
  year: 2016
  ident: 2023062711305563200_btz035-B7
  article-title: repgenhmm: a dynamic programming tool to infer the rules of immune receptor generation from sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw112
– volume: 7
  start-page: 301ra131.
  year: 2015
  ident: 2023062711305563200_btz035-B18
  article-title: High-throughput pairing of T cell receptor a and b sequences
  publication-title: Sci. Transl. Med
  doi: 10.1126/scitranslmed.aac5624
– year: 2017
  ident: 2023062711305563200_btz035-B17
– volume: 13
  start-page: e1005572
  year: 2017
  ident: 2023062711305563200_btz035-B28
  article-title: Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1005572
– volume: 7
  start-page: 1
  year: 2018
  ident: 2023062711305563200_btz035-B29
  article-title: Method for identification of condition-associated public antigen receptor sequences
  publication-title: Elife
  doi: 10.7554/eLife.33050
– volume: 110
  start-page: 13463
  year: 2013
  ident: 2023062711305563200_btz035-B42
  article-title: Genetic measurement of memory B-cell recall using antibody repertoire sequencing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1312146110
– volume: 11
  start-page: e0160853.
  year: 2016
  ident: 2023062711305563200_btz035-B3
  article-title: A public database of memory and naive B-cell receptor sequences
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160853
– volume: 107
  start-page: 1518
  year: 2010
  ident: 2023062711305563200_btz035-B43
  article-title: High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913939107
– volume: 7
  start-page: 1
  year: 2017
  ident: 2023062711305563200_btz035-B12
  article-title: CD8+T cells specific for the islet autoantigen IGRP are restricted in their T cell receptor chain usage
  publication-title: Sci. Rep
  doi: 10.1038/srep44661
– volume: 9
  start-page: 561.
  year: 2018
  ident: 2023062711305563200_btz035-B25
  article-title: High-throughput immune repertoire analysis with IGoR
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-02832-w
– volume: 181
  start-page: 2597
  year: 2008
  ident: 2023062711305563200_btz035-B40
  article-title: The role of production frequency in the sharing of simian immunodeficiency virus-specific CD8+ TCRs between macaques
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.181.4.2597
– volume: 284
  start-page: 167
  year: 2018
  ident: 2023062711305563200_btz035-B8
  article-title: Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination
  publication-title: Immunol. Rev
  doi: 10.1111/imr.12665
– volume: 113
  start-page: E3529
  year: 2016
  ident: 2023062711305563200_btz035-B37
  article-title: Diversity and divergence of the glioma-infiltrating t-cell receptor repertoire
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1601012113
– start-page: 12704
  volume-title: Proc. Natl Acad. Sci
  year: 2018
  ident: 2023062711305563200_btz035-B30
  article-title: Precise tracking of vaccine-responding T-cell clones reveals convergent and personalized response in identical twins
– volume: 69
  start-page: 774
  year: 2017
  ident: 2023062711305563200_btz035-B10
  article-title: Discovery of T cell receptor β motifs specific to HLA-B27-positive ankylosing spondylitis by deep repertoire sequence analysis
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.40028
– volume: 196
  start-page: 4905
  year: 2016
  ident: 2023062711305563200_btz035-B47
  article-title: Preferential use of public TCR during autoimmune encephalomyelitis
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.1501029
– volume: 109
  start-page: 16161
  year: 2012
  ident: 2023062711305563200_btz035-B27
  article-title: Statistical inference of the generation probability of T-cell receptors from sequence repertoires
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1212755109
– volume: 5
  start-page: 98.
  year: 2013
  ident: 2023062711305563200_btz035-B45
  article-title: Sequence analysis of T-cell repertoires in health and disease
  publication-title: Genome Med
  doi: 10.1186/gm502
– volume: 6
  year: 2017
  ident: 2023062711305563200_btz035-B24
  article-title: T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences
  publication-title: eLife
  doi: 10.7554/eLife.22057
– volume: 9
  start-page: 1307.
  year: 2018
  ident: 2023062711305563200_btz035-B39
  article-title: Evidence for shaping of light chain repertoire by structural selection
  publication-title: Front. Immunol
  doi: 10.3389/fimmu.2018.01307
– volume: 11
  start-page: 1487
  year: 2018
  ident: 2023062711305563200_btz035-B46
  article-title: Expanded tcrßcdr3 clonotypes distinguish Crohn’s disease and ulcerative colitis patients
  publication-title: Mucosal Immunol
  doi: 10.1038/s41385-018-0046-z
– year: 2018
  ident: 2023062711305563200_btz035-B5
– volume: 46
  start-page: D419
  year: 2018
  ident: 2023062711305563200_btz035-B36
  article-title: VDJdb: a curated database of T-cell receptor sequences with known antigen specificity
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx760
– volume: 19
  start-page: 1817
  year: 2009
  ident: 2023062711305563200_btz035-B11
  article-title: Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing
  publication-title: Genome Res
  doi: 10.1101/gr.092924.109
– volume: 1
  start-page: 62
  year: 2017
  ident: 2023062711305563200_btz035-B21
  article-title: Advances and applications of immune receptor sequencing in systems immunology
  publication-title: Curr. Opin. Syst. Biol
  doi: 10.1016/j.coisb.2016.12.009
– volume: 389
  start-page: 214
  year: 2016
  ident: 2023062711305563200_btz035-B22
  article-title: How many TCR clonotypes does a body maintain?
  publication-title: J. Theor. Biol
  doi: 10.1016/j.jtbi.2015.10.016
– volume: 370
  start-page: 20140243.
  year: 2015
  ident: 2023062711305563200_btz035-B6
  article-title: Inferring processes underlying B-cell repertoire diversity
  publication-title: Philos. Trans. R Soc. Lond. B Biol. Sci
  doi: 10.1098/rstb.2014.0243
– volume: 547
  start-page: 89
  year: 2017
  ident: 2023062711305563200_btz035-B2
  article-title: Quantifiable predictive features define epitope-specific T cell receptor repertoires
  publication-title: Nature
  doi: 10.1038/nature22383
– volume: 19
  start-page: 554
  year: 2017
  ident: 2023062711305563200_btz035-B16
  article-title: High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities
  publication-title: Brief. Bioinform
– start-page: 185
  volume-title: Systems Immunology: An Introduction to Modeling Methods for Scientists
  year: 2018
  ident: 2023062711305563200_btz035-B26
– volume: 44
  start-page: 32
  year: 2016
  ident: 2023062711305563200_btz035-B13
  article-title: Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.12.005
– volume: 114
  start-page: 4099
  year: 2009
  ident: 2023062711305563200_btz035-B32
  article-title: Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells
  publication-title: Blood
  doi: 10.1182/blood-2009-04-217604
– volume: 2
  start-page: 47ra64.
  year: 2010
  ident: 2023062711305563200_btz035-B33
  article-title: Overlap and effective size of the human CD8+ T cell receptor repertoire
  publication-title: Sci. Transl. Med
  doi: 10.1126/scitranslmed.3001442
– volume: 547
  start-page: 94
  year: 2017
  ident: 2023062711305563200_btz035-B14
  article-title: Identifying specificity groups in the T cell receptor repertoire
  publication-title: Nature
  doi: 10.1038/nature22976
– year: 2018
  ident: 2023062711305563200_btz035-B4
– volume: 5
  start-page: 171ra19.
  year: 2013
  ident: 2023062711305563200_btz035-B19
  article-title: Lineage structure of the human antibody repertoire in response to influenza vaccination
  publication-title: Sci. Transl. Med
  doi: 10.1126/scitranslmed.3004794
– volume: 347
  start-page: 400
  year: 2015
  ident: 2023062711305563200_btz035-B1
  article-title: Functional heterogeneity of human memory cd4+ t cell clones primed by pathogens or vaccines
  publication-title: Science
  doi: 10.1126/science.1260668
– year: 2017
  ident: 2023062711305563200_btz035-B15
– volume: 324
  start-page: 807
  year: 2009
  ident: 2023062711305563200_btz035-B44
  article-title: High-throughput sequencing of the zebrafish antibody repertoire
  publication-title: Science
  doi: 10.1126/science.1170020
SSID ssj0005056
Score 2.6370597
Snippet High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2974
SubjectTerms Biochemistry, Molecular Biology
Genomics
Life Sciences
Original Papers
Physics
Title OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs
URI https://www.ncbi.nlm.nih.gov/pubmed/30657870
https://www.proquest.com/docview/2179378318
https://hal.sorbonne-universite.fr/hal-02344638
https://pubmed.ncbi.nlm.nih.gov/PMC6735909
Volume 35
WOSCitedRecordID wos000487323400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbaARIviOsol8kgxEsVlsS5OLxtU8ceqhWJTFS8RLbj0molLW1alf0x_h4-tpM2DInxwEvUOk4c5ftyjnNy_B2E3oCIeJ770okj6TrK3_oOpwl1REIkZ4HwPaF1Zvvx-TkdDpOPrdbPai3MehoXBd1skvl_hVq1KbBh6ew_wF2fVDWo3wp0tVWwq-2NgB_0P-ig-YgtS50xvirraeFXLTKt_0ElGaPRPTG6s8eO_pCQOhDL7ypDKOclZFh-mxSzLhOTvFunXeuOkMU3WjY-Ck9mVodVaz-DkOmmyp23xUJ2Ag-fZDk2C9K-MFj7Vcf2e9Mxgxil9g6rNatzQE4g6G-SBFZQRHpbF-wzm4ordmlX7Fwu1UgLZgO9NqThbXO2KitMQIydWiss_9BmTbdROqkoGu8a4sQU_7nmIYx6Fm_cEGgor1x7toYm9_kgO73o97O0N0zfzr87UK4MPuvb2i1tdMuPwwTMaToYbnOLXF02uL7maulYQg6bIx-acRuTovYYUnKvv-_8nra7Mw9K76N79gUGHxniPUAtWTxEd0xJ0x-P0BTo9x4D-fAO-fBshLfkww3ywb5jByvMsCEfrsiHNfkwkA_X5NMdDfkeo4vTXnpy5tiKHo4IgrB0aMRy4gnfFco_CyLd3IvcxOdBxEISskgQLgIZcia4ICCLJDnhLg_VTG7EOWHkCdorZoV8irCIqYSeygi5wUgI6glOOQ94lIc0pqyDguqWZsLK3UPVlWlm0i5I1kQiM0h00Lv6sLnRe_nbAa8VXnVfUGs_O-pn0Kamw0Gg_Nva66BXFZyZMt9wK1khZ6tl5oODjKnyrB20b-Ctz6Xe5rU_7aC4AXxjsOaeYjLWEvFRTMLETZ7dYNzn6O72GXyB9srFSr5Et8VaPceLA9SOh_RAs_sXXxLkaw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OLGA%3A+fast+computation+of+generation+probabilities+of+B-+and+T-cell+receptor+amino+acid+sequences+and+motifs&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Sethna%2C+Zachary&rft.au=Elhanati%2C+Yuval&rft.au=Callan%2C+Curtis+G&rft.au=Walczak%2C+Aleksandra+M&rft.date=2019-09-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=35&rft.issue=17&rft.spage=2974&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon