Integration and holistic analysis of multiple multidimensional soil data sets

Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be considered multidimensional. These characteristics can be strongly influenced by factors that introduce confounding effects that hinder analyses. Traditional statistical approaches lack th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) Jg. 274; S. 125954
Hauptverfasser: Pilkington, Lisa I., Kerner, William, Bertoldi, Daniela, Larcher, Roberto, Lee, Soon A., Goddard, Matthew R., Albanese, Davide, Franceschi, Pietro, Fedrizzi, Bruno
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.07.2024
Schlagworte:
ISSN:0039-9140, 1873-3573, 1873-3573
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be considered multidimensional. These characteristics can be strongly influenced by factors that introduce confounding effects that hinder analyses. Traditional statistical approaches lack the flexibility and granularity required to adequately evaluate such matrices, particularly those with large dataset of varying data types (i.e. quantitative non-compositional, quantitative compositional). We present a statistical workflow designed to effectively analyse complex, multidimensional systems, even in the presence of confounding variables. The developed methodology involves exploratory analysis to identify the presence of confounding variables, followed by data decomposition (including strategies for both compositional and non-compositional quantitative data) to minimise the influence of these confounding factors such as sampling site/location. These data processing methods then allow for common patterns to be highlighted in the data, including the identification of biomarkers and determination of non-trivial associations between variables. We demonstrate the utility of this statistical workflow by jointly analysing the chemical composition and fungal biodiversity of New Zealand vineyard soils that have been managed with either organic low-input or conventional input approaches. By applying this pipeline, we were able to identify biomarkers that distinguish viticultural soil from both approaches and also unearth links and associations between the chemical and metagenomic profiles. While soil is an example of a system that can require this type of statistical methodology, there are a range of biological and ecological systems that are challenging to analyse due to the complex interplay of global and local effects. Utilising our developed pipeline will greatly enhance the way that these systems can be studied and the quality and impact of insight gained from their analysis. [Display omitted] •Novel statistical workflow to effectively analyse complex, multidimensional systems.•Methods allow identification of biomarker and non-trivial variable associations.•Workflow demonstrated through analysing New Zealand vineyard soils.•Utility shown by jointly analysing chemical composition and fungal biodiversity.•Developed pipeline will enhance analysis of other complex multidimensional systems.
AbstractList Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be considered multidimensional. These characteristics can be strongly influenced by factors that introduce confounding effects that hinder analyses. Traditional statistical approaches lack the flexibility and granularity required to adequately evaluate such matrices, particularly those with large dataset of varying data types (i.e. quantitative non-compositional, quantitative compositional). We present a statistical workflow designed to effectively analyse complex, multidimensional systems, even in the presence of confounding variables. The developed methodology involves exploratory analysis to identify the presence of confounding variables, followed by data decomposition (including strategies for both compositional and non-compositional quantitative data) to minimise the influence of these confounding factors such as sampling site/location. These data processing methods then allow for common patterns to be highlighted in the data, including the identification of biomarkers and determination of non-trivial associations between variables. We demonstrate the utility of this statistical workflow by jointly analysing the chemical composition and fungal biodiversity of New Zealand vineyard soils that have been managed with either organic low-input or conventional input approaches. By applying this pipeline, we were able to identify biomarkers that distinguish viticultural soil from both approaches and also unearth links and associations between the chemical and metagenomic profiles. While soil is an example of a system that can require this type of statistical methodology, there are a range of biological and ecological systems that are challenging to analyse due to the complex interplay of global and local effects. Utilising our developed pipeline will greatly enhance the way that these systems can be studied and the quality and impact of insight gained from their analysis.
Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be considered multidimensional. These characteristics can be strongly influenced by factors that introduce confounding effects that hinder analyses. Traditional statistical approaches lack the flexibility and granularity required to adequately evaluate such matrices, particularly those with large dataset of varying data types (i.e. quantitative non-compositional, quantitative compositional). We present a statistical workflow designed to effectively analyse complex, multidimensional systems, even in the presence of confounding variables. The developed methodology involves exploratory analysis to identify the presence of confounding variables, followed by data decomposition (including strategies for both compositional and non-compositional quantitative data) to minimise the influence of these confounding factors such as sampling site/location. These data processing methods then allow for common patterns to be highlighted in the data, including the identification of biomarkers and determination of non-trivial associations between variables. We demonstrate the utility of this statistical workflow by jointly analysing the chemical composition and fungal biodiversity of New Zealand vineyard soils that have been managed with either organic low-input or conventional input approaches. By applying this pipeline, we were able to identify biomarkers that distinguish viticultural soil from both approaches and also unearth links and associations between the chemical and metagenomic profiles. While soil is an example of a system that can require this type of statistical methodology, there are a range of biological and ecological systems that are challenging to analyse due to the complex interplay of global and local effects. Utilising our developed pipeline will greatly enhance the way that these systems can be studied and the quality and impact of insight gained from their analysis. [Display omitted] •Novel statistical workflow to effectively analyse complex, multidimensional systems.•Methods allow identification of biomarker and non-trivial variable associations.•Workflow demonstrated through analysing New Zealand vineyard soils.•Utility shown by jointly analysing chemical composition and fungal biodiversity.•Developed pipeline will enhance analysis of other complex multidimensional systems.
Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be considered multidimensional. These characteristics can be strongly influenced by factors that introduce confounding effects that hinder analyses. Traditional statistical approaches lack the flexibility and granularity required to adequately evaluate such matrices, particularly those with large dataset of varying data types (i.e. quantitative non-compositional, quantitative compositional). We present a statistical workflow designed to effectively analyse complex, multidimensional systems, even in the presence of confounding variables. The developed methodology involves exploratory analysis to identify the presence of confounding variables, followed by data decomposition (including strategies for both compositional and non-compositional quantitative data) to minimise the influence of these confounding factors such as sampling site/location. These data processing methods then allow for common patterns to be highlighted in the data, including the identification of biomarkers and determination of non-trivial associations between variables. We demonstrate the utility of this statistical workflow by jointly analysing the chemical composition and fungal biodiversity of New Zealand vineyard soils that have been managed with either organic low-input or conventional input approaches. By applying this pipeline, we were able to identify biomarkers that distinguish viticultural soil from both approaches and also unearth links and associations between the chemical and metagenomic profiles. While soil is an example of a system that can require this type of statistical methodology, there are a range of biological and ecological systems that are challenging to analyse due to the complex interplay of global and local effects. Utilising our developed pipeline will greatly enhance the way that these systems can be studied and the quality and impact of insight gained from their analysis.Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be considered multidimensional. These characteristics can be strongly influenced by factors that introduce confounding effects that hinder analyses. Traditional statistical approaches lack the flexibility and granularity required to adequately evaluate such matrices, particularly those with large dataset of varying data types (i.e. quantitative non-compositional, quantitative compositional). We present a statistical workflow designed to effectively analyse complex, multidimensional systems, even in the presence of confounding variables. The developed methodology involves exploratory analysis to identify the presence of confounding variables, followed by data decomposition (including strategies for both compositional and non-compositional quantitative data) to minimise the influence of these confounding factors such as sampling site/location. These data processing methods then allow for common patterns to be highlighted in the data, including the identification of biomarkers and determination of non-trivial associations between variables. We demonstrate the utility of this statistical workflow by jointly analysing the chemical composition and fungal biodiversity of New Zealand vineyard soils that have been managed with either organic low-input or conventional input approaches. By applying this pipeline, we were able to identify biomarkers that distinguish viticultural soil from both approaches and also unearth links and associations between the chemical and metagenomic profiles. While soil is an example of a system that can require this type of statistical methodology, there are a range of biological and ecological systems that are challenging to analyse due to the complex interplay of global and local effects. Utilising our developed pipeline will greatly enhance the way that these systems can be studied and the quality and impact of insight gained from their analysis.
ArticleNumber 125954
Author Kerner, William
Fedrizzi, Bruno
Pilkington, Lisa I.
Franceschi, Pietro
Lee, Soon A.
Larcher, Roberto
Bertoldi, Daniela
Albanese, Davide
Goddard, Matthew R.
Author_xml – sequence: 1
  givenname: Lisa I.
  orcidid: 0000-0002-9292-3261
  surname: Pilkington
  fullname: Pilkington, Lisa I.
  email: lisa.pilkington@auckland.ac.nz
  organization: School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
– sequence: 2
  givenname: William
  surname: Kerner
  fullname: Kerner, William
  organization: School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
– sequence: 3
  givenname: Daniela
  orcidid: 0000-0001-7512-1286
  surname: Bertoldi
  fullname: Bertoldi, Daniela
  organization: Food Characterisation and Processing Department, Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098, Italy
– sequence: 4
  givenname: Roberto
  orcidid: 0000-0002-4784-8389
  surname: Larcher
  fullname: Larcher, Roberto
  organization: Food Characterisation and Processing Department, Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098, Italy
– sequence: 5
  givenname: Soon A.
  orcidid: 0000-0003-2561-4319
  surname: Lee
  fullname: Lee, Soon A.
  organization: School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
– sequence: 6
  givenname: Matthew R.
  orcidid: 0000-0002-7482-4438
  surname: Goddard
  fullname: Goddard, Matthew R.
  organization: School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
– sequence: 7
  givenname: Davide
  orcidid: 0000-0002-9493-3850
  surname: Albanese
  fullname: Albanese, Davide
  organization: Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098, Italy
– sequence: 8
  givenname: Pietro
  orcidid: 0000-0001-5711-4429
  surname: Franceschi
  fullname: Franceschi, Pietro
  email: pietro.franceschi@fmach.it
  organization: Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098, Italy
– sequence: 9
  givenname: Bruno
  surname: Fedrizzi
  fullname: Fedrizzi, Bruno
  email: b.fedrizzi@auckland.ac.nz
  organization: School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38599113$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v3CAQhlGUKNmk_QmtfOzFW8ZjFqMeqirqR6RUubRnRGBoWWGzBTZS_n299ebSyx4QID3PjPS-1-x8ShMx9gb4Gjhs3m_X1UQzVbPueNevoRNK9GdsBYPEFoXEc7biHFWroOdX7LqULee8Q46X7AoHoRQArtj3u6nSr2xqSFNjJtf8TjGUGuz8MfG5hNIk34z7WMMu0vJwYaSpzIKJTUkhNs5U0xSq5RW78CYWen28b9jPL59_3H5r7x--3t1-um9t34vaSiHcICQMMLiNQGGN2BB4b4xCNKi8RCJ_OHbw9OgJiBRKsCCc8APgDXu3zN3l9GdPpeoxFEtxDoTSvmgEgRvJu06cRjlKVIOSakbfHtH940hO73IYTX7WL2nNwIcFsDmVkslrG-q_6Go2IWrg-tCN3upjN_rQjV66mW3xn_2y4JT3cfFoTvQpUNbFBposuZDJVu1SODHhLyu4rEg
CitedBy_id crossref_primary_10_1002_adma_202415160
crossref_primary_10_55959_MSU0137_0944_17_2025_80_2_114_125
crossref_primary_10_3103_S0147687425700103
Cites_doi 10.1016/j.apsoil.2005.09.007
10.1002/env.966
10.1081/CSS-120014460
10.1186/s40168-019-0758-7
10.1038/nature09944
10.1093/nar/gkl244
10.1016/j.soilbio.2015.09.002
10.1071/SR04102
10.1016/S0929-1393(00)00067-6
10.1038/s41467-020-17688-2
10.1016/0005-2795(75)90109-9
10.1016/j.isci.2021.102280
10.1007/s12571-015-0437-x
10.1038/srep09743
10.1109/34.709601
10.1371/journal.pone.0009490
10.1038/ismej.2014.210
10.1038/ismej.2015.18
10.1186/s12864-018-5160-5
10.1128/AEM.00062-07
10.1093/gigascience/giy032
10.1093/bioinformatics/bty175
10.3389/fmicb.2017.02224
10.1093/bioinformatics/bti476
10.1371/journal.pone.0152719
10.1038/s41598-019-49854-y
10.1016/S1567-1356(03)00012-6
10.1016/j.agee.2017.05.022
10.1111/1462-2920.12456
10.1146/annurev-statistics-010814-020351
10.1371/journal.pone.0160169
10.1111/j.2517-6161.1982.tb01195.x
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.talanta.2024.125954
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
ExternalDocumentID 38599113
10_1016_j_talanta_2024_125954
S0039914024003333
Genre Journal Article
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
9DU
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
WUQ
XOL
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c445t-755d8571818d6535ca56e1ffaa933a39f73eef3eefc8febfe1ee9371c15d5f813
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001228221300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0039-9140
1873-3573
IngestDate Thu Oct 02 22:49:45 EDT 2025
Wed Oct 01 17:15:57 EDT 2025
Mon Jul 21 05:55:29 EDT 2025
Sat Nov 29 05:52:26 EST 2025
Tue Nov 18 21:06:31 EST 2025
Sat Jul 06 15:30:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Statistical workflow
Confounding variables
Soil analysis
Variable association
Variable transformation
Compositional data
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-755d8571818d6535ca56e1ffaa933a39f73eef3eefc8febfe1ee9371c15d5f813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4784-8389
0000-0002-9292-3261
0000-0002-9493-3850
0000-0001-7512-1286
0000-0001-5711-4429
0000-0003-2561-4319
0000-0002-7482-4438
OpenAccessLink https://dx.doi.org/10.1016/j.talanta.2024.125954
PMID 38599113
PQID 3037398979
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153670225
proquest_miscellaneous_3037398979
pubmed_primary_38599113
crossref_citationtrail_10_1016_j_talanta_2024_125954
crossref_primary_10_1016_j_talanta_2024_125954
elsevier_sciencedirect_doi_10_1016_j_talanta_2024_125954
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Talanta (Oxford)
PublicationTitleAlternate Talanta
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Price, Dehal, Arkin (bib21) 2010; 5
Arumugam, Raes, Pelletier, Le Paslier (bib29) 2011; 473
Tin Kam (bib34) 1998; 20
Smilde, Jansen, Hoefsloot, Lamers, van der Greef, Timmerman (bib30) 2005; 21
Lê Cao, Ignacio Gonzalez, Dejean, with key contributors Gautier, Bartolo, contributions from Monget, Coquery, Yao, Liquet, mixOmics (bib31) 2016
Doran, Zeiss (bib2) 2000; 15
Kumar, Slud, Okrah, Hicks, Hannenhalli, Corrada Bravo (bib24) 2018; 19
Filzmoser, Hron, Reimann (bib33) 2009; 20
Kurtzman, Robnett (bib15) 2003; 3
Wang, Garrity, Tiedje, Cole (bib19) 2007; 73
Widmer, Rasche, Hartmann, Fliessbach (bib5) 2006; 33
Blakemore, Philip Lee, Daly (bib12) 1987
van Dijk (bib14) 2002; 33
Morrison-Whittle, Goddard (bib16) 2015; 9
Giraldo-Perez, Raw, Greven, Goddard (bib7) 2021; 24
Al-Busaidi, Cookson, Yamamoto (bib11) 2005; 43
DeSantis, Z, Hugenholtz, Keller, Brodie, Larsen, Piceno, Phan, Andersen (bib20) 2006; 34
Westfall, Yarkoni (bib22) 2016; 11
Matthews (bib35) 1975; 405
Taylor, Tsai, Anfang, Ross, Goddard (bib17) 2014; 6
Morrison-Whittle, Lee, Goddard (bib10) 2017; 246
Quinn, Erb, Richardson, Crowley (bib27) 2018; 34
Li (bib23) 2015; 2
Burns, Kluepfel, Strauss, Bokulich, Cantu, Steenwerth (bib4) 2015; 91
Lake (bib13) 2000
Albanese, Riccadonna, Donati, Franceschi (bib37) 2018; 7
Gloor, Macklaim, Pawlowsky-Glahn, Egozcue (bib25) 2017; 8
Lê Cao, Costello, Lakis, Bartolo, Chua, Brazeilles, Rondeau (bib32) 2016; 11
Haug, Graham, Christophersen, Lyons (bib36) 2007; 19
Albanese, Fontana, De Filippo (bib18) 2015; 5
Coller, Cestaro, Zanzotti, Bertoldi, Pindo, Larger, Albanese, Mescalchin, Donati (bib3) 2019; 7
Aitchison (bib26) 1982; 44
Hartmann, Frey, Mayer, Mäder, Widmer (bib1) 2015; 9
Harkes, Suleiman, van den Elsen, Haan, Holterman, Kuramae, Helder (bib9) 2019; 9
Guerra, Heintz-Buschart, Sikorski (bib8) 2020; 11
Pearson, Henrici (bib28) 1896; 187
Rickson, Deeks, Graves, Harris, Kibblewhite, Sakrabani (bib6) 2015; 7
Matthews (10.1016/j.talanta.2024.125954_bib35) 1975; 405
Widmer (10.1016/j.talanta.2024.125954_bib5) 2006; 33
Doran (10.1016/j.talanta.2024.125954_bib2) 2000; 15
Guerra (10.1016/j.talanta.2024.125954_bib8) 2020; 11
Rickson (10.1016/j.talanta.2024.125954_bib6) 2015; 7
van Dijk (10.1016/j.talanta.2024.125954_bib14) 2002; 33
Lê Cao (10.1016/j.talanta.2024.125954_bib31)
Price (10.1016/j.talanta.2024.125954_bib21) 2010; 5
Pearson (10.1016/j.talanta.2024.125954_bib28) 1896; 187
Al-Busaidi (10.1016/j.talanta.2024.125954_bib11) 2005; 43
Kurtzman (10.1016/j.talanta.2024.125954_bib15) 2003; 3
Harkes (10.1016/j.talanta.2024.125954_bib9) 2019; 9
Morrison-Whittle (10.1016/j.talanta.2024.125954_bib10) 2017; 246
Burns (10.1016/j.talanta.2024.125954_bib4) 2015; 91
Taylor (10.1016/j.talanta.2024.125954_bib17) 2014; 6
Wang (10.1016/j.talanta.2024.125954_bib19) 2007; 73
Hartmann (10.1016/j.talanta.2024.125954_bib1) 2015; 9
Blakemore (10.1016/j.talanta.2024.125954_bib12) 1987
Lake (10.1016/j.talanta.2024.125954_bib13) 2000
Filzmoser (10.1016/j.talanta.2024.125954_bib33) 2009; 20
Smilde (10.1016/j.talanta.2024.125954_bib30) 2005; 21
Aitchison (10.1016/j.talanta.2024.125954_bib26) 1982; 44
Gloor (10.1016/j.talanta.2024.125954_bib25) 2017; 8
Morrison-Whittle (10.1016/j.talanta.2024.125954_bib16) 2015; 9
Arumugam (10.1016/j.talanta.2024.125954_bib29) 2011; 473
Coller (10.1016/j.talanta.2024.125954_bib3) 2019; 7
Li (10.1016/j.talanta.2024.125954_bib23) 2015; 2
Albanese (10.1016/j.talanta.2024.125954_bib18) 2015; 5
Kumar (10.1016/j.talanta.2024.125954_bib24) 2018; 19
Tin Kam (10.1016/j.talanta.2024.125954_bib34) 1998; 20
Haug (10.1016/j.talanta.2024.125954_bib36) 2007; 19
Westfall (10.1016/j.talanta.2024.125954_bib22) 2016; 11
Lê Cao (10.1016/j.talanta.2024.125954_bib32) 2016; 11
Albanese (10.1016/j.talanta.2024.125954_bib37) 2018; 7
DeSantis (10.1016/j.talanta.2024.125954_bib20) 2006; 34
Quinn (10.1016/j.talanta.2024.125954_bib27) 2018; 34
Giraldo-Perez (10.1016/j.talanta.2024.125954_bib7) 2021; 24
References_xml – volume: 44
  start-page: 139
  year: 1982
  ident: bib26
  article-title: The statistical analysis of compositional data
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 9
  start-page: 1177
  year: 2015
  ident: bib1
  article-title: Distinct soil microbial diversity under long-term organic and conventional farming
  publication-title: ISME J.
– volume: 3
  start-page: 417
  year: 2003
  ident: bib15
  article-title: Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses
  publication-title: FEMS Yeast Res.
– volume: 34
  start-page: W394
  year: 2006
  end-page: W399
  ident: bib20
  article-title: NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 1
  year: 2018
  ident: bib37
  article-title: A practical tool for maximal information coefficient analysis
  publication-title: GigaScience
– year: 2000
  ident: bib13
  article-title: Understanding Soil pH. New South Wales Acid
– year: 1987
  ident: bib12
  article-title: Methods for Chemical Analysis of Soils; Lower Hutt, N.Z
– volume: 33
  start-page: 2457
  year: 2002
  ident: bib14
  article-title: Wageningen evaluating programmes for analytical laboratories (wepal): a world of experience
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 34
  start-page: 2870
  year: 2018
  ident: bib27
  article-title: Understanding sequencing data as compositions: an outlook and review
  publication-title: Bioinformatics
– volume: 9
  year: 2019
  ident: bib9
  article-title: Conventional and organic soil management as divergent drivers of resident and active fractions of major soil food web constituents
  publication-title: Sci. Rep.
– volume: 43
  start-page: 541
  year: 2005
  ident: bib11
  article-title: Methods of pH determination in calcareous soils: use of electrolytes and suspension effect
  publication-title: J. Soil Res.
– volume: 7
  start-page: 140
  year: 2019
  ident: bib3
  article-title: Microbiome of vineyard soils is shaped by geography and management
  publication-title: Microbiome
– volume: 187
  start-page: 253
  year: 1896
  ident: bib28
  article-title: VII. Mathematical contributions to the theory of evolution III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A
  publication-title: Containing Papers of a Mathematical or Physical Character
– volume: 405
  start-page: 442
  year: 1975
  ident: bib35
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme
  publication-title: Biochim. Biophys. Acta Protein Struct.
– volume: 24
  year: 2021
  ident: bib7
  article-title: A small effect of conservation agriculture on soil biodiversity that differs between biological kingdoms and geographic locations
  publication-title: iScience
– volume: 6
  start-page: 2848
  year: 2014
  ident: bib17
  article-title: Pyrosequencing reveals regional differences in fruit-associated fungal communities
  publication-title: Environ. Microbiol.
– volume: 11
  year: 2016
  ident: bib22
  article-title: Statistically controlling for confounding constructs is harder than you think
  publication-title: PLoS One
– volume: 5
  start-page: 9743
  year: 2015
  ident: bib18
  article-title: MICCA: a complete and accurate software for taxonomic profiling of metagenomic data
  publication-title: Sci. Rep.
– volume: 11
  year: 2016
  ident: bib32
  article-title: MixMC: a multivariate statistical framework to gain insight into microbial communities
  publication-title: PLoS One
– volume: 20
  start-page: 621
  year: 2009
  ident: bib33
  article-title: Principal component analysis for compositional data with outliers
  publication-title: Environmetrics
– volume: 19
  start-page: 799
  year: 2018
  ident: bib24
  article-title: Analysis and correction of compositional bias in sparse sequencing count data
  publication-title: BMC Genom.
– volume: 11
  start-page: 3870
  year: 2020
  ident: bib8
  article-title: Blind spots in global soil biodiversity and ecosystem function research
  publication-title: Nat. Commun.
– volume: 91
  start-page: 232
  year: 2015
  ident: bib4
  article-title: Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features
  publication-title: Soil Biol. Biochem.
– volume: 15
  start-page: 3
  year: 2000
  ident: bib2
  article-title: Soil health and sustainability: managing the biotic component of soil quality
  publication-title: Appl. Soil Ecol.
– volume: 7
  start-page: 351
  year: 2015
  ident: bib6
  article-title: Input constraints to food production: the impact of soil degradation
  publication-title: Food Secur.
– volume: 20
  start-page: 832
  year: 1998
  ident: bib34
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 294
  year: 2006
  end-page: 307
  ident: bib5
  article-title: Community structures and substrate utilization of bacteria in soils from organic and conventional farming systems of the DOK long-term field experiment
  publication-title: Appl. Soil Ecol.
– volume: 9
  start-page: 2003
  year: 2015
  ident: bib16
  article-title: Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities
  publication-title: ISME J.
– volume: 473
  start-page: 174
  year: 2011
  ident: bib29
  article-title: Enterotypes of the human gut microbiome
  publication-title: Nature
– volume: 19
  start-page: 209
  year: 2007
  ident: bib36
  article-title: How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food
  publication-title: Microb. Ecol. Health Dis.
– volume: 8
  start-page: 2224
  year: 2017
  ident: bib25
  article-title: Microbiome datasets are compositional: and this is not optional
  publication-title: Front. Microbiol.
– volume: 2
  start-page: 73
  year: 2015
  ident: bib23
  article-title: Microbiome, metagenomics, and high-dimensional compositional data analysis
  publication-title: Annu. Rev. Stat. Appl.
– volume: 73
  start-page: 5261
  year: 2007
  ident: bib19
  article-title: Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
– volume: 5
  year: 2010
  ident: bib21
  article-title: FastTree 2 – approximately maximum-likelihood trees for large alignments
  publication-title: PLoS One
– volume: 246
  start-page: 306
  year: 2017
  ident: bib10
  article-title: Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems
  publication-title: Agric. Ecosyst. Environ.
– year: 2016
  ident: bib31
  article-title: Omics data integration project
– volume: 21
  start-page: 3043
  year: 2005
  ident: bib30
  article-title: ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data
  publication-title: Bioinformatics
– volume: 33
  start-page: 294
  year: 2006
  ident: 10.1016/j.talanta.2024.125954_bib5
  article-title: Community structures and substrate utilization of bacteria in soils from organic and conventional farming systems of the DOK long-term field experiment
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2005.09.007
– volume: 20
  start-page: 621
  year: 2009
  ident: 10.1016/j.talanta.2024.125954_bib33
  article-title: Principal component analysis for compositional data with outliers
  publication-title: Environmetrics
  doi: 10.1002/env.966
– volume: 33
  start-page: 2457
  year: 2002
  ident: 10.1016/j.talanta.2024.125954_bib14
  article-title: Wageningen evaluating programmes for analytical laboratories (wepal): a world of experience
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1081/CSS-120014460
– volume: 7
  start-page: 140
  year: 2019
  ident: 10.1016/j.talanta.2024.125954_bib3
  article-title: Microbiome of vineyard soils is shaped by geography and management
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0758-7
– year: 1987
  ident: 10.1016/j.talanta.2024.125954_bib12
– volume: 473
  start-page: 174
  year: 2011
  ident: 10.1016/j.talanta.2024.125954_bib29
  article-title: Enterotypes of the human gut microbiome
  publication-title: Nature
  doi: 10.1038/nature09944
– volume: 34
  start-page: W394
  year: 2006
  ident: 10.1016/j.talanta.2024.125954_bib20
  article-title: NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl244
– volume: 91
  start-page: 232
  year: 2015
  ident: 10.1016/j.talanta.2024.125954_bib4
  article-title: Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.09.002
– volume: 43
  start-page: 541
  year: 2005
  ident: 10.1016/j.talanta.2024.125954_bib11
  article-title: Methods of pH determination in calcareous soils: use of electrolytes and suspension effect Aus
  publication-title: J. Soil Res.
  doi: 10.1071/SR04102
– volume: 15
  start-page: 3
  year: 2000
  ident: 10.1016/j.talanta.2024.125954_bib2
  article-title: Soil health and sustainability: managing the biotic component of soil quality
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/S0929-1393(00)00067-6
– volume: 11
  start-page: 3870
  year: 2020
  ident: 10.1016/j.talanta.2024.125954_bib8
  article-title: Blind spots in global soil biodiversity and ecosystem function research
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17688-2
– volume: 405
  start-page: 442
  year: 1975
  ident: 10.1016/j.talanta.2024.125954_bib35
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme
  publication-title: Biochim. Biophys. Acta Protein Struct.
  doi: 10.1016/0005-2795(75)90109-9
– volume: 24
  year: 2021
  ident: 10.1016/j.talanta.2024.125954_bib7
  article-title: A small effect of conservation agriculture on soil biodiversity that differs between biological kingdoms and geographic locations
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102280
– volume: 7
  start-page: 351
  year: 2015
  ident: 10.1016/j.talanta.2024.125954_bib6
  article-title: Input constraints to food production: the impact of soil degradation
  publication-title: Food Secur.
  doi: 10.1007/s12571-015-0437-x
– volume: 5
  start-page: 9743
  year: 2015
  ident: 10.1016/j.talanta.2024.125954_bib18
  article-title: MICCA: a complete and accurate software for taxonomic profiling of metagenomic data
  publication-title: Sci. Rep.
  doi: 10.1038/srep09743
– volume: 19
  start-page: 209
  year: 2007
  ident: 10.1016/j.talanta.2024.125954_bib36
  article-title: How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food
  publication-title: Microb. Ecol. Health Dis.
– volume: 20
  start-page: 832
  year: 1998
  ident: 10.1016/j.talanta.2024.125954_bib34
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– year: 2000
  ident: 10.1016/j.talanta.2024.125954_bib13
– volume: 5
  year: 2010
  ident: 10.1016/j.talanta.2024.125954_bib21
  article-title: FastTree 2 – approximately maximum-likelihood trees for large alignments
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009490
– volume: 9
  start-page: 1177
  year: 2015
  ident: 10.1016/j.talanta.2024.125954_bib1
  article-title: Distinct soil microbial diversity under long-term organic and conventional farming
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.210
– ident: 10.1016/j.talanta.2024.125954_bib31
– volume: 9
  start-page: 2003
  year: 2015
  ident: 10.1016/j.talanta.2024.125954_bib16
  article-title: Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.18
– volume: 19
  start-page: 799
  year: 2018
  ident: 10.1016/j.talanta.2024.125954_bib24
  article-title: Analysis and correction of compositional bias in sparse sequencing count data
  publication-title: BMC Genom.
  doi: 10.1186/s12864-018-5160-5
– volume: 187
  start-page: 253
  year: 1896
  ident: 10.1016/j.talanta.2024.125954_bib28
  article-title: VII. Mathematical contributions to the theory of evolution III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A
  publication-title: Containing Papers of a Mathematical or Physical Character
– volume: 73
  start-page: 5261
  year: 2007
  ident: 10.1016/j.talanta.2024.125954_bib19
  article-title: Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00062-07
– volume: 7
  start-page: 1
  year: 2018
  ident: 10.1016/j.talanta.2024.125954_bib37
  article-title: A practical tool for maximal information coefficient analysis
  publication-title: GigaScience
  doi: 10.1093/gigascience/giy032
– volume: 34
  start-page: 2870
  year: 2018
  ident: 10.1016/j.talanta.2024.125954_bib27
  article-title: Understanding sequencing data as compositions: an outlook and review
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty175
– volume: 8
  start-page: 2224
  year: 2017
  ident: 10.1016/j.talanta.2024.125954_bib25
  article-title: Microbiome datasets are compositional: and this is not optional
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02224
– volume: 21
  start-page: 3043
  year: 2005
  ident: 10.1016/j.talanta.2024.125954_bib30
  article-title: ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti476
– volume: 11
  year: 2016
  ident: 10.1016/j.talanta.2024.125954_bib22
  article-title: Statistically controlling for confounding constructs is harder than you think
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0152719
– volume: 9
  year: 2019
  ident: 10.1016/j.talanta.2024.125954_bib9
  article-title: Conventional and organic soil management as divergent drivers of resident and active fractions of major soil food web constituents
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49854-y
– volume: 3
  start-page: 417
  year: 2003
  ident: 10.1016/j.talanta.2024.125954_bib15
  article-title: Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses
  publication-title: FEMS Yeast Res.
  doi: 10.1016/S1567-1356(03)00012-6
– volume: 246
  start-page: 306
  year: 2017
  ident: 10.1016/j.talanta.2024.125954_bib10
  article-title: Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.05.022
– volume: 6
  start-page: 2848
  year: 2014
  ident: 10.1016/j.talanta.2024.125954_bib17
  article-title: Pyrosequencing reveals regional differences in fruit-associated fungal communities
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12456
– volume: 2
  start-page: 73
  year: 2015
  ident: 10.1016/j.talanta.2024.125954_bib23
  article-title: Microbiome, metagenomics, and high-dimensional compositional data analysis
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-010814-020351
– volume: 11
  year: 2016
  ident: 10.1016/j.talanta.2024.125954_bib32
  article-title: MixMC: a multivariate statistical framework to gain insight into microbial communities
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160169
– volume: 44
  start-page: 139
  year: 1982
  ident: 10.1016/j.talanta.2024.125954_bib26
  article-title: The statistical analysis of compositional data
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1982.tb01195.x
SSID ssj0002303
Score 2.4445453
Snippet Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be considered multidimensional. These...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125954
SubjectTerms biodiversity
biomarkers
chemical composition
Compositional data
Confounding variables
data collection
fungi
metagenomics
New Zealand
soil
Soil analysis
Statistical workflow
Variable association
Variable transformation
vineyards
viticulture
Title Integration and holistic analysis of multiple multidimensional soil data sets
URI https://dx.doi.org/10.1016/j.talanta.2024.125954
https://www.ncbi.nlm.nih.gov/pubmed/38599113
https://www.proquest.com/docview/3037398979
https://www.proquest.com/docview/3153670225
Volume 274
WOSCitedRecordID wos001228221300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3573
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002303
  issn: 0039-9140
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYhwQviG_Kx2QkxEuVssRxbT9OUycGpewhk_pmuYktdVRJ13RT_3zOsZ1UaGPjgYdGqRWnie_X8935_DuEPhWCUJPSJMph-rHRqsNIKFCGiilVUJ4nh6ahzJ-w6ZTPZuLM5-nWTTkBVpZ8uxWr_ypqaANh262z_yDu9qbQAOcgdDiC2OF4L8GfegKIkGcM6q0hY4YvHf9Im0fYnBSW4t_RcwzqarEc2LzRQa0dy1OwXTObBQntlqB063Li2yjC2WL5q8vFnyxq1YVjv-u131XjgzttCECvN3bxq9vq3s4Rk4ZjZCf3u9oNTyRpm8raqlwiQKM6TqagcsEVHqyGYFsJmkY3KnIXU7iwNJD21Yb21r5DN3OF1frpT3lyPpnIbDzLPq8uI1tTzK69-wIre2g_YVTwHto_Oh3PvrUzNbhfnpTZPWK3w-vLjb98m-1ym2_S2CjZU_TEOxf4yIHiGXqgy-fo0XGo6fcC_dgBBwZw4AAOHMCBK4MDOPCf4MAWHNiCA1twvETnJ-Ps-GvkC2pEeZrSTcQoLTgFayTmxYgSmis60rExSglCFBGGEa2N_eTc6LnRsdaWLzGPaUENj8kr1CurUr9BeERjlccFjzUodFaQuWFCjUxaCEOTeZz0URqGSuaebd4WPVnKkFZ4If0ISzvC0o1wHw3bbitHt3JXBx7kIL3N6GxBCUi6q-vHIDcJYrALZarU1VUtARaMCC6Y-Ms1YCqMGFjAtI9eO6G3T0w4BbcrJm_v0fsdetz9bd6j3mZ9pT-gh_n1ZlGvD9Aem_EDj9vf39uwSg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+and+holistic+analysis+of+multiple+multidimensional+soil+data+sets&rft.jtitle=Talanta+%28Oxford%29&rft.au=Pilkington%2C+Lisa+I&rft.au=Kerner%2C+William&rft.au=Bertoldi%2C+Daniela&rft.au=Larcher%2C+Roberto&rft.date=2024-07-01&rft.issn=0039-9140&rft.volume=274+p.125954-&rft_id=info:doi/10.1016%2Fj.talanta.2024.125954&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon