Fast algorithms of computing admissible intervals for discrete distributions with single parameter

It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In thi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied statistics Vol. 52; no. 3; pp. 687 - 701
Main Authors: Wang, Weizhen, Yu, Chongxiu, Zhang, Zhongzhan
Format: Journal Article
Language:English
Published: England Taylor & Francis 2025
Taylor & Francis Ltd
Subjects:
ISSN:0266-4763, 1360-0532
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size (n) or the random observation X is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms.
AbstractList It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size (n) or the random observation X is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms.It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size (n) or the random observation X is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms.
It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size (n) or the random observation X is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms.
It is of great interest to compute optimal exact confidence intervals for the success probability ( ) in a binomial distribution, the number of subjects with a certain attribute ( ) or the total number of subjects ( ) in a hypergeometric distribution, and the mean of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size ( ) or the random observation is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms.
Author Yu, Chongxiu
Wang, Weizhen
Zhang, Zhongzhan
Author_xml – sequence: 1
  givenname: Weizhen
  surname: Wang
  fullname: Wang, Weizhen
  organization: Wright State University
– sequence: 2
  givenname: Chongxiu
  surname: Yu
  fullname: Yu, Chongxiu
  email: yuchongxiu@163.com
  organization: Beijing University of Technology
– sequence: 3
  givenname: Zhongzhan
  surname: Zhang
  fullname: Zhang, Zhongzhan
  organization: Beijing University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39950019$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha2Kqiy0PwFkqZdesh3HseOcaIUKVELqpT1btuMsRom92A6If19HuyDgwMkj-XtP8-YdoQMfvEXohMCagIDvUHPetJyua6ibdU27mgD7gFaEcqiA0foArRamWqBDdJTSLQAIwugndEi7jgGQboX0hUoZq3EToss3U8JhwCZM2zk7v8Gqn1xKTo8WO59tvFdjwkOIuHfJRJvtMuTodMGDT_iheOBUlEWwVVFNBYmf0ceh6OyX_XuM_l38-nt-VV3_ufx9_vO6Mk3DcsVNT8lQMhnR9sxSoUBTwUlnO24M5YSZVmjdKm0a0wslWgq6b0Fo4NQMlB6js53vdtaT7Y31OapRbqObVHyUQTn5-se7G7kJ95IQQTinpDh82zvEcDfblGWJb-w4Km_DnCQtWLmm4F1Bv75Bb8Mcfcm3UIyzhjJRqNOXKz3v8nT_ArAdYGJIKdrhGSEgl57lU89y6Vnuey66Hzud86WOST2EOPYyq8cxxCEqb9yyx7sW_wGvPbCC
Cites_doi 10.2307/2333958
10.12776/qip.v23i2.1277
10.1161/JAHA.120.016997
10.1016/0167-7152(94)00166-6
10.1080/01621459.2014.966191
10.2105/AJPH.2018.304873
10.1093/biomet/26.4.404
10.1137/1110022
10.2307/3315916
10.1214/ss/1009213286
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group.
2024 Informa UK Limited, trading as Taylor & Francis Group
2024 Informa UK Limited, trading as Taylor & Francis Group 2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group.
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
NPM
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1080/02664763.2024.2392105
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
DocumentTitleAlternate JOURNAL OF APPLIED STATISTICS
EISSN 1360-0532
EndPage 701
ExternalDocumentID PMC11816631
39950019
10_1080_02664763_2024_2392105
2392105
Genre Research Article
Journal Article
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  grantid: 1222002
– fundername: National Natural Science Foundation of China
  grantid: 12271014
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBR
EBS
EBU
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K60
K6~
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQBIZ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
AEMOZ
AHQJS
AMVHM
CITATION
EBE
EBO
ECR
EMK
EPL
RPM
TH9
07G
1TA
8C1
8FE
8FG
8G5
AAIKQ
AAKBW
ABJCF
ABUWG
ACAGQ
ACGEE
ACTCW
ADBBV
AEUMN
AFKRA
AGCQS
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMEWO
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BPHCQ
BPLKW
C06
CAG
CCPQU
COF
CRFIH
DMQIW
DWIFK
DWQXO
EJD
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
IVXBP
K1G
K6V
K7-
L6V
M0C
M2O
M7S
NHB
NPM
NUSFT
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PTHSS
QCRFL
TAQ
TFMCV
UB9
UKHRP
UU8
V3K
V4Q
VH1
7SC
8FD
ALIPV
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c445t-6cd31f647c87d5e38a0b38619e96cc3615c78bb7abc4cd8a8730bd708b063cf33
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001292903100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4763
IngestDate Tue Nov 04 02:04:44 EST 2025
Sun Sep 28 06:55:01 EDT 2025
Wed Aug 13 07:09:00 EDT 2025
Tue Aug 19 01:31:04 EDT 2025
Sat Nov 29 03:53:07 EST 2025
Mon Oct 20 23:42:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords monotonic confidence limits
Clopper-Pearson-type interval
infimum coverage probability
62-08
Bisection method
62F99
exact confidence interval
Language English
License 2024 Informa UK Limited, trading as Taylor & Francis Group.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-6cd31f647c87d5e38a0b38619e96cc3615c78bb7abc4cd8a8730bd708b063cf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11816631
PMID 39950019
PQID 3165654358
PQPubID 32901
PageCount 15
ParticipantIDs proquest_journals_3165654358
pubmed_primary_39950019
crossref_primary_10_1080_02664763_2024_2392105
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11816631
informaworld_taylorfrancis_310_1080_02664763_2024_2392105
proquest_miscellaneous_3166763869
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Journal of applied statistics
PublicationTitleAlternate J Appl Stat
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
Bol'shev L.N. (e_1_3_2_5_1) 1965; 10
Wang W. (e_1_3_2_19_1) 2014; 24
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
Konijn H.S. (e_1_3_2_13_1) 1973
e_1_3_2_4_1
e_1_3_2_3_1
Wang H. (e_1_3_2_17_1) 2007; 17
Razavi A.C. (e_1_3_2_15_1) 2020; 9
Thompson S.K. (e_1_3_2_16_1) 2002
Chapman D.G. (e_1_3_2_8_1) 1951; 1
Khurshid A. (e_1_3_2_12_1) 2010; 6
Agresti A. (e_1_3_2_2_1) 2013
Lehmann E.L. (e_1_3_2_14_1) 2005
References_xml – volume-title: Categorical Data Analysis
  year: 2013
  ident: e_1_3_2_2_1
– volume-title: Sampling
  year: 2002
  ident: e_1_3_2_16_1
– ident: e_1_3_2_10_1
  doi: 10.2307/2333958
– ident: e_1_3_2_6_1
  doi: 10.12776/qip.v23i2.1277
– volume: 9
  start-page: e016997
  year: 2020
  ident: e_1_3_2_15_1
  article-title: Cardiovascular disease prevention and implications of coronavirus disease 2019: An evolving case study in the Crescent City
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.120.016997
– volume: 6
  start-page: 75
  year: 2010
  ident: e_1_3_2_12_1
  article-title: Binomial and Poisson confidence intervals and its variants: A bibliography
  publication-title: Pak. J. Sci. Res.
– volume-title: Statistical Theory of Sample Survey Design and Analysis
  year: 1973
  ident: e_1_3_2_13_1
– volume: 1
  start-page: 131
  year: 1951
  ident: e_1_3_2_8_1
  article-title: Some properties of the hypergeometric distribution with application to zoological sample censuses
  publication-title: Calif. Publ. Stat.
– ident: e_1_3_2_11_1
  doi: 10.1016/0167-7152(94)00166-6
– ident: e_1_3_2_18_1
  doi: 10.1080/01621459.2014.966191
– ident: e_1_3_2_3_1
  doi: 10.2105/AJPH.2018.304873
– volume-title: Testing Statistical Hypotheses
  year: 2005
  ident: e_1_3_2_14_1
– ident: e_1_3_2_9_1
  doi: 10.1093/biomet/26.4.404
– volume: 17
  start-page: 361
  year: 2007
  ident: e_1_3_2_17_1
  article-title: Exact confidence coefficients of confidence intervals for a binomial proportion
  publication-title: Stat. Sin.
– volume: 10
  start-page: 173
  year: 1965
  ident: e_1_3_2_5_1
  article-title: On the construction of confidence limits
  publication-title: Theor. Probab. Appl+.
  doi: 10.1137/1110022
– ident: e_1_3_2_4_1
  doi: 10.2307/3315916
– volume: 24
  start-page: 1389
  year: 2014
  ident: e_1_3_2_19_1
  article-title: An iterative construction of confidence intervals for a proportion
  publication-title: Stat. Sin.
– ident: e_1_3_2_7_1
  doi: 10.1214/ss/1009213286
SSID ssj0008153
Score 2.3684835
Snippet It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a...
It is of great interest to compute optimal exact confidence intervals for the success probability ( ) in a binomial distribution, the number of subjects with a...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 687
SubjectTerms 62-08
Algorithms
Bisection method
Clopper-Pearson-type interval
Confidence intervals
exact confidence interval
infimum coverage probability
monotonic confidence limits
Parameters
Poisson distribution
Statistical analysis
Title Fast algorithms of computing admissible intervals for discrete distributions with single parameter
URI https://www.tandfonline.com/doi/abs/10.1080/02664763.2024.2392105
https://www.ncbi.nlm.nih.gov/pubmed/39950019
https://www.proquest.com/docview/3165654358
https://www.proquest.com/docview/3166763869
https://pubmed.ncbi.nlm.nih.gov/PMC11816631
Volume 52
WOSCitedRecordID wos001292903100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1360-0532
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008153
  issn: 0266-4763
  databaseCode: TFW
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4B4kAPpQXahpeMxDWw2cSPHKuKVQ8U9UDF3qL4BSux2WoT-P3MOA-xCNRDuSWKJ4rtGc9nZ-YbgNORzznnFg3JJyLOEidihZ4hHlu8d-gUvA5VSy7l1ZWaTvPfXTRh3YVV0h7at0QRYa0m4y513UfEneO2QWRoF7i7G2dnY_TwSWAxRddPpnk9uRnWYpW0PJQoEZNIn8Pz1ltWvNMKd-lrCPRlIOUzzzTZfoc-fYKPHSxl31s9-gxrrtqBD78GTtd6B7YIl7a0zrugJ2XdsPL-drGcNXfzmi08M6FABLpCVlrUHrS1e8dmIaYSdZxhJxnlAC8RptPFUGqrZnQYzOjQAgWIi3xOMTp78Gdycf3jZ9yVa4hNlvEmFsamicdeGCUtd6kqRzpVuEFzuTAmRehkpNJaltpkxqpS4eKirRwpjTDJ-DT9AhvVonLfgGVeaM-t5CIkCktFHDYu4ykCNGNlEsFZP03F35aVo0h6stNuJAsayaIbyQjy55NZNOE4xLe1S4r0H7KH_cwXnYGTCAJhjlhTRXAyPMbBpf8tZeUWD6GNwJcpkUfwtVWU4Wspo5jgdQRqRYWGBkT7vfqkmt0F-m9KFUacmOz_R58OYGtMhYzDWdIhbDTLB3cEm-YR9Wh5DOtyqo6DJT0BsHgavQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4hQCo98GqhphQWqVfTOPau10dUEVERcgqCm-V9NZHAQYnp7-_M-qEEUfUAN0f2WN7dmZ1vJzPfAHzvuYxzbtCQXCTCJLIilOgZwr7B3xadglO-a8kwHY3k_X22XAtDaZV0hnY1UYTfq8m4KRjdpsT9wHODSNAw8HjXT8776OIjojHd4OhriT9_PLjrdmMZ1UyUKBKSTFvF86_XrPinFfbS1zDoy1TKJd802HmPUe3CdoNM2UWtSnuwZst9-HjT0bou9mGLoGnN7PwJ1KBYVKx4-D2bT6vJ44LNHNO-RwR6Q1YYVCA0twfLpj6tEtWc4SgZlQHPEanTRddta8EoHswoboECREf-SGk6n-F2cDn-eRU2HRtCnSS8CoU2ceRwFFqmhttYFj0VSzyj2UxoHSN60qlUKi2UTrSRhcT9RZm0JxUiJe3i-ADWy1lpvwBLnFCOm5QLXyucSqKxsQmPEaNpk0YBnLfrlD_VxBx51PKdNjOZ00zmzUwGkC2vZl75iIir25fk8X9kj9ulzxsbJxHEwhzhpgzgrLuNk0t_uRSlnT37ZwS-TIosgMNaU7qvpaJiQtgByBUd6h4g5u_VO-V04hnAqVoYoWJ09IYxncKHq_HNMB_-Gl1_ha0-9TX2oaVjWK_mz_YbbOo_qFPzE29QfwHWFh3_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VUFX0wKuFhkdxpV5DN5vYcY4IiKhKVxxA5RbFL1gJsmgT-vs74zzEolYcyi1RPFFsz3g-OzPfAHwduYxzbtCQXCTCJLIilOgZwrHBe4tOwSlfteQ8nUzk9XV20UUT1l1YJe2hXUsU4ddqMu4H4_qIuG-4bRAJ2gXu7sbJ4Rg9fEQspssInQUp-WX-a1iMZdQSUaJISDJ9Es-_XrPgnhbIS_8GQZ9HUj5xTfnaK3RqHVY7XMqOWkXagDe22oT3PwdS13oTVgiYtrzOH0DlZd2w8u5mNp82t_c1mzmmfYUI9IWsNKg-aGx3lk19UCUqOcNOMkoCniNOp4uh1lbN6DSY0akFChAZ-T0F6XyEq_z08vgs7Oo1hDpJeBMKbeLIYS-0TA23sSxHKpa4Q7OZ0DpG7KRTqVRaKp1oI0uJq4sy6UgqxEnaxfEWLFWzyn4CljihHDcpFz5TOJVEYmMTHiNC0yaNAjjsp6l4aGk5iqhnO-1GsqCRLLqRDCB7OplF489DXFu8pIhfkN3rZ77oLJxEEAlzBJsygC_DYxxc-uFSVnb26NsIfJkUWQDbraIMX0spxYSvA5ALKjQ0IN7vxSfV9Nbzf1OuMALFaOc_-nQA7y5O8uL8--THLqyMqaixP1fag6Vm_mj34a3-jSo1_-zN6Q9j6Ryx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+algorithms+of+computing+admissible+intervals+for+discrete+distributions+with+single+parameter&rft.jtitle=Journal+of+applied+statistics&rft.au=Wang%2C+Weizhen&rft.au=Yu%2C+Chongxiu&rft.au=Zhang%2C+Zhongzhan&rft.date=2025&rft.issn=0266-4763&rft.volume=52&rft.issue=3&rft.spage=687&rft_id=info:doi/10.1080%2F02664763.2024.2392105&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon