Fast algorithms of computing admissible intervals for discrete distributions with single parameter
It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In thi...
Saved in:
| Published in: | Journal of applied statistics Vol. 52; no. 3; pp. 687 - 701 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Taylor & Francis
2025
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0266-4763, 1360-0532 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size (n) or the random observation X is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms. |
|---|---|
| AbstractList | It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size (n) or the random observation X is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms.It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size (n) or the random observation X is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms. It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a certain attribute (M) or the total number of subjects (N) in a hypergeometric distribution, and the mean λ of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size (n) or the random observation X is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms. It is of great interest to compute optimal exact confidence intervals for the success probability ( ) in a binomial distribution, the number of subjects with a certain attribute ( ) or the total number of subjects ( ) in a hypergeometric distribution, and the mean of a Poisson distribution. In this paper, efficient algorithms are proposed to compute an admissible exact interval for each of the four parameters when the sample size ( ) or the random observation is large. The algorithms are utilized in four practical examples: evaluating the relationship between two diseases, certifying companies, estimating the proportion of drug users, and analyzing earthquake frequency. The intervals computed by the algorithms are shorter, and the calculations are faster, demonstrating the accuracy of the results and the time efficiency of the proposed algorithms. |
| Author | Yu, Chongxiu Wang, Weizhen Zhang, Zhongzhan |
| Author_xml | – sequence: 1 givenname: Weizhen surname: Wang fullname: Wang, Weizhen organization: Wright State University – sequence: 2 givenname: Chongxiu surname: Yu fullname: Yu, Chongxiu email: yuchongxiu@163.com organization: Beijing University of Technology – sequence: 3 givenname: Zhongzhan surname: Zhang fullname: Zhang, Zhongzhan organization: Beijing University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39950019$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFP3DAQha2Kqiy0PwFkqZdesh3HseOcaIUKVELqpT1btuMsRom92A6If19HuyDgwMkj-XtP8-YdoQMfvEXohMCagIDvUHPetJyua6ibdU27mgD7gFaEcqiA0foArRamWqBDdJTSLQAIwugndEi7jgGQboX0hUoZq3EToss3U8JhwCZM2zk7v8Gqn1xKTo8WO59tvFdjwkOIuHfJRJvtMuTodMGDT_iheOBUlEWwVVFNBYmf0ceh6OyX_XuM_l38-nt-VV3_ufx9_vO6Mk3DcsVNT8lQMhnR9sxSoUBTwUlnO24M5YSZVmjdKm0a0wslWgq6b0Fo4NQMlB6js53vdtaT7Y31OapRbqObVHyUQTn5-se7G7kJ95IQQTinpDh82zvEcDfblGWJb-w4Km_DnCQtWLmm4F1Bv75Bb8Mcfcm3UIyzhjJRqNOXKz3v8nT_ArAdYGJIKdrhGSEgl57lU89y6Vnuey66Hzud86WOST2EOPYyq8cxxCEqb9yyx7sW_wGvPbCC |
| Cites_doi | 10.2307/2333958 10.12776/qip.v23i2.1277 10.1161/JAHA.120.016997 10.1016/0167-7152(94)00166-6 10.1080/01621459.2014.966191 10.2105/AJPH.2018.304873 10.1093/biomet/26.4.404 10.1137/1110022 10.2307/3315916 10.1214/ss/1009213286 |
| ContentType | Journal Article |
| Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 2024 Informa UK Limited, trading as Taylor & Francis Group. 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group. – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION NPM 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM |
| DOI | 10.1080/02664763.2024.2392105 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| DocumentTitleAlternate | JOURNAL OF APPLIED STATISTICS |
| EISSN | 1360-0532 |
| EndPage | 701 |
| ExternalDocumentID | PMC11816631 39950019 10_1080_02664763_2024_2392105 2392105 |
| Genre | Research Article Journal Article |
| GrantInformation_xml | – fundername: Beijing Natural Science Foundation grantid: 1222002 – fundername: National Natural Science Foundation of China grantid: 12271014 |
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBR EBS EBU E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K60 K6~ KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQBIZ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX AEMOZ AHQJS AMVHM CITATION EBE EBO ECR EMK EPL RPM TH9 07G 1TA 8C1 8FE 8FG 8G5 AAIKQ AAKBW ABJCF ABUWG ACAGQ ACGEE ACTCW ADBBV AEUMN AFKRA AGCQS AGLEN AGROQ AHMOU AI. ALCKM AMEWO AMXXU ARAPS AZQEC BCCOT BENPR BEZIV BGLVJ BPHCQ BPLKW C06 CAG CCPQU COF CRFIH DMQIW DWIFK DWQXO EJD FRNLG FYUFA GNUQQ GUQSH HCIFZ IVXBP K1G K6V K7- L6V M0C M2O M7S NHB NPM NUSFT P62 PHGZM PHGZT PJZUB PPXIY PQBZA PQGLB PQQKQ PRG PROAC PTHSS QCRFL TAQ TFMCV UB9 UKHRP UU8 V3K V4Q VH1 7SC 8FD ALIPV H8D JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c445t-6cd31f647c87d5e38a0b38619e96cc3615c78bb7abc4cd8a8730bd708b063cf33 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001292903100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-4763 |
| IngestDate | Tue Nov 04 02:04:44 EST 2025 Sun Sep 28 06:55:01 EDT 2025 Wed Aug 13 07:09:00 EDT 2025 Tue Aug 19 01:31:04 EDT 2025 Sat Nov 29 03:53:07 EST 2025 Mon Oct 20 23:42:57 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | monotonic confidence limits Clopper-Pearson-type interval infimum coverage probability 62-08 Bisection method 62F99 exact confidence interval |
| Language | English |
| License | 2024 Informa UK Limited, trading as Taylor & Francis Group. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c445t-6cd31f647c87d5e38a0b38619e96cc3615c78bb7abc4cd8a8730bd708b063cf33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11816631 |
| PMID | 39950019 |
| PQID | 3165654358 |
| PQPubID | 32901 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3165654358 pubmed_primary_39950019 crossref_primary_10_1080_02664763_2024_2392105 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11816631 informaworld_taylorfrancis_310_1080_02664763_2024_2392105 proquest_miscellaneous_3166763869 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Abingdon |
| PublicationTitle | Journal of applied statistics |
| PublicationTitleAlternate | J Appl Stat |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 Bol'shev L.N. (e_1_3_2_5_1) 1965; 10 Wang W. (e_1_3_2_19_1) 2014; 24 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_6_1 Konijn H.S. (e_1_3_2_13_1) 1973 e_1_3_2_4_1 e_1_3_2_3_1 Wang H. (e_1_3_2_17_1) 2007; 17 Razavi A.C. (e_1_3_2_15_1) 2020; 9 Thompson S.K. (e_1_3_2_16_1) 2002 Chapman D.G. (e_1_3_2_8_1) 1951; 1 Khurshid A. (e_1_3_2_12_1) 2010; 6 Agresti A. (e_1_3_2_2_1) 2013 Lehmann E.L. (e_1_3_2_14_1) 2005 |
| References_xml | – volume-title: Categorical Data Analysis year: 2013 ident: e_1_3_2_2_1 – volume-title: Sampling year: 2002 ident: e_1_3_2_16_1 – ident: e_1_3_2_10_1 doi: 10.2307/2333958 – ident: e_1_3_2_6_1 doi: 10.12776/qip.v23i2.1277 – volume: 9 start-page: e016997 year: 2020 ident: e_1_3_2_15_1 article-title: Cardiovascular disease prevention and implications of coronavirus disease 2019: An evolving case study in the Crescent City publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.120.016997 – volume: 6 start-page: 75 year: 2010 ident: e_1_3_2_12_1 article-title: Binomial and Poisson confidence intervals and its variants: A bibliography publication-title: Pak. J. Sci. Res. – volume-title: Statistical Theory of Sample Survey Design and Analysis year: 1973 ident: e_1_3_2_13_1 – volume: 1 start-page: 131 year: 1951 ident: e_1_3_2_8_1 article-title: Some properties of the hypergeometric distribution with application to zoological sample censuses publication-title: Calif. Publ. Stat. – ident: e_1_3_2_11_1 doi: 10.1016/0167-7152(94)00166-6 – ident: e_1_3_2_18_1 doi: 10.1080/01621459.2014.966191 – ident: e_1_3_2_3_1 doi: 10.2105/AJPH.2018.304873 – volume-title: Testing Statistical Hypotheses year: 2005 ident: e_1_3_2_14_1 – ident: e_1_3_2_9_1 doi: 10.1093/biomet/26.4.404 – volume: 17 start-page: 361 year: 2007 ident: e_1_3_2_17_1 article-title: Exact confidence coefficients of confidence intervals for a binomial proportion publication-title: Stat. Sin. – volume: 10 start-page: 173 year: 1965 ident: e_1_3_2_5_1 article-title: On the construction of confidence limits publication-title: Theor. Probab. Appl+. doi: 10.1137/1110022 – ident: e_1_3_2_4_1 doi: 10.2307/3315916 – volume: 24 start-page: 1389 year: 2014 ident: e_1_3_2_19_1 article-title: An iterative construction of confidence intervals for a proportion publication-title: Stat. Sin. – ident: e_1_3_2_7_1 doi: 10.1214/ss/1009213286 |
| SSID | ssj0008153 |
| Score | 2.3684835 |
| Snippet | It is of great interest to compute optimal exact confidence intervals for the success probability (p) in a binomial distribution, the number of subjects with a... It is of great interest to compute optimal exact confidence intervals for the success probability ( ) in a binomial distribution, the number of subjects with a... |
| SourceID | pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 687 |
| SubjectTerms | 62-08 Algorithms Bisection method Clopper-Pearson-type interval Confidence intervals exact confidence interval infimum coverage probability monotonic confidence limits Parameters Poisson distribution Statistical analysis |
| Title | Fast algorithms of computing admissible intervals for discrete distributions with single parameter |
| URI | https://www.tandfonline.com/doi/abs/10.1080/02664763.2024.2392105 https://www.ncbi.nlm.nih.gov/pubmed/39950019 https://www.proquest.com/docview/3165654358 https://www.proquest.com/docview/3166763869 https://pubmed.ncbi.nlm.nih.gov/PMC11816631 |
| Volume | 52 |
| WOSCitedRecordID | wos001292903100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1360-0532 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008153 issn: 0266-4763 databaseCode: TFW dateStart: 19840101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5UPOjB96O-iOC1um36SI8iLl4UD4p7K0ma6IJ2ZVv9_c6kD1xRPOitkE5okpnMN-nkG4CTIsnQSZjMN1GMAQo3ia-ESX1EpprHKkyMkq7YRHpzI0aj7LbNJqzatEqKoW1DFOH2ajJuqaouI-4Mw4YkQrvA6C6MTkP08IFjMUXXT6Z5N3zo92IRNDyUKOGTSHeH56deZrzTDHfpdwj0ayLlJ880XP2HMa3BSgtL2XmjR-swZ8oNWL7uOV2rDVgiXNrQOm-CGsqqZvL5cTId108vFZtYpl2BCHSFTBaoPWhrz4aNXU4l6jjDQTK6AzxFmE4PfamtitFhMKNDCxQgLvIXytHZgvvh5d3Fld-Wa_B1FMW1n-iCBxZHoUVaxIYLOVBcYIBmskRrjtBJp0KpVCod6UJIgZuLKtKBUAiTtOV8GxbKSWl2gYWDAsNIgWBM2EhmgTQ2tAgtbawG2ujIg9NumfLXhpUjDzqy03Ymc5rJvJ1JD7LPi5nX7jjENrVLcv6L7EG38nlr4CSCQDhGrCk8OO6bcXLpf4sszeTNvZNgZyLJPNhpFKX_WrpRTPDaAzGjQv0LRPs921KOnxz9N10VRpwY7P1hTPuwFFIhY3eWdAAL9fTNHMKifkc9mh7BfDoSR86SPgA9Uhvt |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-QwDLYQIAEHYGGB8tgN0l7LTps-0iNCjEDAnGYFtypJExgJOmim8Pux04dmEGgPcKvUumoSO_7sxp8B_hRJhk7CZL6JYgxQuEl8JUzqIzLVPFZhYpR0zSbSwUDc3WWztTB0rJJiaFsTRbi9moybktHtkbi_GDckERoGhndhdBKiiw-IxnQpRl9L_PnD_m23G4ugZqJEEZ9k2iqez14z55_m2Es_wqDvj1LO-Kb-xneMahPWG2TKTmtV-gELptyCtZuO1nW6BasETWtm521QfTmtmHy8H09G1cPTlI0t065HBHpDJgtUIDS3R8NG7lglqjnDUTIqA54gUqeLrtvWlFE-mFHeAgWIjvyJjun8hH_98-HZhd90bPB1FMWVn-iCBxZHoUVaxIYL2VNcYIxmskRrjuhJp0KpVCod6UJIgfuLKtKeUIiUtOV8BxbLcWn2gIW9AiNJgXhM2EhmgTQ2tIgubax62ujIg5N2nfLnmpgjD1q-02Ymc5rJvJlJD7LZ1cwrlxGxdfuSnP9H9rBd-ryxcRJBLBwj3BQeHHe3cXLpl4sszfjFPZPgy0SSebBba0r3tVRUTAjbAzGnQ90DxPw9f6ccPTgGcKoWRqgY7H9hTL9h5WJ4c51fXw6uDmA1pL7GLrV0CIvV5MUcwbJ-RZ2a_HIG9QZrMx8v |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VtEL00AePkpZSI3ENbOLEcY5V26gV7YoDCG6R7diwEmTRJvD7O-M8xCJQD_QWyRkrtmc83zjjbwD2K5Gjk7B5aJMUAxRuRailzUJEpoanOhZWK19sIptO5fl5ftxnEzZ9WiXF0K4jivB7NRn3TeWGjLhDDBtEgnaB0V2cHMTo4SNiMX2J0FmQkp8UZ-NmLKOOiBJFQpIZLvE81c2Se1oiL30Mgj7MpLznmoq3_2FQ7-BNj0vZ106R3sMLW6_D6z8jqWuzDmsETDte5w3QhWpapq4u5otZe3ndsLljxleIQF_IVIXqg8Z2ZdnMJ1WikjMcJKNLwAvE6fQw1tpqGJ0GMzq1QAEiI7-mJJ1NOC1-nHz7Gfb1GkKTJGkbClPxyOEojMyq1HKpJppLjNBsLozhiJ1MJrXOlDaJqaSSuLvoKptIjTjJOM63YKWe13YbWDypMI6UiMakS1QeKetih9jSpXpirEkCOBiWqbzpaDnKaGA77WeypJks-5kMIL-_mGXrz0NcV7yk5P-Q3RlWvuwtnEQQCacINmUAe2MzTi79cFG1nd_6dwR2JkUewIdOUcavpSvFhK8DkEsqNL5AvN_LLfXs0vN_011hBIrRx2eM6QusHn8vyt-_pkefYC2mosb-XGkHVtrFrf0Mr8wdqtRi15vTX_cFHeE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+algorithms+of+computing+admissible+intervals+for+discrete+distributions+with+single+parameter&rft.jtitle=Journal+of+applied+statistics&rft.au=Wang%2C+Weizhen&rft.au=Yu%2C+Chongxiu&rft.au=Zhang%2C+Zhongzhan&rft.date=2025&rft.issn=0266-4763&rft.volume=52&rft.issue=3&rft.spage=687&rft_id=info:doi/10.1080%2F02664763.2024.2392105&rft_id=info%3Apmid%2F39950019&rft.externalDocID=39950019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |