Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease

In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring is deeply investigated, and a sparse automatic coding deep neural network with a four layers stack structure is designed to automatically ex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in neuroscience Ročník 14; s. 618481
Hlavní autori: Zhu, Xi, Xia, Wei, Bao, Zhuqing, Zhong, Yaohui, Fang, Yu, Yang, Fei, Gu, Xiaohua, Ye, Jing, Huang, Wennuo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Research Foundation 10.02.2021
Frontiers Media S.A
Predmet:
ISSN:1662-453X, 1662-4548, 1662-453X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring is deeply investigated, and a sparse automatic coding deep neural network with a four layers stack structure is designed to automatically extract the deep features of the segmented dynamic video image shot, and six categories of normal, atrial premature, ventricular premature, right bundle branch block, left bundle branch block, and pacing are achieved through hierarchical training and optimization. Accurate recognition of heartbeats with an average accuracy of 99.5%. It provides technical assistance for the intelligent prediction of high-risk cardiovascular diseases like ventricular fibrillation. An intelligent prediction algorithm for sudden cardiac death based on the echolocation network was proposed. By designing an echolocation network with a multilayer serial structure, an intelligent distinction between sudden cardiac death signal and non-sudden death signal was realized, and the signal was predicted 5 min before sudden death occurred, with an average prediction accuracy of 94.32%. Using the self-learning capability of stack sparse auto-coding network, a large amount of label-free data is designed to train the stack sparse auto-coding deep neural network to automatically extract deep representations of plaque features. A small amount of labeled data then introduced to micro-train the entire network. Through the automatic analysis of the fiber cap thickness in the plaques, the automatic identification of thin fiber cap-like vulnerable plaques was achieved, and the average overlap of vulnerable regions reached 87%. The overall time for the automatic plaque and vulnerable plaque recognition algorithm was 0.54 s. It provides theoretical support for accurate diagnosis and endogenous analysis of high-risk cardiovascular diseases.
AbstractList In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring is deeply investigated, and a sparse automatic coding deep neural network with a four-layer stack structure is designed to automatically extract the deep features of the segmented dynamic video image shot, and six categories of normal, atrial premature, ventricular premature, right bundle branch block, left bundle branch block and pacing are achieved through hierarchical training and optimization. Accurate recognition of heartbeats is with an average accuracy of 99.5%. It provides technical assistance for the intelligent prediction of high-risk cardiovascular diseases like ventricular fibrillation. An intelligent prediction algorithm for sudden cardiac death based on the echolocation network was proposed. By designing an echolocation network with a multilayer serial structure, an intelligent distinction between sudden cardiac death signal and non-sudden death signal was realized, and the signal was predicted 5 minutes before sudden death occurred, with an average prediction accuracy of 94.32%. Using the self-learning capability of stack sparse auto-coding network, a large amount of label-free data is designed to train the stack sparse auto-coding deep neural network to automatically extract deep representations of plaque features. A small amount of labeled data is then introduced to micro-train the entire network. Through the automatic analysis of the fiber cap thickness in the plaques, the automatic identification of thin fiber cap-like vulnerable plaques was achieved, and the average overlap of vulnerable regions reached 87%. The overall time for the automatic plaque and vulnerable plaque recognition algorithm was 0.54 seconds. It provides theoretical support for accurate diagnosis and endogenous analysis of high-risk cardiovascular diseases.
In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring is deeply investigated, and a sparse automatic coding deep neural network with a four layers stack structure is designed to automatically extract the deep features of the segmented dynamic video image shot, and six categories of normal, atrial premature, ventricular premature, right bundle branch block, left bundle branch block, and pacing are achieved through hierarchical training and optimization. Accurate recognition of heartbeats with an average accuracy of 99.5%. It provides technical assistance for the intelligent prediction of high-risk cardiovascular diseases like ventricular fibrillation. An intelligent prediction algorithm for sudden cardiac death based on the echolocation network was proposed. By designing an echolocation network with a multilayer serial structure, an intelligent distinction between sudden cardiac death signal and non-sudden death signal was realized, and the signal was predicted 5 min before sudden death occurred, with an average prediction accuracy of 94.32%. Using the self-learning capability of stack sparse auto-coding network, a large amount of label-free data is designed to train the stack sparse auto-coding deep neural network to automatically extract deep representations of plaque features. A small amount of labeled data then introduced to micro-train the entire network. Through the automatic analysis of the fiber cap thickness in the plaques, the automatic identification of thin fiber cap-like vulnerable plaques was achieved, and the average overlap of vulnerable regions reached 87%. The overall time for the automatic plaque and vulnerable plaque recognition algorithm was 0.54 s. It provides theoretical support for accurate diagnosis and endogenous analysis of high-risk cardiovascular diseases.
In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring is deeply investigated, and a sparse automatic coding deep neural network with a four layers stack structure is designed to automatically extract the deep features of the segmented dynamic video image shot, and six categories of normal, atrial premature, ventricular premature, right bundle branch block, left bundle branch block, and pacing are achieved through hierarchical training and optimization. Accurate recognition of heartbeats with an average accuracy of 99.5%. It provides technical assistance for the intelligent prediction of high-risk cardiovascular diseases like ventricular fibrillation. An intelligent prediction algorithm for sudden cardiac death based on the echolocation network was proposed. By designing an echolocation network with a multilayer serial structure, an intelligent distinction between sudden cardiac death signal and non-sudden death signal was realized, and the signal was predicted 5 min before sudden death occurred, with an average prediction accuracy of 94.32%. Using the self-learning capability of stack sparse auto-coding network, a large amount of label-free data is designed to train the stack sparse auto-coding deep neural network to automatically extract deep representations of plaque features. A small amount of labeled data then introduced to micro-train the entire network. Through the automatic analysis of the fiber cap thickness in the plaques, the automatic identification of thin fiber cap-like vulnerable plaques was achieved, and the average overlap of vulnerable regions reached 87%. The overall time for the automatic plaque and vulnerable plaque recognition algorithm was 0.54 s. It provides theoretical support for accurate diagnosis and endogenous analysis of high-risk cardiovascular diseases.In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring is deeply investigated, and a sparse automatic coding deep neural network with a four layers stack structure is designed to automatically extract the deep features of the segmented dynamic video image shot, and six categories of normal, atrial premature, ventricular premature, right bundle branch block, left bundle branch block, and pacing are achieved through hierarchical training and optimization. Accurate recognition of heartbeats with an average accuracy of 99.5%. It provides technical assistance for the intelligent prediction of high-risk cardiovascular diseases like ventricular fibrillation. An intelligent prediction algorithm for sudden cardiac death based on the echolocation network was proposed. By designing an echolocation network with a multilayer serial structure, an intelligent distinction between sudden cardiac death signal and non-sudden death signal was realized, and the signal was predicted 5 min before sudden death occurred, with an average prediction accuracy of 94.32%. Using the self-learning capability of stack sparse auto-coding network, a large amount of label-free data is designed to train the stack sparse auto-coding deep neural network to automatically extract deep representations of plaque features. A small amount of labeled data then introduced to micro-train the entire network. Through the automatic analysis of the fiber cap thickness in the plaques, the automatic identification of thin fiber cap-like vulnerable plaques was achieved, and the average overlap of vulnerable regions reached 87%. The overall time for the automatic plaque and vulnerable plaque recognition algorithm was 0.54 s. It provides theoretical support for accurate diagnosis and endogenous analysis of high-risk cardiovascular diseases.
Author Xia, Wei
Gu, Xiaohua
Ye, Jing
Zhu, Xi
Zhong, Yaohui
Huang, Wennuo
Bao, Zhuqing
Fang, Yu
Yang, Fei
AuthorAffiliation 2 Department of Computer Science and Technology, Nanjing University , Nanjing , China
1 Clinical Medical College, Yangzhou University , Yangzhou , China
AuthorAffiliation_xml – name: 2 Department of Computer Science and Technology, Nanjing University , Nanjing , China
– name: 1 Clinical Medical College, Yangzhou University , Yangzhou , China
Author_xml – sequence: 1
  givenname: Xi
  surname: Zhu
  fullname: Zhu, Xi
– sequence: 2
  givenname: Wei
  surname: Xia
  fullname: Xia, Wei
– sequence: 3
  givenname: Zhuqing
  surname: Bao
  fullname: Bao, Zhuqing
– sequence: 4
  givenname: Yaohui
  surname: Zhong
  fullname: Zhong, Yaohui
– sequence: 5
  givenname: Yu
  surname: Fang
  fullname: Fang, Yu
– sequence: 6
  givenname: Fei
  surname: Yang
  fullname: Yang, Fei
– sequence: 7
  givenname: Xiaohua
  surname: Gu
  fullname: Gu, Xiaohua
– sequence: 8
  givenname: Jing
  surname: Ye
  fullname: Ye, Jing
– sequence: 9
  givenname: Wennuo
  surname: Huang
  fullname: Huang, Wennuo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33642970$$D View this record in MEDLINE/PubMed
BookMark eNpdkktrGzEURkVJaR7tD-imCLrpxq5eM9JsCsbuwxDoog-6E5LmjiMzI6XSjMG7_vRq4jQkXUlcHY6uPt1LdBZiAIReU7LkXDXvu-BDXjLCyLKmSij6DF3QumYLUfFfZ4_25-gy5z0hNVOCvUDnnNeCNZJcoD-rNPrOO296vA0j9L3fQXCAv8FugFJo8eYYzOAd_ulbiHg7mB1k3MWE1zGMPkx-POJVMP0x-4x9wOMN4A2M4EYfA45dUR0gAV6b1Pp4MNlNvUl44zOYDC_R8870GV7dr1fox6eP39dfFtdfP2_Xq-uFE6IaF7UTVeVk01nHKimoBWuVUk5wR6QAYLa8tWslg9q20jS8sZ2ra-5aKTppDL9C25O3jWavb5MfTDrqaLy-K8S006ZE4XrQrSMWJBinlBGEMtsoaV252lDFqZpdH06u28kO0LqSUzL9E-nTk-Bv9C4etGwIU4oUwbt7QYq_J8ijHnx2JXwTIE5ZM9EIpahqaEHf_ofu45RK3DM1uzhvqkK9edzRQyv_ProA9AS4FHNO0D0glOh5mPTdMOl5mPRpmPhfc5LA1w
Cites_doi 10.1007/s00138-018-00998-3
10.1073/pnas.1813476116
10.1080/10572252.2018.1528388
10.1504/ijbra.2020.10030363
10.2214/ajr.19.21258
10.1109/tip.2017.2725582
10.1002/ppul.23930
10.12785/ijcds/070401
10.1007/s13042-017-0678-4
10.1109/jstsp.2019.2955022
10.1007/s11045-017-0483-y
10.1089/tmj.2020.0006
10.1016/j.jcct.2017.11.004
10.1007/s13177-015-0112-9
10.1007/s10115-019-01337-2
10.1016/j.ipm.2018.01.010
10.1016/j.tics.2019.05.004
10.1148/rg.2016150223
10.1109/tmi.2019.2900031
10.2478/dim-2018-0014
10.1145/3131896
10.1145/3329119
10.1167/tvst.9.2.43
10.3233/ip-190128
10.1007/s10462-019-09719-2
10.1007/s12652-017-0511-7
10.1007/s10115-016-0987-z
10.1145/3214284
10.1145/3411832
10.1093/jcr/ucx104
10.1177/0954411919900720
ContentType Journal Article
Copyright Copyright © 2021 Zhu, Xia, Bao, Zhong, Fang, Yang, Gu, Ye and Huang.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Zhu, Xia, Bao, Zhong, Fang, Yang, Gu, Ye and Huang. 2021 Zhu, Xia, Bao, Zhong, Fang, Yang, Gu, Ye and Huang
Copyright_xml – notice: Copyright © 2021 Zhu, Xia, Bao, Zhong, Fang, Yang, Gu, Ye and Huang.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Zhu, Xia, Bao, Zhong, Fang, Yang, Gu, Ye and Huang. 2021 Zhu, Xia, Bao, Zhong, Fang, Yang, Gu, Ye and Huang
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2020.618481
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central - New (Subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_dc0be7eac88a4012b987bc9fba18318a
PMC7902880
33642970
10_3389_fnins_2020_618481
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
ACXDI
C1A
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c445t-6c455c79fbc25741bebb888c43c074ee2b662fd72e6bd7a939bfc663cd74f7aa3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620973400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Mon Nov 10 04:33:54 EST 2025
Tue Nov 04 02:02:23 EST 2025
Thu Sep 04 16:02:23 EDT 2025
Fri Jul 25 11:45:25 EDT 2025
Mon Jul 21 05:52:30 EDT 2025
Sat Nov 29 02:54:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords segmented dynamic
detection of severe cardiovascular disease
video imaging
continuity analysis
artificial intelligence
Language English
License Copyright © 2021 Zhu, Xia, Bao, Zhong, Fang, Yang, Gu, Ye and Huang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-6c455c79fbc25741bebb888c43c074ee2b662fd72e6bd7a939bfc663cd74f7aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Reviewed by: Jing Xue, Wuxi People’s Hospital Affiliated to Nanjing Medical University, China; Yufeng Yao, Changshu Institute of Technology, China
These authors have contributed equally to this work
Edited by: Yizhang Jiang, Jiangnan University, China
OpenAccessLink https://doaj.org/article/dc0be7eac88a4012b987bc9fba18318a
PMID 33642970
PQID 2488033395
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_dc0be7eac88a4012b987bc9fba18318a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7902880
proquest_miscellaneous_2494881891
proquest_journals_2488033395
pubmed_primary_33642970
crossref_primary_10_3389_fnins_2020_618481
PublicationCentury 2000
PublicationDate 2021-02-10
PublicationDateYYYYMMDD 2021-02-10
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Ali (B1) 2018; 7
Mariakakis (B21) 2017; 1
Ren (B26) 2019; 38
Eldib (B10) 2018; 9
Xiao (B31) 2019; 30
Sonkusare (B30) 2019; 23
Costa (B5) 2019; 116
Horton (B15) 2020; 26
Craye (B6) 2016; 14
Humphreys (B16) 2018; 44
Yang (B32) 2020; 26
Nascimento (B23) 2017; 26
Deldari (B8) 2020; 4
Lee (B19) 2019; 213
Musial (B22) 2020; 9
Eriksson (B11) 2019; 28
Banerjee (B3) 2019; 60
Pasterkamp (B24) 2018; 53
Randive (B25) 2020; 16
Hong (B14) 2018; 2
Bechar (B4) 2018; 29
Shinbane (B29) 2018; 12
Darwish (B7) 2020; 53
Salekin (B28) 2018; 2
Fan (B12) 2019; 52
Haider (B13) 2019; 14
Aminikhanghahi (B2) 2017; 51
Jeannot (B17) 2019; 24
Latha (B18) 2020; 234
Luo (B20) 2018; 9
Diehn (B9) 2016; 36
Saggi (B27) 2018; 54
References_xml – volume: 30
  start-page: 423
  year: 2019
  ident: B31
  article-title: Major automatic diabetic retinopathy screening systems and related core algorithms: a review.
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-018-00998-3
– volume: 116
  start-page: 1501
  year: 2019
  ident: B5
  article-title: Adaptive, locally linear models of complex dynamics.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1813476116
– volume: 28
  start-page: 69
  year: 2019
  ident: B11
  article-title: Live-action communication design: a technical how-to video case study.
  publication-title: Techn. Commun. Q.
  doi: 10.1080/10572252.2018.1528388
– volume: 16
  start-page: 120
  year: 2020
  ident: B25
  article-title: Intelligent model for diabetic retinopathy diagnosis: a hybridised approach.
  publication-title: Int. J. Bioinform. Res. Appl.
  doi: 10.1504/ijbra.2020.10030363
– volume: 213
  start-page: 807
  year: 2019
  ident: B19
  article-title: Sleeve lobectomy for non–small cell lung cancers: predictive CT features for resectability and outcome analysis.
  publication-title: AJR
  doi: 10.2214/ajr.19.21258
– volume: 26
  start-page: 4978
  year: 2017
  ident: B23
  article-title: Deep learning on sparse manifolds for faster object segmentation.
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2017.2725582
– volume: 53
  start-page: 243
  year: 2018
  ident: B24
  article-title: The highs and lows of wheezing: a review of the most popular adventitious lung sound.
  publication-title: Pediatr. Pulmonol.
  doi: 10.1002/ppul.23930
– volume: 7
  start-page: 175
  year: 2018
  ident: B1
  article-title: Adaptive multi-connection DASH scalable video coding for wireless area networks.
  publication-title: Int. J. Comput. Digital Syst.
  doi: 10.12785/ijcds/070401
– volume: 9
  start-page: 1741
  year: 2018
  ident: B20
  article-title: Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model.
  publication-title: Int. J. Mach. Learn. Cybernet.
  doi: 10.1007/s13042-017-0678-4
– volume: 14
  start-page: 272
  year: 2019
  ident: B13
  article-title: An assessment of paralinguistic acoustic features for detection of Alzheimer’s dementia in spontaneous speech.
  publication-title: IEEE J. Select. Top. Signal Process.
  doi: 10.1109/jstsp.2019.2955022
– volume: 29
  start-page: 979
  year: 2018
  ident: B4
  article-title: Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease.
  publication-title: Multidimensional Syst. Signal Process.
  doi: 10.1007/s11045-017-0483-y
– volume: 26
  start-page: 495
  year: 2020
  ident: B15
  article-title: Practice guidelines for ocular telehealth-diabetic retinopathy.
  publication-title: Telemed. e-Health
  doi: 10.1089/tmj.2020.0006
– volume: 12
  start-page: 16
  year: 2018
  ident: B29
  article-title: Virtual medicine: utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation.
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2017.11.004
– volume: 14
  start-page: 173
  year: 2016
  ident: B6
  article-title: A multi-modal driver fatigue and distraction assessment system.
  publication-title: Int. J. Intellig. Transport. Syst. Res.
  doi: 10.1007/s13177-015-0112-9
– volume: 60
  start-page: 1693
  year: 2019
  ident: B3
  article-title: A deep transfer learning approach for improved post-traumatic stress disorder diagnosis.
  publication-title: Knowl. Inform. Syst.
  doi: 10.1007/s10115-019-01337-2
– volume: 54
  start-page: 758
  year: 2018
  ident: B27
  article-title: A survey towards an integration of big data analytics to big insights for value-creation.
  publication-title: Inform. Process. Manag.
  doi: 10.1016/j.ipm.2018.01.010
– volume: 23
  start-page: 699
  year: 2019
  ident: B30
  article-title: Naturalistic stimuli in neuroscience: critically acclaimed.
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2019.05.004
– volume: 36
  start-page: 801
  year: 2016
  ident: B9
  article-title: Uncommon manifestations of intervertebral disk pathologic conditions.
  publication-title: Radiographics
  doi: 10.1148/rg.2016150223
– volume: 38
  start-page: 2400
  year: 2019
  ident: B26
  article-title: A statistical shape-constrained reconstruction framework for electrical impedance tomography.
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2019.2900031
– volume: 2
  start-page: 175
  year: 2018
  ident: B14
  article-title: Big data in health care: applications and challenges.
  publication-title: Data Inform. Manag.
  doi: 10.2478/dim-2018-0014
– volume: 1
  start-page: 1
  year: 2017
  ident: B21
  article-title: PupilScreen: using smartphones to assess traumatic brain injury.
  publication-title: Proc. ACM Interact., Mobile Wearable Ubiquitous Technol.
  doi: 10.1145/3131896
– volume: 52
  start-page: 1
  year: 2019
  ident: B12
  article-title: A survey on 360 video streaming: acquisition, transmission, and display.
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3329119
– volume: 9
  year: 2020
  ident: B22
  article-title: Automatic segmentation of retinal capillaries in adaptive optics scanning laser ophthalmoscope perfusion images using a convolutional neural network.
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.43
– volume: 24
  start-page: 325
  year: 2019
  ident: B17
  article-title: Smart city projects in the continuity of the urban socio-technical regime: the french case.
  publication-title: Inform. Polity
  doi: 10.3233/ip-190128
– volume: 53
  start-page: 1767
  year: 2020
  ident: B7
  article-title: A survey of swarm and evolutionary computing approaches for deep learning.
  publication-title: Artif. Intellig. Rev.
  doi: 10.1007/s10462-019-09719-2
– volume: 9
  start-page: 381
  year: 2018
  ident: B10
  article-title: Discovering activity patterns in office environment using a network of low-resolution visual sensors.
  publication-title: J. Ambient Intellig. Hum. Comput.
  doi: 10.1007/s12652-017-0511-7
– volume: 26
  start-page: 2485
  year: 2020
  ident: B32
  article-title: Noise-resilient reconstruction of panoramas and 3D scenes using robot-mounted unsynchronized commodity RGB-D cameras.
  publication-title: IEEE Trans. Visualization Comput. Graph.
– volume: 51
  start-page: 339
  year: 2017
  ident: B2
  article-title: A survey of methods for time series change point detection.
  publication-title: Knowl. Inform. Syst.
  doi: 10.1007/s10115-016-0987-z
– volume: 2
  start-page: 1
  year: 2018
  ident: B28
  article-title: A weakly supervised learning framework for detecting social anxiety and depression.
  publication-title: Proc. ACM interact. Mobile Wearable Ubiquitous Technol.
  doi: 10.1145/3214284
– volume: 4
  start-page: 1
  year: 2020
  ident: B8
  article-title: ESPRESSO: entropy and ShaPe awaRe timE-Series SegmentatiOn for processing heterogeneous sensor data.
  publication-title: Proc. ACM Interact. Mobile Wearable Ubiquitous Technol.
  doi: 10.1145/3411832
– volume: 44
  start-page: 1274
  year: 2018
  ident: B16
  article-title: Automated text analysis for consumer research.
  publication-title: J. Consum. Res.
  doi: 10.1093/jcr/ucx104
– volume: 234
  start-page: 417
  year: 2020
  ident: B18
  article-title: Carotid artery ultrasound image analysis: a review of the literature.
  publication-title: Proc. Instit. Mech. Eng. H J. Eng. Med.
  doi: 10.1177/0954411919900720
SSID ssj0062842
Score 2.2630475
Snippet In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 618481
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Behavior
Cardiac arrhythmia
Cardiovascular disease
Cardiovascular diseases
Cerebrovascular diseases
continuity analysis
Death
detection of severe cardiovascular disease
Echolocation
Electrocardiography
Fibrillation
Heart attacks
Medical imaging
Morphology
Mortality
Neural coding
Neural networks
Neuroscience
Plaques
Predictions
segmented dynamic
Sparsity
Ventricle
video imaging
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central - New (Subscription)
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4ELr_IIFGQkxAEpNImd2D6httuKXlYVL_UW2Y7d5lCn7AOJGz-dGSdZNQhx4RpbyUSfZzzjGX9DyBvHfGZ8pdPKGYlXcmRqZGnTkntZ5I1B1rjYbEIsFvL8XJ0NB26roaxytInRUDedxTPy_QJXGmNMlR-uv6fYNQqzq0MLjdtkB5nK-IzsHB4vzj6NtrgC4xvznRXeDQLnvM9rgkRq34c2IF93kb3Hpicyn-xMkcD_b17nn8WTN3ajk_v_-x8PyL3BD6UH_cJ5SG658IjsHgSIwa9-0rc0VobGI_dd8gtn9UwT9PQGhSf97C4ip2dD531je_qtbVxHT6_ASq0o-MMU2a_asAFfn478J7QNFNxOOnfrWAcWaOfhVaBTjh5NymPpvE8fPSZfT46_HH1Mh84NqeW8XKeV5WVphfLGgknguXHGQKhtObPgsjhXGADEN6JwlWmEVkwZb8H3sY3gXmjNnpBZ6IJ7Rqg2hbPgJCotS15lTHlupOKqYRZMlWYJeTeiVl_3BB01BDYIcR0hrhHiuoc4IYeI63YicmvHB93yoh5UtW5sZpyADUlKDdFnYZQUxsK_aDB_udQJ2RuRrQeFh49sYU3I6-0wqCrmX3Rw3QbnKJiVSwVyPO0X0VYSxiAQVCJLiJgsr4mo05HQXkY6cIEEPDJ7_m-xXpC7BZbjYC-bbI_M1suNe0nu2B_rdrV8NejNb46gJVw
  priority: 102
  providerName: ProQuest
Title Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/33642970
https://www.proquest.com/docview/2488033395
https://www.proquest.com/docview/2494881891
https://pubmed.ncbi.nlm.nih.gov/PMC7902880
https://doaj.org/article/dc0be7eac88a4012b987bc9fba18318a
Volume 14
WOSCitedRecordID wos000620973400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag5cAFFcojtKyMhDgghSa2E9vHttuKPXQV8dJyimzHhhzqRe1upd760zu2d1cbhMSFiw_JKHY84_E38eQbhN5Z6grtapXXVovwS47ItahMXjEnSNnpwBoXi03w6VTMZrLZKvUVcsISPXCauKPOFNpycA9CKIgFiIYgWRvptAJjLEWERoB61sFU8sE1OF2SzjChd3nkfO8DNzcpPoYCJ6Ic7EKRrP9vCPPPRMmtned8Dz1ZQUZ8nIb6FD2w_hnaP_YQLl_e4vc4JnHGr-P76C5IJVIIPNli28Rf7M9Iv9nhcapBj7_3nZ3jySU4lGsM0BUHoqreLwGW4zVVCe49BoSIx3YRU7Y8njt4FJi_xaeDTFY8Tic9z9G387Ovp5_yVZGF3DBWLfLasKoyHCbUwOplpbZaQ1RsGDWALqwluq6J6zixte64klRqZwCmmI4zx5WiL9COn3v7CmGliTWA56QSFasLKh3TQjLZUQNeRdEMfVhPevs7cWm0EIMEDbVRQ23QUJs0lKGToJaNYKDBjhfAONqVcbT_Mo4MHa6V2q7WJnQSfBalVFYZeru5DasqHJUob-fLICNBqhQSxvEy2cBmJJRCzCZ5kSE-sI7BUId3fP8rMnfzwJUjitf_490O0GMS8mtCcZriEO0srpb2DXpkbhb99dUIPeQzMUK7J2fT5vMoLg5oL0gTWg7tbjO5aH7cA4sCG1I
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQYILXwW6UMBIwAEpNGsnsX1AqHSpumpZVaKg3lLbcdoc1im7WdDe-EX8RmaczaqLELceuCZW4jgvb2Yy4zeEvHS8jE2Z6ShzRuKWHBkZmdooTUrJ-oVB1bjQbEKMRvLkRB2tkV_dXhgsq-w4MRB1UVv8R77NEGmcc5W-v_gWYdcozK52LTRaWBy4-Q8I2abvhgN4v68Y2_t4vLsfLboKRDZJ0ibKbJKmVqjSWIBr0jfOGAgDbcItmFPnmMkyVhaCucwUQiuuTGnBLttCJKXQmsN1r5Hr4EYwGUoFjzrmz4DqQ3Y1w51IEAq0WVR4frVd-sqjOjiL32KLFdlfsYOhXcDffNw_SzUv2b69O__bqt0ltxdeNt1pP4t7ZM35-2Rjx-umHs_paxrqXkNCYYP8xFGtjgYdXhIopZ_dWVAsLehg7vW4svRrVbiaDsfAwVMK3j5Fba_KzyCSoZ26C608BaeaDlwTqtw8rUu4FDCGo7srxb900CbHHpAvV7IWD8m6r73bJFQb5iy4wErLNMlirsrESJWoglsgYs175E2HkvyilR_JIWxDSOUBUjlCKm8h1SMfEEfLgagcHg7Uk7N8QUR5YWPjBJhbKTXE1swoKYyFZ9FA7n2pe2SrQ1K-oDO4yRJGPfJieRqICLNL2rt6hmMUjOpLBfN41IJ2ORPOIcxVIu4RsQLnlamunvHVeRA7FygvJOPH_57Wc3Jz__jTYX44HB08IbcYFh5h1554i6w3k5l7Sm7Y7001nTwLXywlp1cN9t-BIoMy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBSEuvJZHYQEjAQek0NROYvuA0LKlolqoKvHQ3oLtOEsOdZY2BfXG7-LXMeM01RYhbnvgmliO43z-xpMZf0PIE8fL2JSZjjJnJB7JkZGRqY3SpJRsUBhUjQvFJsRkIo-P1XSH_OrOwmBaZceJgaiL2uI_8j5DpHHOVdov12kR0-Ho1em3CCtIYaS1K6fRQuTIrX6A-7Z4OR7Ct37K2OjNx8O30brCQGSTJG2izCZpaoUqjQXoJgPjjAGX0Cbcgml1jpksY2UhmMtMIbTiypQWbLQtRFIKrTn0e4FcFNALrq73bNpZgQxoP0RaMzyVBG5BG1GFuVD90lcelcJZ_ALLrcjBlk0MpQP-tt_9M23zjB0cXfufZ_A6ubrefdODdrncIDvO3yR7B1439WxFn9GQDxsCDXvkJ7Zq9TXo-IxwKf3gToKSaUGHK69nlaWfq8LVdDwDbl5Q8AIoan5VfgkeDu1UX2jlKWy26dA1IfvN07qEroBJHD3cSgqmwzZodot8Ope5uE12fe3dXUK1Yc7C1lhpmSZZzFWZGKkSVXALBK15jzzvEJOftrIkObhzCK88wCtHeOUtvHrkNWJq0xAVxcOFen6SrwkqL2xsnAAzLKUGn5sZJYWx8C4aSH8gdY_sd6jK1zQHD9lAqkceb24DQWHUSXtXL7GNglYDqWAcd1oAb0bCObi_SsQ9IragvTXU7Tu--hpE0AXKDsn43r-H9YhcBozn78aTo_vkCsN8JCzmE--T3Wa-dA_IJfu9qRbzh2HxUvLlvLH-G9kTi-4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Segmented+Dynamic+Video+Images+for+Continuity+Analysis+in+the+Detection+of+Severe+Cardiovascular+Disease&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zhu%2C+Xi&rft.au=Xia%2C+Wei&rft.au=Bao%2C+Zhuqing&rft.au=Zhong%2C+Yaohui&rft.date=2021-02-10&rft.issn=1662-4548&rft.volume=14&rft.spage=618481&rft_id=info:doi/10.3389%2Ffnins.2020.618481&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon