Sensor array processing based on subspace fitting

Algorithms for estimating unknown signal parameters from the measured output of a sensor array are considered in connection with the subspace fitting problem. The methods considered are the deterministic maximum likelihood method (ML), ESPRIT, and a recently proposed multidimensional signal subspace...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 39; číslo 5; s. 1110 - 1121
Hlavní autoři: Viberg, M., Ottersten, B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.05.1991
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Algorithms for estimating unknown signal parameters from the measured output of a sensor array are considered in connection with the subspace fitting problem. The methods considered are the deterministic maximum likelihood method (ML), ESPRIT, and a recently proposed multidimensional signal subspace method. These methods are formulated in a subspace-fitting-based framework, which provides insight into their algebraic and asymptotic relations. It is shown that by introducing a specific weighting matrix, the multidimensional signal subspace method can achieve the same asymptotic properties as the ML method. The asymptotic distribution of the estimation error is derived for a general subspace weighting, and the weighting that provides minimum variance estimates is identified. The resulting optimal technique is termed the weighted subspace fitting (WSF) method. Numerical examples indicate that the asymptotic variance of the WSF estimates coincides with the Cramer-Rao bound. The performance improvement compared to the other techniques is found to be most prominent for highly correlated signals.< >
AbstractList Algorithms for estimating unknown signal parameters from the measured output of a sensor array are considered in connection with the subspace fitting problem. The methods considered are the deterministic maximum likelihood method (ML), ESPRIT, and a recently proposed multidimensional signal subspace method. These methods are formulated in a subspace-fitting-based framework, which provides insight into their algebraic and asymptotic relations. It is shown that by introducing a specific weighting matrix, the multidimensional signal subspace method can achieve the same asymptotic properties as the ML method. The asymptotic distribution of the estimation error is derived for a general subspace weighting, and the weighting that provides minimum variance estimates is identified. The resulting optimal technique is termed the weighted subspace fitting (WSF) method. Numerical examples indicate that the asymptotic variance of the WSF estimates coincides with the Cramer-Rao bound. The performance improvement compared to the other techniques is found to be most prominent for highly correlated signals.
A large number of signal processing problems are concerned with estimating unknown signal parameters from sensor array measurements. This area has drawn much interest and many methods for parameter estimation based on array data have appeared in the literature. This paper presents some of these algorithms as variations of the same subspace fitting problem. The methods considered herein are the deterministic maximum likelihood method (ML), ESPRIT, and a recently proposed multidimensional signal subspace method. These methods are formulated in a subspace fitting based framework, which provides insight into their algebraic and asymptotic relations. It is shown that by introducing a specific weighting matrix, the multidimensional signal subspace method can achieve the same asymptotic properties as ML. The asymptotic distribution of the estimation error is derived for a general subspace weighting and the weighting that provides minimum variance estimates is identified. The resulting optimal technique is termed the weighted subspace fitting (WSF) method. Numerical examples indicate that the asymptotic variance of the WSF estimates coincides with the Cramer-Rao bound. The performance improvement compared to the other techniques is found to be most prominent for highly correlated signals. A simulation study is presented, indicating that the asymptotic variance expressions are valid for a wide range of scenarios.
Algorithms for estimating unknown signal parameters from the measured output of a sensor array are considered in connection with the subspace fitting problem. The methods considered are the deterministic maximum likelihood method (ML), ESPRIT, and a recently proposed multidimensional signal subspace method. These methods are formulated in a subspace-fitting- based framework, which provides insight into their algebraic and asymptotic relations. It is shown that by introducing a specific weighting matrix, the multidimensional signal subspace method can achieve the same asymptotic properties as the ML method. The asymptotic distribution of the estimation error is derived for a general subspace weighting, and the weighting that provides minimum variance estimates is identified. The resulting optimal technique is termed the weighted subspace fitting (WSF) method. Numerical examples indicate that the asymptotic variance of the WSF estimates coincides with the Cramer-Rao bound. The performance improvement compared to the other techniques is found to be most prominent for highly correlated signals. A simulation study indicating that the asymptotic variance expressions are valid for a wide range of scenarios is presented. (I.E.)
Algorithms for estimating unknown signal parameters from the measured output of a sensor array are considered in connection with the subspace fitting problem. The methods considered are the deterministic maximum likelihood method (ML), ESPRIT, and a recently proposed multidimensional signal subspace method. These methods are formulated in a subspace-fitting-based framework, which provides insight into their algebraic and asymptotic relations. It is shown that by introducing a specific weighting matrix, the multidimensional signal subspace method can achieve the same asymptotic properties as the ML method. The asymptotic distribution of the estimation error is derived for a general subspace weighting, and the weighting that provides minimum variance estimates is identified. The resulting optimal technique is termed the weighted subspace fitting (WSF) method. Numerical examples indicate that the asymptotic variance of the WSF estimates coincides with the Cramer-Rao bound. The performance improvement compared to the other techniques is found to be most prominent for highly correlated signals
Author Viberg, M.
Ottersten, B.
Author_xml – sequence: 1
  givenname: M.
  surname: Viberg
  fullname: Viberg, M.
  organization: Dept. of Electr. Eng., Linkoping Univ., Sweden
– sequence: 2
  givenname: B.
  surname: Ottersten
  fullname: Ottersten, B.
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-60036$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95627$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNqN0TtLxEAQB_AtFHyCrV0qsTDnvpOUx_mEAwsPsVt2N7O6msueuwly395o1EIEraaY33-YYXbQRhtaQOiA4AkhuDotykmJKyk30DbBguWiLO630E5KTxgTziu5jcgttCnETMeo19kqBgsp-fYhMzpBnYU2S71JK20hc77rhs4e2nS6SbD_WXfR4uJ8MbvK5zeX17PpPLeciy6X0hoosWNMC8opZTUGArRw1DjhiC64obQWtrbGEFNL7kxVYKZdxQUhnO2ik3FseoVVb9Qq-qWOaxW0V2f-bqpCfFCN71UlJC3-x5-7RyUxZnLgRyMfLn7pIXVq6ZOFptEthD4pWkrKqCj_hoKzkmM6wMkIbQwpRXDK-k53PrRd1L5RBKv3n6iiVB8_GQLHPwJfO_9CD0fqAeCbjb030pKXlw
CODEN ITPRED
CitedBy_id crossref_primary_10_3390_s17071550
crossref_primary_10_1088_0957_0233_27_10_105104
crossref_primary_10_3390_s18051476
crossref_primary_10_1109_78_212745
crossref_primary_10_1049_rsn2_12071
crossref_primary_10_1109_79_637317
crossref_primary_10_1134_S1063771015020128
crossref_primary_10_1007_s11277_021_08209_5
crossref_primary_10_1016_j_automatica_2010_06_053
crossref_primary_10_1109_78_709536
crossref_primary_10_1109_78_847777
crossref_primary_10_1109_78_709535
crossref_primary_10_1016_0165_1684_92_90087_D
crossref_primary_10_1109_TASL_2011_2108285
crossref_primary_10_1109_TVT_2008_915500
crossref_primary_10_1109_TIT_2022_3174139
crossref_primary_10_1049_iet_map_20070006
crossref_primary_10_1109_7_249120
crossref_primary_10_1016_j_sigpro_2016_09_018
crossref_primary_10_1007_s00034_013_9583_6
crossref_primary_10_1109_TGRS_2024_3440224
crossref_primary_10_1049_ip_rsn_19960170
crossref_primary_10_1155_2018_4612583
crossref_primary_10_1155_2022_1858865
crossref_primary_10_1109_JIOT_2021_3066504
crossref_primary_10_1109_78_134479
crossref_primary_10_3390_s18124139
crossref_primary_10_1049_ip_rsn_19982428
crossref_primary_10_1109_78_139255
crossref_primary_10_1080_00207217_2016_1244862
crossref_primary_10_1109_78_127959
crossref_primary_10_1007_s11045_015_0338_3
crossref_primary_10_1023_A_1008212509267
crossref_primary_10_1109_18_661512
crossref_primary_10_1109_9_341800
crossref_primary_10_1109_TSP_2018_2883034
crossref_primary_10_1007_s11277_008_9652_5
crossref_primary_10_1049_iet_rsn_20080041
crossref_primary_10_1109_78_969502
crossref_primary_10_1109_TSP_2002_806588
crossref_primary_10_1002__SICI_1097_0193_1997_5_3_154__AID_HBM2_3_0_CO_2_2
crossref_primary_10_23919_JSEE_2023_000048
crossref_primary_10_1109_5_720249
crossref_primary_10_1109_TSP_2002_805251
crossref_primary_10_1109_82_378037
crossref_primary_10_1109_JSEN_2016_2550664
crossref_primary_10_3390_s22062327
crossref_primary_10_1016_j_sigpro_2018_05_009
crossref_primary_10_1109_78_542440
crossref_primary_10_1109_78_790648
crossref_primary_10_1016_j_ymssp_2021_108154
crossref_primary_10_1109_TSP_2006_877661
crossref_primary_10_1016_j_sigpro_2015_07_012
crossref_primary_10_1016_0005_1098_95_00107_5
crossref_primary_10_1002_acs_926
crossref_primary_10_1109_78_536684
crossref_primary_10_1109_TMI_2008_929105
crossref_primary_10_1186_1687_6180_2012_44
crossref_primary_10_1007_s11767_999_1037_8
crossref_primary_10_1016_j_sigpro_2024_109688
crossref_primary_10_1109_87_641407
crossref_primary_10_1109_10_725331
crossref_primary_10_1109_TAP_2007_910493
crossref_primary_10_1109_7_303742
crossref_primary_10_1016_0165_1684_96_00003_5
crossref_primary_10_1109_ACCESS_2021_3070980
crossref_primary_10_1007_BF01387467
crossref_primary_10_1109_LSP_2018_2878948
crossref_primary_10_1007_BF02504209
crossref_primary_10_1016_j_automatica_2010_10_046
crossref_primary_10_1093_mnras_sty3419
crossref_primary_10_1016_j_sigpro_2019_107341
crossref_primary_10_1109_LCOMM_2019_2958913
crossref_primary_10_1016_0165_1684_93_90130_3
crossref_primary_10_1002_scj_4690270202
crossref_primary_10_1006_jsvi_2001_3880
crossref_primary_10_1109_78_917804
crossref_primary_10_1109_TSP_2004_823469
crossref_primary_10_1109_97_755429
crossref_primary_10_1109_TSP_2003_810306
crossref_primary_10_1007_s11277_022_09881_x
crossref_primary_10_1109_TAP_2015_2426795
crossref_primary_10_1016_j_dsp_2024_104805
crossref_primary_10_1016_j_dsp_2018_04_013
crossref_primary_10_1016_j_sigpro_2011_05_021
crossref_primary_10_4031_MTSJ_57_3_3
crossref_primary_10_1049_ip_rsn_19981807
crossref_primary_10_1016_0165_1684_93_90163_5
crossref_primary_10_1109_TSP_2007_898758
crossref_primary_10_1049_iet_rsn_2010_0119
crossref_primary_10_1016_j_sigpro_2013_05_017
crossref_primary_10_1109_TWC_2010_05_091020
crossref_primary_10_1049_iet_rsn_2008_0114
crossref_primary_10_1109_TSP_2014_2367454
crossref_primary_10_3390_math10060923
crossref_primary_10_1155_2007_69136
crossref_primary_10_1007_s11277_008_9446_9
crossref_primary_10_1016_S0165_1684_99_00078_X
crossref_primary_10_1109_MSP_2009_934853
crossref_primary_10_1109_78_978377
crossref_primary_10_1109_ACCESS_2021_3055947
crossref_primary_10_1016_j_cja_2018_12_027
crossref_primary_10_1109_TSP_2018_2853124
crossref_primary_10_1109_TSP_2018_2875853
crossref_primary_10_1109_JAS_2023_123549
crossref_primary_10_1109_TSP_2013_2263502
crossref_primary_10_1109_ACCESS_2020_2979055
crossref_primary_10_1109_JOE_2004_833373
crossref_primary_10_1109_78_277867
crossref_primary_10_1109_78_277868
crossref_primary_10_1109_78_236510
crossref_primary_10_1109_TITS_2023_3266703
crossref_primary_10_1007_s11277_020_07884_0
crossref_primary_10_1016_j_dsp_2021_103291
crossref_primary_10_3390_rs13132560
crossref_primary_10_3390_s24010260
crossref_primary_10_1186_s13634_018_0555_7
crossref_primary_10_1109_8_489306
crossref_primary_10_1109_TSP_2007_909348
crossref_primary_10_1109_TSP_2020_2992855
crossref_primary_10_4028_www_scientific_net_AMM_411_414_1049
crossref_primary_10_1109_LCOMM_2021_3078765
crossref_primary_10_1016_S0016_0032_98_00010_6
crossref_primary_10_3390_jmse12101689
crossref_primary_10_1109_18_857798
crossref_primary_10_1016_j_sigpro_2021_108284
crossref_primary_10_1049_iet_rsn_2015_0610
crossref_primary_10_1109_78_824675
crossref_primary_10_1109_LSENS_2024_3417381
crossref_primary_10_1109_TSP_2011_2157499
crossref_primary_10_1109_TAES_2020_3040538
crossref_primary_10_1016_0165_1684_93_90162_4
crossref_primary_10_1109_78_972480
crossref_primary_10_1049_el_20020325
crossref_primary_10_1109_TSP_2021_3053495
crossref_primary_10_1109_TIM_2015_2390813
crossref_primary_10_1121_10_0030398
crossref_primary_10_1109_JSTARS_2021_3073508
crossref_primary_10_1186_s13634_019_0629_1
crossref_primary_10_1109_78_640713
crossref_primary_10_1016_0165_1684_96_00005_9
crossref_primary_10_1016_j_sigpro_2020_107900
crossref_primary_10_1016_S0005_1098_96_00244_0
crossref_primary_10_3390_s23198048
crossref_primary_10_1109_TSP_2005_861798
crossref_primary_10_1109_ACCESS_2019_2909783
crossref_primary_10_1109_TSP_2022_3198167
crossref_primary_10_1016_j_sigpro_2012_03_020
crossref_primary_10_1109_78_482015
crossref_primary_10_1109_JSTSP_2008_2004216
crossref_primary_10_1109_ACCESS_2018_2889958
crossref_primary_10_1109_TSP_2005_847828
crossref_primary_10_1109_LCOMM_2015_2493064
crossref_primary_10_1109_TVT_2008_917233
crossref_primary_10_1109_78_752593
crossref_primary_10_1109_78_340783
crossref_primary_10_1109_78_726824
crossref_primary_10_1109_TSP_2009_2032036
crossref_primary_10_1016_j_sigpro_2021_108100
crossref_primary_10_1016_j_sigpro_2021_108223
crossref_primary_10_1109_25_69993
crossref_primary_10_1109_TWC_2021_3113771
crossref_primary_10_1109_LCOMM_2017_2755656
crossref_primary_10_1006_dspr_1997_0298
crossref_primary_10_1109_78_414778
crossref_primary_10_1109_79_526899
crossref_primary_10_1016_j_rser_2022_112423
crossref_primary_10_1016_j_sigpro_2021_108349
crossref_primary_10_1109_37_103346
crossref_primary_10_1016_j_isatra_2016_03_007
crossref_primary_10_1016_j_sigpro_2014_08_047
crossref_primary_10_1109_TCCN_2016_2633414
crossref_primary_10_1109_TAC_2018_2877673
crossref_primary_10_1016_0165_1684_96_00010_2
crossref_primary_10_1109_10_959310
crossref_primary_10_1016_j_neucom_2006_07_006
crossref_primary_10_1109_48_262299
crossref_primary_10_1109_58_710568
crossref_primary_10_1109_TSP_2011_2140107
crossref_primary_10_1016_j_aeue_2025_155915
crossref_primary_10_1016_j_dsp_2011_11_002
crossref_primary_10_1109_5_622504
crossref_primary_10_1109_JSEN_2022_3175843
crossref_primary_10_1109_78_317877
crossref_primary_10_1109_5_237536
crossref_primary_10_1109_89_824700
crossref_primary_10_1016_j_automatica_2016_11_017
crossref_primary_10_1016_j_sigpro_2023_109323
crossref_primary_10_1109_JSEN_2023_3274309
crossref_primary_10_3390_electronics8020235
crossref_primary_10_1109_TVT_2023_3289889
crossref_primary_10_1109_78_917799
crossref_primary_10_1109_JOE_2008_923556
crossref_primary_10_1109_TSP_2010_2050477
crossref_primary_10_3390_s150613899
crossref_primary_10_1007_s10586_016_0605_6
crossref_primary_10_1109_78_120802
crossref_primary_10_1134_S1063771015010145
crossref_primary_10_1049_sil2_12161
crossref_primary_10_1109_ACCESS_2018_2884324
crossref_primary_10_1016_j_sigpro_2015_02_026
crossref_primary_10_1364_AO_56_009268
crossref_primary_10_1109_TGRS_2011_2171494
crossref_primary_10_1007_s11277_022_09858_w
crossref_primary_10_1109_TAP_2003_811107
crossref_primary_10_1109_74_815315
crossref_primary_10_1109_TSP_2008_928504
crossref_primary_10_1109_78_348129
crossref_primary_10_1016_j_dsp_2018_08_002
crossref_primary_10_1007_s00034_018_0847_z
crossref_primary_10_1109_TVT_2018_2801785
crossref_primary_10_1109_10_141192
crossref_primary_10_1109_LSP_2013_2238928
crossref_primary_10_1121_10_0024349
crossref_primary_10_1049_rsn2_12570
crossref_primary_10_1002_ecjc_1091
crossref_primary_10_1109_ACCESS_2019_2959235
crossref_primary_10_1109_ACCESS_2020_3026203
crossref_primary_10_3390_s110504780
crossref_primary_10_1002_ecja_10009
crossref_primary_10_1006_mssp_2002_1544
crossref_primary_10_1109_78_839975
crossref_primary_10_1109_78_852018
crossref_primary_10_1109_78_388855
crossref_primary_10_1109_8_509886
crossref_primary_10_1049_el_20040579
crossref_primary_10_1109_TSP_2006_879324
crossref_primary_10_1016_S0005_1098_97_00097_6
crossref_primary_10_3390_rs16213977
crossref_primary_10_1016_0165_1684_96_00011_4
crossref_primary_10_1109_18_841173
crossref_primary_10_1109_TGRS_2022_3223036
crossref_primary_10_1007_s00034_019_01170_6
crossref_primary_10_1080_00207217_2019_1608588
crossref_primary_10_1109_78_150002
crossref_primary_10_1109_8_309995
crossref_primary_10_1186_1687_6180_2013_91
crossref_primary_10_1109_78_97999
crossref_primary_10_1109_JCN_2002_6596912
crossref_primary_10_1109_MSP_2024_3486471
crossref_primary_10_1109_TSP_2024_3423432
crossref_primary_10_1109_8_481645
crossref_primary_10_1109_TGRS_2003_813487
crossref_primary_10_1109_78_382404
crossref_primary_10_1109_78_382403
crossref_primary_10_1002_acs_879
crossref_primary_10_1109_78_564187
crossref_primary_10_1109_TVT_2020_3016470
crossref_primary_10_3390_rs16081423
crossref_primary_10_1109_78_348128
crossref_primary_10_1109_TSP_2005_859329
crossref_primary_10_1109_TSP_2005_855089
crossref_primary_10_1109_TSP_2008_2008220
crossref_primary_10_1007_s11760_009_0113_8
crossref_primary_10_1109_TGRS_2023_3273568
crossref_primary_10_1109_7_599338
crossref_primary_10_1109_LCOMM_2020_3029197
crossref_primary_10_1155_2023_7199603
crossref_primary_10_1049_iet_spr_2017_0018
crossref_primary_10_1109_78_599948
crossref_primary_10_1049_iet_map_2010_0166
crossref_primary_10_1109_78_295204
crossref_primary_10_1109_TAP_2002_1011222
crossref_primary_10_1109_TSP_2016_2645538
crossref_primary_10_1006_jmre_2002_2570
crossref_primary_10_1109_TWC_2011_062211_100439
crossref_primary_10_1109_TSP_2018_2835423
crossref_primary_10_1016_0165_1684_95_00032_9
crossref_primary_10_1109_LGRS_2015_2411695
crossref_primary_10_1016_j_sigpro_2005_07_013
crossref_primary_10_1109_78_796446
crossref_primary_10_1109_TSP_2010_2050315
crossref_primary_10_1046_j_1365_246x_2000_00932_x
crossref_primary_10_1049_iet_rsn_2017_0061
crossref_primary_10_1016_j_dsp_2019_06_001
crossref_primary_10_1109_78_476437
crossref_primary_10_1109_TSP_2002_805502
crossref_primary_10_1109_JSEN_2024_3516940
crossref_primary_10_1186_1687_1499_2013_158
crossref_primary_10_1109_78_286960
crossref_primary_10_1109_TCOMM_2023_3325472
crossref_primary_10_1016_j_sigpro_2021_108313
crossref_primary_10_1109_TSP_2015_2401531
crossref_primary_10_1007_BF01827811
crossref_primary_10_1109_JSEN_2020_3031334
crossref_primary_10_1109_TSP_2016_2560136
crossref_primary_10_1016_j_automatica_2007_01_007
crossref_primary_10_1109_TSP_2004_834402
crossref_primary_10_1109_78_815478
crossref_primary_10_1109_TAP_2011_2122225
crossref_primary_10_1088_1742_6596_1169_1_012057
crossref_primary_10_1109_78_258127
crossref_primary_10_3390_rs15164073
crossref_primary_10_3390_s22218494
crossref_primary_10_1109_JSAC_2024_3414579
crossref_primary_10_1109_TSP_2010_2046041
crossref_primary_10_1109_TSP_2020_2994514
crossref_primary_10_1109_JSTSP_2019_2897953
crossref_primary_10_1109_78_80967
crossref_primary_10_1049_el_19980426
crossref_primary_10_1016_j_sigpro_2013_03_037
crossref_primary_10_1016_j_sigpro_2015_05_003
crossref_primary_10_1109_TGRS_2020_3044150
crossref_primary_10_1109_TAES_2019_2910363
crossref_primary_10_1109_LSP_2003_811745
crossref_primary_10_1109_78_806083
crossref_primary_10_1109_TSP_2012_2187519
crossref_primary_10_1109_TWC_2019_2929772
crossref_primary_10_1016_j_sigpro_2022_108879
crossref_primary_10_1007_BF01183836
crossref_primary_10_1016_j_sigpro_2014_10_009
crossref_primary_10_1109_78_317855
crossref_primary_10_1109_JOE_2024_3365799
crossref_primary_10_1109_78_317854
crossref_primary_10_1109_78_705457
crossref_primary_10_1109_TSP_2011_2125960
crossref_primary_10_1109_TSP_2005_851129
crossref_primary_10_1109_78_765149
crossref_primary_10_1016_j_aeue_2017_10_026
crossref_primary_10_1109_78_330371
crossref_primary_10_1109_TSP_2017_2742982
crossref_primary_10_1109_TWC_2007_060099
crossref_primary_10_1109_78_330367
crossref_primary_10_1109_78_863052
crossref_primary_10_1109_MGRS_2019_2957215
crossref_primary_10_1109_TSP_2009_2022894
crossref_primary_10_1109_MSP_2023_3255558
crossref_primary_10_1109_78_552204
crossref_primary_10_1109_78_668795
crossref_primary_10_1109_78_485925
crossref_primary_10_1109_7_670322
crossref_primary_10_1109_78_668797
crossref_primary_10_1109_TSP_2007_893205
Cites_doi 10.1109/29.1552
10.1109/ACSSC.1988.754609
10.1109/TASSP.1986.1164815
10.1109/29.46553
10.1109/29.61541
10.1109/29.31267
10.1109/29.1557
10.1109/ICASSP.1984.1172704
10.1109/TASSP.1986.1164949
10.1109/SPECT.1988.206199
10.1109/78.80967
10.1137/0717073
10.1109/29.1618
10.1049/ip-f-1.1985.0110
10.1137/1015095
10.1109/29.17564
10.1109/TASSP.1986.1164935
10.1109/ICASSP.1989.266917
10.1109/ICASSP.1980.1171029
10.1109/29.7543
10.1109/ICASSP.1984.1172397
10.1109/29.32276
10.1109/29.45548
10.1137/0710036
10.1109/TASSP.1985.1164557
10.1016/0165-1684(86)90075-7
10.1109/29.32277
10.1109/ACSSC.1988.754666
10.1214/aoms/1177704248
ContentType Journal Article
DBID AAYXX
CITATION
8FD
H8D
L7M
7SC
JQ2
L~C
L~D
ADTPV
AOWAS
D8V
DG8
DOI 10.1109/78.80966
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1121
ExternalDocumentID oai_DiVA_org_liu_95627
oai_DiVA_org_kth_60036
10_1109_78_80966
80966
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
8FD
H8D
L7M
7SC
JQ2
L~C
L~D
ADTPV
AOWAS
D8V
DG8
ID FETCH-LOGICAL-c445t-66cbe80f33a524223d0e1e27f2bf5f1a74b22d5cdcbb1bd64fb9703af9451143
IEDL.DBID RIE
ISICitedReferencesCount 458
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1109_78_80966&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
1941-0476
IngestDate Tue Nov 04 17:27:08 EST 2025
Tue Nov 04 16:37:16 EST 2025
Sat Sep 27 18:25:12 EDT 2025
Sun Nov 09 13:45:38 EST 2025
Sat Nov 29 02:30:52 EST 2025
Tue Nov 18 22:35:38 EST 2025
Tue Aug 26 16:39:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-66cbe80f33a524223d0e1e27f2bf5f1a74b22d5cdcbb1bd64fb9703af9451143
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 25438402
PQPubID 23500
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_kth_60036
proquest_miscellaneous_28623258
proquest_miscellaneous_25438402
ieee_primary_80966
crossref_primary_10_1109_78_80966
swepub_primary_oai_DiVA_org_liu_95627
crossref_citationtrail_10_1109_78_80966
PublicationCentury 1900
PublicationDate 1991-05-01
PublicationDateYYYYMMDD 1991-05-01
PublicationDate_xml – month: 05
  year: 1991
  text: 1991-05-01
  day: 01
PublicationDecade 1990
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 1991
Publisher IEEE
Publisher_xml – name: IEEE
References stout (ref30) 1974
ref13
ref34
ref12
stoica (ref11a) 1988
ref37
ref15
ref14
roy (ref19) 1987
ref11b
bangs (ref2) 1971
ref39
ref17
ref38
ref16
ref18
schmidt (ref1) 1981
mardia (ref36) 1979
stoica (ref10) 1988
ref24
ref23
ref26
ref25
ref20
ljung (ref35) 1987
ref22
ref21
wilkinson (ref31) 1965
ref28
ref27
golub (ref33) 1989
ref29
ref8
ref7
ref9
ref4
ref3
ref6
stewart (ref32) 1973; 15
wax (ref5) 1985
References_xml – start-page: 2296
  year: 1988
  ident: ref10
  article-title: MUSIC, maximum likelihood and Cram r-Rao bound
  publication-title: Proc ICASSP 88 Conf
– ident: ref7
  doi: 10.1109/29.1552
– year: 1989
  ident: ref33
  publication-title: Matrix Computations
– year: 1985
  ident: ref5
  publication-title: Detection and estimation of superimposed signals
– ident: ref39
  doi: 10.1109/ACSSC.1988.754609
– ident: ref16
  doi: 10.1109/TASSP.1986.1164815
– ident: ref18
  doi: 10.1109/29.46553
– ident: ref11b
  doi: 10.1109/29.61541
– ident: ref26
  doi: 10.1109/29.31267
– ident: ref17
  doi: 10.1109/29.1557
– ident: ref14
  doi: 10.1109/ICASSP.1984.1172704
– year: 1987
  ident: ref19
  publication-title: ESPRIT Estimation of signal parameters via rotational invariance techniques
– ident: ref6
  doi: 10.1109/TASSP.1986.1164949
– year: 1988
  ident: ref11a
  publication-title: MUSIC maximum likelihood and Cram r-Rao bound Further results and comparisons
– ident: ref9
  doi: 10.1109/SPECT.1988.206199
– year: 1987
  ident: ref35
  publication-title: System Identification Theory for the User
– ident: ref37
  doi: 10.1109/78.80967
– ident: ref28
  doi: 10.1137/0717073
– ident: ref20
  doi: 10.1109/29.1618
– year: 1965
  ident: ref31
  publication-title: The Algebraic Eigenvalue Problem
– ident: ref15
  doi: 10.1049/ip-f-1.1985.0110
– volume: 15
  start-page: 727
  year: 1973
  ident: ref32
  article-title: Error and perturbation bounds for subspaces associated with certain eigenvalue problems
  publication-title: SIAM Rev
  doi: 10.1137/1015095
– ident: ref29
  doi: 10.1109/29.17564
– ident: ref21
  doi: 10.1109/TASSP.1986.1164935
– year: 1971
  ident: ref2
  publication-title: Array Processing with Generalized Beamformers
– year: 1974
  ident: ref30
  publication-title: Almost Sure Convergence
– ident: ref38
  doi: 10.1109/ICASSP.1989.266917
– ident: ref13
  doi: 10.1109/ICASSP.1980.1171029
– ident: ref8
  doi: 10.1109/29.7543
– ident: ref4
  doi: 10.1109/ICASSP.1984.1172397
– ident: ref23
  doi: 10.1109/29.32276
– ident: ref22
  doi: 10.1109/29.45548
– ident: ref27
  doi: 10.1137/0710036
– ident: ref25
  doi: 10.1109/TASSP.1985.1164557
– year: 1979
  ident: ref36
  publication-title: Multivariate Analysis
– ident: ref3
  doi: 10.1016/0165-1684(86)90075-7
– ident: ref24
  doi: 10.1109/29.32277
– ident: ref12
  doi: 10.1109/ACSSC.1988.754666
– ident: ref34
  doi: 10.1214/aoms/1177704248
– year: 1981
  ident: ref1
  publication-title: A Signal Subspace Approach to Multiple Emitter Location and Spectral Estimation
SSID ssj0014496
Score 1.9042276
Snippet Algorithms for estimating unknown signal parameters from the measured output of a sensor array are considered in connection with the subspace fitting problem....
A large number of signal processing problems are concerned with estimating unknown signal parameters from sensor array measurements. This area has drawn much...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1110
SubjectTerms Array signal processing
Automatic control
Direction of arrival estimation
Fitting
Geophysical measurements
Information technology
Informationsteknik
Maximum likelihood estimation
Multidimensional systems
Parameter estimation
Processing
Reglerteknik
Sensor array
Sensor arrays
Signal processing
Signal processing algorithms
TECHNOLOGY
TEKNIKVETENSKAP
Title Sensor array processing based on subspace fitting
URI https://ieeexplore.ieee.org/document/80966
https://www.proquest.com/docview/25438402
https://www.proquest.com/docview/28623258
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-60036
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95627
Volume 39
WOSCitedRecordID wos10_1109_78_80966&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014496
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEF_q4UP74FcrntYaoaVP0WS_83hUjz4UERS5t2U_8fBIjtxdof-9s5t4KIjSt5CdJMvMJjO_7MxvEPpOIER2lvBcM6lzylnIpWQ8p8Zxz0pjdSKev_sjrq7kZFJd9zQ5qRbGe5-Sz_xZPEx7-a6xq_ir7FxCvM030IYQvKvUWu8XUJo6cUGwQHImxaSnmS2L6lzIs3TdC8eTOqm8DCqfE4Um5zLe_p9p7aCtPoTMRp3Nd9EHX--hT8-IBT-j8gbQadNmum31v2zeFQPASBadlsuaOlvABwPgss_CNGU-f0G348vbX7_zvjlCbilly5xza7wsAiGagZvFxBW-9FgEbAILpRbUYOyYddaYEhRPg6ng7dahioxklOyjQd3U_gDBkwm1WPLSF5JqRowDI2lHcCWcwSQM0c8nxSnbE4fH_hUzlQBEUSkhVdLBEJ2uJecdWcYrMrtRg-vx_uTJkyUULO-4Z6Fr36wWKtbqAwbFb0gAJiOYySH60ZlwfevInH0xvRspsJZ6WN4rHtl33pGbTVcKMCMWh69N9Ah97HLFYsbjVzRYtit_jDbt3-V00X5La_IRuaDidA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFawPatXS86NNQfEpbbJf2TwWtVQ8j4JHubdlP_FoSUrurtD_3tlNerRQFN9CdpIsM5vM_LIzvwH4SDFEdpaKXHOpcyZ4yKXkImfGCc9LY3Uinj8fV5OJnM3qs4EmJ9XCeO9T8pk_jIdpL9-1dhV_lR1JjLfFI3jMGSNFX6u13jFgLPXiwnCB5lxWs4Fotizqo0oepivvuZ7US-V-WHmXKjS5l5MX_zOxl_B8CCKz497q27Dhm1fw7A614GsofyE-bbtMd52-ya76cgAcyaLbclnbZAv8ZCBg9lmYp9znNzA9-Tb9cpoP7RFyyxhf5kJY42URKNUcHS2hrvClJ1UgJvBQ6ooZQhy3zhpToupZMDW-3zrUkZOM0R3YbNrG7wI-mTJLpCh9IZnm1Dg0k3aU1JUzhIYRfL5VnLIDdXjsYHGpEoQoalVJlXQwgoO15FVPl_GAzHbU4Hp8OLl_awmFCzzuWujGt6uFitX6iELJXyQQlVHC5Qg-9SZc3zpyZ3-dnx8rtJa6WP5WIvLv_EPucr5SiBpJ9fahie7D09Ppz7Eaf5_8eAdbfeZYzH98D5vLbuU_wBN7vZwvur20Pv8AoAzluw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor+array+processing+based+on+subspace+fitting&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Viberg%2C+M.&rft.au=Ottersten%2C+B.&rft.date=1991-05-01&rft.issn=1053-587X&rft.volume=39&rft.issue=5&rft.spage=1110&rft.epage=1121&rft_id=info:doi/10.1109%2F78.80966&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_78_80966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon