LMI approach to linear positive system analysis and synthesis

This paper is concerned with the analysis and synthesis of linear positive systems based on linear matrix inequalities (LMIs). We first show that the celebrated Perron–Frobenius theorem can be proved concisely by a duality-based argument. Again by duality, we next clarify a necessary and sufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems & control letters Jg. 63; S. 50 - 56
Hauptverfasser: Ebihara, Yoshio, Peaucelle, Dimitri, Arzelier, Denis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2014
Elsevier
Schlagworte:
ISSN:0167-6911, 1872-7956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper is concerned with the analysis and synthesis of linear positive systems based on linear matrix inequalities (LMIs). We first show that the celebrated Perron–Frobenius theorem can be proved concisely by a duality-based argument. Again by duality, we next clarify a necessary and sufficient condition under which a Hurwitz stable Metzler matrix admits a diagonal Lyapunov matrix with some identical diagonal entries as the solution of the Lyapunov inequality. This new result leads to an alternative proof of the recent result by Tanaka and Langbort on the existence of a diagonal Lyapunov matrix for the LMI characterizing the H∞ performance of continuous-time positive systems. In addition, we further derive a new LMI for the H∞ performance analysis where the variable corresponding to the Lyapunov matrix is allowed to be non-symmetric. We readily extend these results to discrete-time positive systems and derive new LMIs for the H∞ performance analysis and synthesis. We finally illustrate their effectiveness by numerical examples on robust state-feedback H∞ controller synthesis for discrete-time positive systems affected by parametric uncertainties.
AbstractList This paper is concerned with the analysis and synthesis of linear positive systems based on linear matrix inequalities (LMIs). We first show that the celebrated Perron-Frobenius theorem can be proved concisely by a duality-based argument. Again by duality, we next clarify a necessary and sufficient condition under which a Hurwitz stable Metzler matrix admits a diagonal Lyapunov matrix with some identical diagonal entries as the solution of the Lyapunov inequality. This new result leads to an alternative proof of the recent result by Tanaka and Langbort on the existence of a diagonal Lyapunov matrix for the LMI characterizing the H infinity H infinity performance of continuous-time positive systems. In addition, we further derive a new LMI for the H infinity H infinity performance analysis where the variable corresponding to the Lyapunov matrix is allowed to be non-symmetric. We readily extend these results to discrete-time positive systems and derive new LMIs for the H infinity H infinity performance analysis and synthesis. We finally illustrate their effectiveness by numerical examples on robust state-feedback H infinity H infinity controller synthesis for discrete-time positive systems affected by parametric uncertainties.
This paper is concerned with the analysis and synthesis of linear positive systems based on linear matrix inequalities (LMIs). We first show that the celebrated Perron–Frobenius theorem can be proved concisely by a duality-based argument. Again by duality, we next clarify a necessary and sufficient condition under which a Hurwitz stable Metzler matrix admits a diagonal Lyapunov matrix with some identical diagonal entries as the solution of the Lyapunov inequality. This new result leads to an alternative proof of the recent result by Tanaka and Langbort on the existence of a diagonal Lyapunov matrix for the LMI characterizing the performance of continuous-time positive systems. In addition, we further derive a new LMI for the performance analysis where the variable corresponding to the Lyapunov matrix is allowed to be non-symmetric. We readily extend these results to discrete-time positive systems and derive new LMIs for the performance analysis and synthesis. We finally illustrate their effectiveness by numerical examples on robust state-feedback controller synthesis for discrete-time positive systems affected by parametric uncertainties.
This paper is concerned with the analysis and synthesis of linear positive systems based on linear matrix inequalities (LMIs). We first show that the celebrated Perron–Frobenius theorem can be proved concisely by a duality-based argument. Again by duality, we next clarify a necessary and sufficient condition under which a Hurwitz stable Metzler matrix admits a diagonal Lyapunov matrix with some identical diagonal entries as the solution of the Lyapunov inequality. This new result leads to an alternative proof of the recent result by Tanaka and Langbort on the existence of a diagonal Lyapunov matrix for the LMI characterizing the H∞ performance of continuous-time positive systems. In addition, we further derive a new LMI for the H∞ performance analysis where the variable corresponding to the Lyapunov matrix is allowed to be non-symmetric. We readily extend these results to discrete-time positive systems and derive new LMIs for the H∞ performance analysis and synthesis. We finally illustrate their effectiveness by numerical examples on robust state-feedback H∞ controller synthesis for discrete-time positive systems affected by parametric uncertainties.
Author Arzelier, Denis
Ebihara, Yoshio
Peaucelle, Dimitri
Author_xml – sequence: 1
  givenname: Yoshio
  surname: Ebihara
  fullname: Ebihara, Yoshio
  email: ebihara@kuee.kyoto-u.ac.jp
  organization: Department of Electrical Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
– sequence: 2
  givenname: Dimitri
  surname: Peaucelle
  fullname: Peaucelle, Dimitri
  organization: LAAS-CNRS, Université de Toulouse, 7 Av. du Colonel Roche, 31077, Toulouse Cedex 4, France
– sequence: 3
  givenname: Denis
  surname: Arzelier
  fullname: Arzelier, Denis
  organization: LAAS-CNRS, Université de Toulouse, 7 Av. du Colonel Roche, 31077, Toulouse Cedex 4, France
BackLink https://hal.science/hal-01760867$$DView record in HAL
BookMark eNqFkE1rGzEURUVJoU6avxBmmSxm-t6MPjyQQEJImoBLN8laaDTPWGYsOZJi8L-PjNsuuslK0uXcCzqn7MQHT4xdIDQIKH-sm7RPNviJmhawaxAbAPzCZjhXba16IU_YrICqlj3iN3aa0hoAWui6GbtZ_HquzHYbg7GrKodqcp5MrLYhuex2VJXtTJvKeDPtk0vlMpbM5xWV13f2dWmmROd_zjP2-vjwcv9UL37_fL6_W9SWc5FrDkIiDUuheiVJ9Us-SpwLTiU1xNuulS034yCMwLYfLCrggwWhEMECDN0Zuzrursykt9FtTNzrYJx-ulvoQwaoJMyl2mFhL49s-dPbO6WsNy5ZmibjKbwnXUSgBC7mB1QeURtDSpGW_7YR9MGtXuu_bvXBrUbUxW0pXv9XtC6b7ILP0bjp8_rtsU7F2c5R1Mk68pZGF8lmPQb32cQHFZqaqw
CitedBy_id crossref_primary_10_1007_s12555_014_0444_2
crossref_primary_10_1002_rnc_3956
crossref_primary_10_1080_00207721_2021_1872729
crossref_primary_10_1002_oca_2285
crossref_primary_10_1016_j_neucom_2017_05_019
crossref_primary_10_1049_iet_cta_2019_0933
crossref_primary_10_1002_oca_2360
crossref_primary_10_1016_j_nahs_2022_101292
crossref_primary_10_1016_j_aml_2015_02_016
crossref_primary_10_1016_j_ifacol_2020_12_2103
crossref_primary_10_1016_j_automatica_2016_11_010
crossref_primary_10_1080_00207179_2019_1616825
crossref_primary_10_1016_j_sysconle_2025_106215
crossref_primary_10_1109_TCST_2021_3091108
crossref_primary_10_1109_TAC_2017_2767704
crossref_primary_10_1016_j_automatica_2018_12_007
crossref_primary_10_1109_TAC_2017_2682032
crossref_primary_10_1007_s00034_018_0878_5
crossref_primary_10_1007_s12555_018_0581_0
crossref_primary_10_1016_j_jfranklin_2020_02_054
crossref_primary_10_1016_j_nahs_2017_01_003
crossref_primary_10_1002_rnc_4555
crossref_primary_10_1016_j_nahs_2019_01_005
crossref_primary_10_1007_s12555_014_0396_6
crossref_primary_10_3390_app13106026
crossref_primary_10_1016_j_ifacol_2020_12_478
crossref_primary_10_1007_s00034_015_9981_z
crossref_primary_10_1016_j_isatra_2024_01_006
crossref_primary_10_1016_j_ifacol_2017_08_679
crossref_primary_10_1109_TAC_2016_2606426
crossref_primary_10_1109_TAC_2016_2640020
crossref_primary_10_1016_j_jfranklin_2019_05_001
crossref_primary_10_1109_ACCESS_2018_2799159
crossref_primary_10_1080_00207721_2017_1419307
crossref_primary_10_1080_00207721_2019_1690717
crossref_primary_10_1109_TSMC_2018_2882536
crossref_primary_10_1016_j_automatica_2022_110553
crossref_primary_10_1016_j_jfranklin_2024_106818
crossref_primary_10_1016_j_ifacol_2023_10_1329
crossref_primary_10_1016_j_jfranklin_2022_04_017
crossref_primary_10_1016_j_nahs_2017_09_003
crossref_primary_10_1109_TSMC_2024_3410320
crossref_primary_10_1109_TFUZZ_2019_2893344
crossref_primary_10_1002_rnc_7580
crossref_primary_10_1016_j_jfranklin_2016_11_026
crossref_primary_10_1134_S0005117918120020
crossref_primary_10_1002_asjc_2909
crossref_primary_10_1080_00207179_2019_1584335
crossref_primary_10_1016_j_ifacol_2018_11_178
crossref_primary_10_1016_j_laa_2017_06_018
crossref_primary_10_1016_j_jfranklin_2024_107028
crossref_primary_10_1109_TAC_2021_3064822
crossref_primary_10_1007_s12555_020_0510_x
crossref_primary_10_1016_j_oceaneng_2015_05_026
crossref_primary_10_1016_j_automatica_2017_07_016
crossref_primary_10_1080_00207179_2024_2380027
crossref_primary_10_1049_iet_cta_2017_0991
crossref_primary_10_1007_s11424_017_5053_8
crossref_primary_10_1109_LCSYS_2018_2816969
crossref_primary_10_1109_TCSII_2018_2796568
crossref_primary_10_1016_j_amc_2016_05_002
crossref_primary_10_1049_iet_cta_2017_0315
crossref_primary_10_1049_iet_cta_2018_5150
crossref_primary_10_1109_TAC_2019_2946205
crossref_primary_10_1049_iet_cta_2018_5270
crossref_primary_10_1080_00207721_2024_2364294
crossref_primary_10_1139_cjp_2015_0519
crossref_primary_10_1016_j_jfranklin_2017_02_039
crossref_primary_10_1177_0142331215585881
crossref_primary_10_1016_j_neucom_2017_09_087
crossref_primary_10_1155_2016_2134807
crossref_primary_10_1016_j_ins_2024_121768
Cites_doi 10.1109/TAC.2007.900857
10.1109/TAC.2007.899057
10.1080/03081087808817203
10.1109/TAC.2002.806652
10.1016/0167-6911(95)00063-1
10.1109/ACC.2012.6314755
10.1080/00207179.2013.797106
10.1016/j.laa.2008.06.037
10.1109/TAC.2011.2157394
10.1007/978-3-540-30560-6_2
10.1109/CDC.2011.6161293
10.1109/MSP.2005.1406483
10.1109/CDC.2012.6426312
10.1080/00207170210140212
ContentType Journal Article
Copyright 2013 Elsevier B.V.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7SP
7TA
8FD
JG9
L7M
1XC
DOI 10.1016/j.sysconle.2013.11.001
DatabaseName CrossRef
Electronics & Communications Abstracts
Materials Business File
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Materials Business File
Electronics & Communications Abstracts
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7956
EndPage 56
ExternalDocumentID oai:HAL:hal-01760867v1
10_1016_j_sysconle_2013_11_001
S0167691113002156
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7TA
8FD
JG9
L7M
1XC
ID FETCH-LOGICAL-c445t-40561ebf57976e79f4d61854e61eae4232624adb5a5129bc1704bc057110c00b3
ISICitedReferencesCount 100
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330918400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-6911
IngestDate Wed Nov 26 07:15:05 EST 2025
Sun Sep 28 11:12:14 EDT 2025
Tue Nov 18 22:29:08 EST 2025
Sat Nov 29 05:30:28 EST 2025
Fri Feb 23 02:32:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LMI
Duality
Positive system
Diagonal Lyapunov matrix
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-40561ebf57976e79f4d61854e61eae4232624adb5a5129bc1704bc057110c00b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0149-1369
PQID 1671604581
PQPubID 23500
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_01760867v1
proquest_miscellaneous_1671604581
crossref_primary_10_1016_j_sysconle_2013_11_001
crossref_citationtrail_10_1016_j_sysconle_2013_11_001
elsevier_sciencedirect_doi_10_1016_j_sysconle_2013_11_001
PublicationCentury 2000
PublicationDate January 2014
2014-1-00
20140101
2014-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationTitle Systems & control letters
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Rantzer (br000080) 1996; 28
Matsumura, Ebihara, Hagiwara (br000090) 2013; 26
Farina, Rinaldi (br000005) 2000
Y. Ebihara, Dual LMI approach to linear positive system analysis, in: Proc. The 12th International Conference on Control, Automation and Systems, ICCAS, 2012, pp. 887–891.
Pillai, Suel, Cha (br000065) 2005; 2
Tanaka, Langbort (br000035) 2011; 56
Najson (br000050) 2013
de Oliveira, Geromel, Bernussou (br000095) 2002; 75
A. Rantzer, Distributed control of positive systems, in: Proc. Conference on Decision and Control, 2011, pp. 6608–6611.
controller synthesis for positive systems and its robustness properties, in: Proc. American Control Conference, 2012, pp. 5992–5997.
Balakrishnan, Vandenberghe (br000070) 2003; 48
Gurvits, Shorten, Mason (br000015) 2007; 52
Mason, Shorten (br000020) 2007; 52
Barker, Berman, Plemmons (br000085) 1978; 5
Kaczorek (br000010) 2001
Y. Ebihara, D. Peaucelle, D. Arzelier, Optimal
Boyd, Balakrishnan (br000075) 2004
A. Rantzer, Optimizing positively dominated systems, in: Proc. Conference on Decision and Control, 2012, pp. 272–277.
Shorten, Mason, King (br000025) 2009; 430
Shorten, Mason, Wulff (br000030) 2005; 3335
Tanaka (10.1016/j.sysconle.2013.11.001_br000035) 2011; 56
Pillai (10.1016/j.sysconle.2013.11.001_br000065) 2005; 2
Farina (10.1016/j.sysconle.2013.11.001_br000005) 2000
Shorten (10.1016/j.sysconle.2013.11.001_br000030) 2005; 3335
Rantzer (10.1016/j.sysconle.2013.11.001_br000080) 1996; 28
Mason (10.1016/j.sysconle.2013.11.001_br000020) 2007; 52
Shorten (10.1016/j.sysconle.2013.11.001_br000025) 2009; 430
Boyd (10.1016/j.sysconle.2013.11.001_br000075) 2004
Balakrishnan (10.1016/j.sysconle.2013.11.001_br000070) 2003; 48
Matsumura (10.1016/j.sysconle.2013.11.001_br000090) 2013; 26
Najson (10.1016/j.sysconle.2013.11.001_br000050) 2013
de Oliveira (10.1016/j.sysconle.2013.11.001_br000095) 2002; 75
Kaczorek (10.1016/j.sysconle.2013.11.001_br000010) 2001
Gurvits (10.1016/j.sysconle.2013.11.001_br000015) 2007; 52
Barker (10.1016/j.sysconle.2013.11.001_br000085) 1978; 5
10.1016/j.sysconle.2013.11.001_br000040
10.1016/j.sysconle.2013.11.001_br000060
10.1016/j.sysconle.2013.11.001_br000045
10.1016/j.sysconle.2013.11.001_br000055
References_xml – year: 2001
  ident: br000010
  article-title: Positive 1D and 2D Systems
– volume: 52
  start-page: 1099
  year: 2007
  end-page: 1103
  ident: br000015
  article-title: On the stability of switched positive linear systems
  publication-title: IEEE Trans. Automat. Control
– volume: 56
  start-page: 2218
  year: 2011
  end-page: 2223
  ident: br000035
  article-title: The bounded real lemma for internally positive systems and
  publication-title: IEEE Trans. Automat. Control
– reference: Y. Ebihara, Dual LMI approach to linear positive system analysis, in: Proc. The 12th International Conference on Control, Automation and Systems, ICCAS, 2012, pp. 887–891.
– year: 2000
  ident: br000005
  article-title: Positive Linear Systems: Theory and Applications
– volume: 3335
  start-page: 31
  year: 2005
  end-page: 45
  ident: br000030
  article-title: Convex cones, Lyapunov functions, and the stability of switched linear systems
  publication-title: Lecture Notes in Comput. Sci.
– volume: 48
  start-page: 30
  year: 2003
  end-page: 41
  ident: br000070
  article-title: Semidefinite programming duality and linear time-invariant systems
  publication-title: IEEE Trans. Automat. Control
– volume: 52
  start-page: 1346
  year: 2007
  end-page: 1349
  ident: br000020
  article-title: On linear copositive Lyapunov function and the stability of switched positive linear systems
  publication-title: IEEE Trans. Automat. Control
– reference: A. Rantzer, Optimizing positively dominated systems, in: Proc. Conference on Decision and Control, 2012, pp. 272–277.
– reference: Y. Ebihara, D. Peaucelle, D. Arzelier, Optimal
– volume: 28
  start-page: 7
  year: 1996
  end-page: 10
  ident: br000080
  article-title: On the Kalman–Yakubovich–Popov lemma
  publication-title: Syst. Control Lett.
– volume: 430
  start-page: 34
  year: 2009
  end-page: 40
  ident: br000025
  article-title: An alternative proof of the Barker, Berman, Plemmons (BBP) result on diagonal stability and extensions
  publication-title: Linear Algebra Appl.
– year: 2013
  ident: br000050
  article-title: On the Kalman–Yakubovich–Popov lemma for discrete-time positive linear systems: a novel simple proof and some related results
  publication-title: Int. J. Control
– volume: 5
  start-page: 249
  year: 1978
  end-page: 256
  ident: br000085
  article-title: Positive diagonal solutions to the Lyapunov equations
  publication-title: Linear Multilinear Algebra
– reference: A. Rantzer, Distributed control of positive systems, in: Proc. Conference on Decision and Control, 2011, pp. 6608–6611.
– volume: 2
  start-page: 62
  year: 2005
  end-page: 75
  ident: br000065
  article-title: The Perron–Frobenius theorem: some of its applications
  publication-title: IEEE Signal Process. Mag.
– year: 2004
  ident: br000075
  article-title: Convex Optimization
– reference: -controller synthesis for positive systems and its robustness properties, in: Proc. American Control Conference, 2012, pp. 5992–5997.
– volume: 75
  start-page: 666
  year: 2002
  end-page: 679
  ident: br000095
  article-title: Extended
  publication-title: Int. J. Control
– volume: 26
  start-page: 45
  year: 2013
  end-page: 51
  ident: br000090
  article-title: LMI-based stability and
  publication-title: Trans. Inst. Syst. Control Inf. Eng.
– volume: 52
  start-page: 1346
  issue: 7
  year: 2007
  ident: 10.1016/j.sysconle.2013.11.001_br000020
  article-title: On linear copositive Lyapunov function and the stability of switched positive linear systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2007.900857
– volume: 52
  start-page: 1099
  issue: 6
  year: 2007
  ident: 10.1016/j.sysconle.2013.11.001_br000015
  article-title: On the stability of switched positive linear systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2007.899057
– volume: 5
  start-page: 249
  issue: 4
  year: 1978
  ident: 10.1016/j.sysconle.2013.11.001_br000085
  article-title: Positive diagonal solutions to the Lyapunov equations
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087808817203
– volume: 48
  start-page: 30
  issue: 1
  year: 2003
  ident: 10.1016/j.sysconle.2013.11.001_br000070
  article-title: Semidefinite programming duality and linear time-invariant systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2002.806652
– volume: 28
  start-page: 7
  year: 1996
  ident: 10.1016/j.sysconle.2013.11.001_br000080
  article-title: On the Kalman–Yakubovich–Popov lemma
  publication-title: Syst. Control Lett.
  doi: 10.1016/0167-6911(95)00063-1
– ident: 10.1016/j.sysconle.2013.11.001_br000045
  doi: 10.1109/ACC.2012.6314755
– year: 2000
  ident: 10.1016/j.sysconle.2013.11.001_br000005
– year: 2013
  ident: 10.1016/j.sysconle.2013.11.001_br000050
  article-title: On the Kalman–Yakubovich–Popov lemma for discrete-time positive linear systems: a novel simple proof and some related results
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2013.797106
– year: 2001
  ident: 10.1016/j.sysconle.2013.11.001_br000010
– volume: 430
  start-page: 34
  year: 2009
  ident: 10.1016/j.sysconle.2013.11.001_br000025
  article-title: An alternative proof of the Barker, Berman, Plemmons (BBP) result on diagonal stability and extensions
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2008.06.037
– volume: 26
  start-page: 45
  issue: 1
  year: 2013
  ident: 10.1016/j.sysconle.2013.11.001_br000090
  article-title: LMI-based stability and H∞ performance analysis of discrete-time positive systems
  publication-title: Trans. Inst. Syst. Control Inf. Eng.
– volume: 56
  start-page: 2218
  issue: 9
  year: 2011
  ident: 10.1016/j.sysconle.2013.11.001_br000035
  article-title: The bounded real lemma for internally positive systems and H-infinity structured static state feedback
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2011.2157394
– volume: 3335
  start-page: 31
  year: 2005
  ident: 10.1016/j.sysconle.2013.11.001_br000030
  article-title: Convex cones, Lyapunov functions, and the stability of switched linear systems
  publication-title: Lecture Notes in Comput. Sci.
  doi: 10.1007/978-3-540-30560-6_2
– ident: 10.1016/j.sysconle.2013.11.001_br000060
– ident: 10.1016/j.sysconle.2013.11.001_br000040
  doi: 10.1109/CDC.2011.6161293
– volume: 2
  start-page: 62
  issue: 2
  year: 2005
  ident: 10.1016/j.sysconle.2013.11.001_br000065
  article-title: The Perron–Frobenius theorem: some of its applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2005.1406483
– year: 2004
  ident: 10.1016/j.sysconle.2013.11.001_br000075
– ident: 10.1016/j.sysconle.2013.11.001_br000055
  doi: 10.1109/CDC.2012.6426312
– volume: 75
  start-page: 666
  year: 2002
  ident: 10.1016/j.sysconle.2013.11.001_br000095
  article-title: Extended H2 and H∞ norm characterizations and controller parametrizations for discrete-time systems
  publication-title: Int. J. Control
  doi: 10.1080/00207170210140212
SSID ssj0002033
Score 2.4209247
Snippet This paper is concerned with the analysis and synthesis of linear positive systems based on linear matrix inequalities (LMIs). We first show that the...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Automatic Control Engineering
Computer Science
Control systems
Diagonal Lyapunov matrix
Duality
Inequalities
Linear matrix inequalities
LMI
Mathematical models
Positive system
Synthesis
Systems analysis
Theorems
Uncertainty
Title LMI approach to linear positive system analysis and synthesis
URI https://dx.doi.org/10.1016/j.sysconle.2013.11.001
https://www.proquest.com/docview/1671604581
https://hal.science/hal-01760867
Volume 63
WOSCitedRecordID wos000330918400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002033
  issn: 0167-6911
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZN0kN7KH3S9IVaeitObUu2rONSUpKShkJT2JuwZIU4LN6w3l3S_PrM6OHdJC1pKb0YIyyvVvN59I00-kTI-1SYpslrm0iudQLxF0-krFki0kJLK-uqSI07bEIcHlbjsfwWFtp7d5yA6Lrq_Fye_VdTQxkYG7fO_oW5h5dCAdyD0eEKZofrHxn-4Ov-oBSOzBJ5JOpZu-yspQ3azR_qqEbiZs5_dkAE-7Zf56pBzNyBI2a0T9zunxUP1y0KPjs_Pu1PfE5X8LQLtybgfBpuopq1K2xdWGC-M-_uuvbKzEPGr8083NwS42cowfOWMnhQ671qJYDGS68gHt1u8Gveb3rx2TAC--du-HY_zXC6A90Ef3qCGqcZ20EJ1tCoq7rZ37El2BBcsANiU26QrVwUElzf1mh_d_xlGLDzlLEoAY8V1jaS__rXfsdhNk4wmfbamO6IytFD8iBEGHTkkfGI3LHdY3J_TXfyCUGM0IgROp9SjxEaMUI9RmjECNw0dMDIU_Lj8-7Rp70knKORGM6LecIxSrT6uBDAPa2Qx7wpgaZxC6W1xZX6Mud1o4sa2Z82mUi5NkDkgRqaNNXsGdnspp19TihnjKVGVhCGQmitS3gXMHppi6piTS7FNilizygTRObxrJOJitmEpyr2qMIehQgU0yq3yceh3pmXWbm1howdrwJZ9CRQAV5urfsOLDX8ECqs740OFJbBAFVClC-W8NDbaEgFLhe_mbqz00WvACdZiQkG2Yt_aMRLcm_1Ub0im_PZwr4md81y3vazNwGjl7fSqEE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LMI+approach+to+linear+positive+system+analysis+and+synthesis&rft.jtitle=Systems+%26+control+letters&rft.au=Ebihara%2C+Yoshio&rft.au=Peaucelle%2C+Dimitri&rft.au=Arzelier%2C+Denis&rft.date=2014-01-01&rft.pub=Elsevier+B.V&rft.issn=0167-6911&rft.eissn=1872-7956&rft.volume=63&rft.spage=50&rft.epage=56&rft_id=info:doi/10.1016%2Fj.sysconle.2013.11.001&rft.externalDocID=S0167691113002156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon