Low-Complexity Bit-Parallel Square Root Computation over GF(2^) for All Trinomials
In this contribution, we introduce a low-complexity bit-parallel algorithm for computing square roots over binary extension fields. Our proposed method can be applied to any type of irreducible polynomials. We derive explicit formulas for the space and time complexities associated with the square ro...
Uloženo v:
| Vydáno v: | IEEE transactions on computers Ročník 57; číslo 4; s. 472 - 480 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9340, 1557-9956 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this contribution, we introduce a low-complexity bit-parallel algorithm for computing square roots over binary extension fields. Our proposed method can be applied to any type of irreducible polynomials. We derive explicit formulas for the space and time complexities associated with the square root operator when working with binary extension fields generated using irreducible trinomials. We show that, for those finite fields, it is possible to compute the square root of an arbitrary field element with equal or better hardware efficiency than the one associated with the field squaring operation. Furthermore, a practical application of the square root operator in the domain of field exponentiation computation is presented. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 0018-9340 1557-9956 |
| DOI: | 10.1109/TC.2007.70822 |